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Abstract: In the current work, the stochastic Burgers’ equation is studied using the Dynamically
Orthogonal (DO) method. The DO presents a low-dimensional representation for the stochastic
fields. Unlike many other methods, it has a time-dependent property on both the spatial basis
and stochastic coefficients, with flexible representation especially in the strongly transient and
nonstationary problems. We consider a computational study and application of the DO method and
compare it with the Polynomial Chaos (PC) method. For comparison, both the stochastic viscous
and inviscid Burgers’ equations are considered. A hybrid approach, combining the DO and PC is
proposed in case of deterministic initial conditions to overcome the singularities that occur in the
DO method. The results are verified with the stochastic collocation method. Overall, we observe
that the DO method has a higher rate of convergence as the number of modes increases. The DO
method is found to be more efficient than PC for the same level of accuracy, especially for the case
of high-dimensional parametric spaces. The inviscid Burgers’ equation is analyzed to study the
shock wave formation when using the DO after suitable handling of the convective term. The results
show that the sinusoidal wave shape is distorted and sharpened as the time evolves till the shock
wave occurs.
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1. Introduction

Recently, there has been a compelling need to quantify uncertainties of parameters
in physical and mathematical problems in a probabilistic framework. This includes cases
that can be characterized by stochastic partial differential equations (SPDEs). Theses equa-
tions appear in many application fields, for example, solid mechanics, random vibrations,
fluid dynamics [1–3], propagation of waves through random media [4–6], and finance [7].
Stochastic forcing, uncertainties in one or more physical parameters, and initial and/or
boundary values, among others, are contributing to stochasticity in many disciplines.

Burgers’ equation is one of many important models that appear in many applications
specially in fluid mechanics. When considering the stochastic effects added to Burgers’
equation, it will be extended to study some real-life applications such as the flow turbulence.
There are various techniques that can be used to study and analyze such stochastic models.
The Monte Carlo (MC) simulation [8–10] is one of the most practical methods, using a
sequence of random numbers to handle these problems and get useful statistical properties.
To attain a certain accuracy level, a sufficient number of samples are required. More
studies have been applied to improve the MC efficiency such as sequential Monte Carlo
methods [11,12] and the Error Subspace Statistical Estimation (ESSE) [13,14]. The MC-based
techniques still have a relatively low rate of convergence and/or do not work efficiently for
the general case [15].
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Order-reduction techniques have been employed to simplify and analyze high-
dimensional complicated systems relative to several scientific and engineering problems.
Hence, they provide lower complexity for the original SPDE model. One of these ap-
proaches is the Proper Orthogonal Decomposition (POD) [16], which is based on the
statistical technique of Karhunen-Loeve (KL) expansion. The main drawback is that the
spatial basis of the POD method is selected a priori, which means that it may be unable to
describe some problems, such as transient fluid flows, which are highly time-dependent
and make the basis used irrelevant as time evolves.

Ghanem and Spanos [17] introduced an important and widely used approach known
as the Polynomial Chaos (PC) expansion, which is based on Wiener’s theory on polynomial
chaos [18]. The main drawback is that the PC suffers from problems relying on long time
dependence, although it is well known that the PC method shows fast convergence rates
for Gaussian processes. Other types of processes may have slower convergence rates in
addition to solution deterioration with time evolution. The generalized PC expansion
(gPC) introduced by Xiu and Karniadakis [19,20] uses different basis functions for different
types of problems and is employed to increase the rate of convergence and to improve
the efficiency of a wide range of nonlinear applications. The Probabilistic Collocation
Method (PCM) [21] is an efficient version derived from PC that provides a smooth solu-
tion in parametric spaces and gives fast convergence rates as the order of the expansion
increases [22,23].

The PC can also be extended to analyze the stochastic differential equations (SDEs)
which are derived by or include white noise. The Wiener chaos expansion (WCE) and the
Wiener-Hermite expansion (WHE) are common techniques used for analyzing SDEs [24].
The fractional-order version of the WHE was recently developed for the case of fractional
Brownian motion [25].

In the current study, we shall focus on analyzing Burgers’ model with stochastic forcing.
The stochastic Burgers’ model is common in studying flow turbulence and in general the
propagation of randomness and nonlinear waves in the undispersive media [24]. The same
type of nonlinearity of Burgers’ equation exists as in Navier-Stokes equations. Results
obtained from solving the 1D stochastic Burgers’ equation are similar to experimental
results of the 3D real turbulence problems.

Dynamical Orthogonal (DO) decomposition is introduced in [26,27] as one of the
reduced-order techniques in which the solution is approximated in a generalized KL
expansion, i.e.,

u(x, t; ω) = u(x, t) +
N

∑
i=1

ui(x, t)Yi(t; ω),

where x is an n-dimension space vector, t > 0 is the time, ω is the output of a random
experiment, N represents the number of approximating modes, u(x, t) is the mean field,
and ui(x, t) ; i = 0 to N, are orthonormal time-dependent fields in the spatial domain. The
stochastic processes Yi(t; ω) are usually considered to be with zero mean without loss of
generality. Both spatial basis and the stochastic coefficients have a time dependency. As
a result, the above KL representation is particularly flexible when it comes to represent
nonstationary, highly transient responses. On the other hand, the same property adopts a
redundant representation. To overcome this redundancy in both stochastic coefficients and
spatial basis, a natural constraint is imposed, called the dynamical orthogonal condition [26].
By means of this condition, the DO components, i.e., ui(x, t), Yi(t; ω) and u(x, t), can
be derived.

From a computational viewpoint, the uncertainty evolution using DO decomposition
is accomplished by determining a set of (N + 1) deterministic PDEs that describe the mean
field evolution u(x, t) and the basis ui(x, t) coupled with N (ordinary) SDEs that describe
the evolution of stochastic coefficients Yi(t; ω). The DO equations reach a singularity at
very low levels of uncertainty when the modes develop independently. Therefore, this
may generate a numerical issue since the computations include ratios of small moment
quantities, particularly in problems where deterministic initial conditions are included.
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The initialization of the random space is another issue that arises when starting with
deterministic initial conditions.

To address these issues, a hybrid approach is introduced in [28] that avoids the
singularity that occurs in the covariance matrix. This hybrid approach was formulated
by integrating the PC with the DO method. Firstly, the PC is used in solving the SPDE
up to a certain time until guaranteeing the development of stochasticity. Next, the DO
approach is used to continue the solution with time evolution. As part of this strategy, the
KL expansion is employed to give a collection of modes that are used for initializing the
stochastic coefficients.

In the current work, we study the stochastic Burgers’ model using the DO method and
compare it with the PC from different sides including error behavior, effect of switching
time, and the number of modes and their effect on solution accuracy. Moreover, the error
between DO components and the growth of eigenvalues are computed. The DO behavior
for the case of inviscid Burgers’ equation and shock wave formation is also analyzed in the
current work. Suitable known techniques, such as upwind techniques [29], are combined
with the DO method to analyze the shock formation in the presence of random coefficients.

The paper is structured as follows: In Section 2, we provide a brief overview of
the construction of the DO representation, the evolution equations, and their numerical
solution. A hybrid approach combining the DO and PC is presented. In Section 3, the
performance of the DO and PCM methods are compared by analyzing the stochastic viscous
and inviscid Burgers’ equations. In Section 4, we study shock wave formation via inviscid
Burgers’ equation. In Section 5, we present the conclusions.

2. Methodology

Consider the probability space (Ω , F , P) where the sample space Ω contains all the
elementary events ω . F is the σ-algebra of the subsets of Ω, and P is the probability
measure. The random field will be defined for all measurable maps with the form u(x, t, ω).
The mean value operator of u is formulated as follows:

u(x, t) = E[u(x, t; ω)] =
∫

Ω
u(x, t; ω)dP(ω). (1)

The set of continuous random fields that are square integrable, i.e.,
∫

D E[u(x, t; ω)T

u(x, t; ω)] dx < ∞, where the transpose of u(x, t; ω) is u(x, t; ω)T for all t ε T; where D is
the domain and T is the time interval. The covariance operator, between two random fields
u(x, t; ω) and q(x, t; ω), has the bi-linear form:

Cu, q(x, y) = E
[
(u(x, t; ω)− u(x, t))T(q(y, τ; ω)− q(y, τ))

]
, (2)

where x, y belong to the spatial domain D, t, τ ∈ T, and forms a Hilbert space H [4,30]. For
the random u(x, t; ω) the projection operator ∏ to subspace spanned by the orthonormal
basis Q =

{
sj(x, t; ω)

}m
j=1 is defined as follows:

∏Q[u(x, t; ω)] =
m

∑
j=1

sj(., t; ω), u(., t; ω) sj(x, t; ω). (3)

We define the autocovariance operator for u(x, t; ω) in the case τ = t as follows:

Cu,u(x, y) = E
[
(u(x, t; ω)− u(x, t))T(u(y, t; ω)− u(y, t))

]
, (4)

where x, y ∈ D, t ∈ T . Then, we define the integral operator at a given time t which
depends on the autocovariance operator as follows:

IC φ =
∫

D
Cu,u(x, y) φ(x, t)dx ; φ ∈ L2. (5)
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and it is a positive operator, compact and self-adjoint in the Hilbert space H of a determin-
istic, square-integrable, and continuous field L2 [16,31].

In the current work, we shall consider the following evolution SPDE:

∂u(x, t; ω)

∂t
= L[u(x, t; ω), ω] ; x ∈ D, t ∈ T, ω ∈ Ω, (6)

where L is the differential operator, generally nonlinear. The system initial condition at
time t0 is given by the random field:

u(x, t0; ω) = u0(x; ω). (7)

and the boundary conditions take the form:

B[u(ξ, t; ω)] = h(ξ, t; ω) ; ξ ∈ ∂D, (8)

where B is a differential linear operator and ∂D is the boundary of domain D in Rn and
n = 1, 2 or 3.

2.1. DO Method

For every random field u(x, t, ω) ∈ L2, the KL expansion [29,30] at time t can be
written as:

u(x, t; ω) = u(x, t) +
∞

∑
i=1

Yi(t; ω) ui(x, t), (9)

where ui(x, t) are the eigenfunctions and Yi(t; ω) are stochastic processes. We can obtain
the eigenfunctions and eigenvalues of the covariance matrix C of ui(x, t) by solving:∫

D
Cu, u(x, y) ui(x, t) dx = λi ui(y, t), (10)

where ui are orthonormal eigenfunctions, i.e., ui, uj = δij . Then, we can approximate the
random field u(x, t, ω) by a finite N-modes series expansion as:

u(x, t, ω) = u(x, t) + ∑N
i=1 Yi(t; ω) ui(x, t). (11)

The stochastic subspace Vs = span{ui(x, t)}N
i=1 is defined as the space spanned by the

eigenfunctions of the largest N eigenvalues. It is worth noting that the spatial basis ui(x, t)
and stochastic coefficients Yi(t; ω) are recognized to have a time-dependent nature, and
they change in relation to system dynamics.

The mean component u(x, t), the orthogonal basis {ui(x, t)}N
i=1, and the stochastic

coefficients {Yi(t; ω)}N
i=1 are all time-dependent and they are varyingly redundant. The

main cause of redundancy arises from the uncertainty of evolution. In order to solve this
redundancy, we can limit the basis {ui(x, t)}N

i=1 evolution to be only orthogonal to the
space Vs by imposing additional constraints. For example, we can apply the following
orthogonality constraint:

dVs

dt
⊥Vs ⇔ 〈

∂uj(x, t)
∂t

, ui(x, t)〉 = 0 ; i, j = 1, . . . , N. (12)

This constraint is known as the dynamical orthogonal condition [26,32]. This is also
equivalent to preserving the basis {ui(x, t)}N

i=1 orthogonality for all times since:

∂

∂t
〈uj(., t), ui(., t)〉 = 〈

∂uj(x, t)
∂t

, ui(x, t) + uj(x, t),
∂ui(x, t)

∂t
〉. (13)

The DO expansion is used to obtain a set of independent equations characterizing
all deterministic and stochastic quantities. Using DO, we will be able to reduce the SPDE
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to a set of N + 1 deterministic PDEs for u(x, t) and {ui(x, t)}N
i=1 coupled with N ordinary

differential equations in the stochastic coefficients {Yi(x, t)}N
i=1.

Under the DO representation, the main SPDE (6)–(8) can be reformulated into the
following system of equations [26]:

∂u(x, t)
∂t

= E[ L[u(x, t; ω); ω]]. (14)

∂ui(x, t)
∂t

= ∏V⊥s

[
E
[
L[u(., t; ω); ω]Yj(t; ω)

]]
C−1

Yi(t)Yj(t).
(15)

dYi(t; ω)

dt
= 〈L[u(x, t; ω); ω]− E[ L[u(x, t; ω); ω]], ui(x, t)〉, (16)

where ∏V⊥s
[F(x)] = F(x) −∏Vs [F(x)] = F(x) − F(.), uk(., t) uk is the orthogonal com-

plement projection, and CYi(t)Yj(t) = E
[
Yi(t; ω)Yj(t; ω)

]
is the covariance operator for the

stochastic coefficients. The related boundary values are given by:

B[u(ξ, t; ω)] = E[h(ξ, t; ω)]. (17)

B[ui(ξ, t)] = E[Yi(t; ω)h(ξ, t; ω)] C−1
Yi(t)Yj(t).

(18)

where ξ ∈ ∂D and the initial conditions at time t0 have the form:

u(x, t0) = u0(.) ≡ E[u0(x; ω)]. (19)

ui(x, t0) = ui0(x). (20)

Yi(t0; ω) = 〈u0(.; ω)− u0(.), ui0(.)〉, (21)

for i = 1, . . . , N, and ui0(x) are the eigenfunctions associated with the covariance operator Cu,u.

2.2. Numerical Solution

The DO evolution Equations (14)–(16) include numerical integration for both random
and physical spaces. We denote the weights and collocation points of the spatial space by(

xp, wp
)Ns

p=1 and for the random space by
(
ξ j, γj

)Nr
j=1. We can use Fourier collocation points

for xp, p = 1, . . . , Ns, and Legendre-Gauss collocation for ξ j, j = 1, . . . , Nr. To discretize
time, explicit procedures can be used such as Euler’s method and 4th-order Runge-Kutta
(RK4) method. The inner products included in the KL equations can be evaluated as:

• The inner product defined in the spatial domain:

〈p(x, t; ω), q(x, t; ω)〉 ≈
Ns

∑
p=1

p
(
xp, t; ω

)
q
(

xp, t; ω
)
wp. (22)

• The mean value operator defined in random space:

E[p(x, t; ω), q(x, t; ω)] ≈
Nr

∑
j=1

p
(
x, t; ξ j

)
q
(
x, t; ξ j

)
γj. (23)

The evolution equations of the DO representation (14)–(16) can be alternatively refor-
mulated into a matrix form as follows:

∂u
∂t = E[L[u]].

∂u
∂t = (p− uG)C−1.

dY
dt = h.

(24)
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where:
Cij = E

[
Yi Yj

]
.

hj = 〈L[u]− E[L[u]], uj(., t)〉.

pj = E
[
L[u] Yj

]
.

Gij = 〈E
[
L[u] Yj

]
, ui〉.

(25)

Practically, in several cases, the initial conditions are deterministic, and the stochasticity
emanates from other causes such as random forcing and random coefficients. In this
case, the stochastic basis Yi will be initially zero, and hence the covariance matrix for the
stochastic coefficients C = E

[
YTY

]
will be singular. For this reason, a hybrid approach,

combining the PCM and DO methods, is proposed to overcome this problem [28]. We can
start the computation with the PCM method to allow the development of randomness up
to a certain converting (switching) time ts, then transform to the DO method and use KL
expansion to initialize the DO components u , {Yi} and {ui} [33,34].

3. Demonstrating Examples

In this section, we shall consider using the DO and PCM-DO methods to analyze Burg-
ers’ viscous and inviscid models with random parameters. For the numerical computations,
we shall consider the following parameters:

∆t = 0.001, t f = 5, Ns = 128, Nr = 64, σ = 1, v = 1,

where Ns refers to the number of collocation points in the physical domain and Nr is the
number of points in the random domain. The physical domain is discretized using the
Fourier collocation points, while the random space is discretized using the Legendre-Gauss
collocation. The RK4 method is employed for the time-integrator. At t = 0, the stochastic
variations are zero; i.e., Yi and ui cannot be declared. The DO representation could not be
initialized at t = 0. Therefore, we start the simulation at t = ∆t to avoid the singularity issue
due to the presence of deterministic (nonrandom) initial conditions. The mean, variance,
and stochastic and spatial bases of the DO representation are initiated with the modes
obtained from KL expansion.

Alternatively, the hybrid PCM-DO approach is used to overcome the singularity due
to deterministic initial conditions. In this case, we start the numerical computation using
the PCM method up to a switching time ts to guarantee that the stochasticity is evolved,
then we use the KL decomposition to initialize the DO components and hence switch to
the DO method.

For comparison and validation, a reference solution using the PCM method with
RK4 is considered. The reference solution will use similar parameters as in the DO and
PCM-DO methods.

3.1. Stochastic Burgers’ Equation

Considering the viscous Burgers’ equation with stochastic forcing term in the form [28,35]:

∂u
∂t + u ∂u

∂x = v ∂2u
∂x2 +

1+ξ
2 sin(2πt), x ∈ [0, 2π] and t ∈

[
0, t f

]
,

u(x, 0) = g(x), x ∈ [0, 2π],
(26)

where ξ ∼ U [−1, 1], the diffusion coefficient v = 0.04 with periodic boundary conditions
and the initial condition g(x) taken as:

g(x) =
1
2
(exp(cos(2x))− 1.5) sin(3x + 0.74π ). (27)



Axioms 2023, 12, 152 7 of 18

Apply DO method to obtain the evolution operator L in the form:

∂u
∂t

= L[u(x, t; ω)] = −uux + vuxx +
1 + ξ

2
sin(2πt). (28)

By substituting with KL expansion of u(x, t; ω), we get:

L[u(x, t; ω)] = −uux−Yi
∂

∂x
(uiu)−YiYjui

∂uj

∂x
+ v
(

uxx + Yi
∂2ui
∂x2

)
+

1 + ξ

2
sin(2πt). (29)

Apply the mean value operator to get:

E[L(u)] = −uux − Cijui
∂uj

∂x
+ v uxx + 0.5 sin(2πt). (30)

where Cij = E
[
YiYj

]
and Yi(t; ω) are zero mean stochastic processes. Multiplying the

evolution Equation (26) by Yj, we get

L(u) Yj = Yj

[
−uux −Yiui

∂u
∂x
−Yk

∂uk
∂x

u−YiYjui
∂uk
∂x

]
+ vYjuxx + vYiYj

∂2ui
∂x2 +

1
2

Yj sin(2πt) +
ξ

2
Yj sin(2πt),

Apply the expectation operator to get:

E
[
L(u) Yj

]
= −

(
Cijui ux + Ckj

∂uk
∂x

u + Cikj
∂uk
∂x

)
+ v Cij

∂2ui
∂x2 + E

[
ξ

2
Yj

]
sin(2πt). (31)

where Cikj = E
[
YiYkYj

]
and Ckj = E

[
YkYj

]
. After we get E[L(u)] and E

[
L(u) Yj

]
, we

can apply the matrix form in Equation (25). Then calculate the matrices hj, pj and Gij.
Equation (31) is complicated due to the expectation E

[
L(u) Yj

]
that contains the third

moment of the stochastic basis. A deterministic initial condition makes the stochastic
coefficient Yi, i = 1, . . . N be zero initially, and hence the covariance matrix C for Yi
becomes singular. The hybrid PCM-DO method will be used to avoid this issue. For the
numerical solution, we shall use the parameters Nr, Ns, ∆t, and discretization methods as
shown above.

In Figure 1, the mean and variance are shown at t f = 5 and N = 6. They agree well
with the reference solution. The L2 error for the mean and variance for different values of
modes are shown in Figure 2. We present errors in mean and variance for three values of
modes: N = 3, N = 5, and N = 7. The solution at ts = 2 and N = 7 is the best among the
three cases. To this end, it can be noticed that the accuracy of the solution is affected by
lower modes.

Figure 3 shows the high convergence rate detected with the number of modes. The L2
error reduces as the number of modes increases. This demonstrates that the DO decompo-
sition has a high convergence rate for this nonlinear case.

Figure 4 shows that the hybrid approach is affected by the switching time and number
of modes. We observe that L2 error for the mean and variance at ts = 1 and N = 6 is the
best among other values. For ts = 2 and N = 6, the solution has the same accuracy but
takes more computational time. The computational time is compared when using the DO
and PCM for this test case using different spatial nodes Nr. The DO is more efficient, with
less computational time than the PCM, as shown in Figure 5.

Figure 6 shows the eigenvalues variation as the solution evolves till t f = 5. The
computed eigenvalues are compared with the reference solution. A good agreement is
noticed as shown in the figure. It is observed that the lower eigenvalues λ8 and λ9 from the
mode N = 9 have an order: 10−15 and 10−16, respectively, making the covariance matrix
extremely ill-conditioned; it becomes singular and hence sensitive to any perturbations.
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3.2. Quasilinear Inviscid Burgers’ Equation

Consider the stochastic quasilinear inviscid Burgers’ equation with a random forcing
in the form [36]:

∂u
∂t

+ u
∂u
∂x

=
1 + ξ

2
sin(2πt); u(x, 0) = g(x), (32)
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where x ∈ [0, 2π] , t ∈
[
0, t f

]
, ξ ∼ U[−1, 1] with periodic boundary conditions and

the initial condition is:
g(x) =

1
7

sinx. (33)

Applying the DO decomposition to get the evolution operator L along with other forms:

L[u(x, t; ω)] =
∂u
∂t

= −uux +
1 + ξ

2
sin(2πt). (34)

E[L(u)] = −uux − Cijui
∂uj

∂x
+ 0.5 sin(2πt). (35)

E
[
L(u) Yj

]
= −

(
Cijui ux + Ckj

∂uk
∂x

u + Cikj
∂uk
∂x

)
+ E

[
ξ

2
Yj

]
sin(2πt), (36)

where Cikj = E
[
YiYkYj

]
. We shall use similar parameters as in the above example in

Section 3.1.
Figure 7 demonstrates that errors in the mean and its variance are identical for both

the DO and the PCM methods. We present mean and variance at time t f = 6 as shown
in Figure 8. They have a good agreement compared with the reference solution. Figure 9
shows the performance of the mean solution u(x, t) using the DO method as the number of
time iterations increases along with the contour lines. The solution is illustrated at t f = 6
at switching time ts = 1 and number of modes N = 4 with time increment ∆t = 10−3. We
observe that the wave shape tends to be sharper with time. The L2 error of the DO method
for different modes number N are shown in Figure 10. We present the errors in the variance
and mean for three modes N = 2, N = 3 and N = 4 with the same switching time ts = 1.
As shown, and as expected, the error due to mode N = 4 is less than errors due to other
modes. Therefore, as the number of modes increases, the error is reduced. Figure 11 shows
the high rate of error convergence with increasing the modes number. This implies that the
DO representation is also an efficient choice for this nonlinear SPDE.
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Figure 9. The mean field
¯
u(x,t) (left) and contour lines (right) for the inviscid Burgers’ equation

using the DO method at tf=4, switching at ts=1 with number of modes N=4.

As it is shown in Figure 12, the L2 error of the solution is computed for three switching
times ts = 0.5, ts = 1 and ts = 2 with the same number of modes N = 4. We can observe
that the error for the mean at ts = 2 is better than the errors due to other switching times.
After that, the error becomes the same for the three modes. On the other hand, the error in
variance is approximately the same for all switching times, so we can use ts = 1 as it has a
smaller computational time.
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Figure 12. Mean L2 error (left) and variance L2 error (right) for the inviscid Burgers’ equation of
tf=3.

Figure 13 shows the time growth of eigenvalues till t f = 6. The computed eigenvalues
are compared with those from the reference solution and a good agreement is achieved. It is
observed that the smaller eigenvalues λ3 and λ4 have an order 10−15 and 10−12, respectively.
This means the covariance matrix is highly ill-conditioned and becomes singular as the
modes number increases.
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Consider the stochastic inviscid Burger’s equation with random forcing as follows:

��
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initial condition to be taken as:
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3

����. (38)

This model is the same model given in (32), but with different initial condition �(�)
that allows for shock formation. We consider the solution up to a final time �� = 4. The
above described DO method in Section 2 is applied to the model Equation (37). The
convective term � ��/�� should be handled using any suitable technique such as first
and/or second-order upwind scheme. This will prevent oscillatory behavior of the
solution, especially near the shock wave. Figure 14 shows the solution mean and
variance at the occurrence of the shock wave. The solution is illustrated at switching
time �� = 1, and the number of modes considered is � = 4. As the waveform steepens,
the edges form causing a shock wave. We can notice how variance become relatively
large close to the shock wave. The maximum value of variance occurs exactly at the
shock wave. The mean field ��(�, �) of the solution is shown in Figure 15. We present the
mean field and the contour lines’ evolution up to the breaking time. The sinusoidal wave
shape sharpens as the time evolves till the shock wave occurs. The mean and variance
for the solution is sketched at different values of time as shown in Figure 16. Time values
� = 1.1, � = 2.5, � = 3.5, and � = 4 are considered in Figure 16. It can be observed that the
sinusoidal wave shape is distorted. The distortion of the wave profile starts from the
initial data, and the dispersion of the wave profile evolves with the time increase.

Figure 13. Inviscid Burgers’ equation: Time evolution in eigenvalues with the final time tf=4,
switching time ts=1 and the number of modes N=4.
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4. Shock Wave Occurrence

Consider the stochastic inviscid Burger’s equation with random forcing as follows:

∂u
∂t

+ u
∂u
∂x

=
1 + ξ

2
sin(2πt); u(x, 0) = g(x), (37)

where x ∈ [0, 2π] , t ∈
[
0, t f

]
, ξ ∼ U[−1, 1] with periodic boundary conditions and the

initial condition to be taken as:
g(x) =

1
3

sinx. (38)

This model is the same model given in (32), but with different initial condition g(x)
that allows for shock formation. We consider the solution up to a final time t f = 4. The
above described DO method in Section 2 is applied to the model Equation (37). The
convective term u ∂u/∂x should be handled using any suitable technique such as first
and/or second-order upwind scheme. This will prevent oscillatory behavior of the solution,
especially near the shock wave. Figure 14 shows the solution mean and variance at the
occurrence of the shock wave. The solution is illustrated at switching time ts = 1, and the
number of modes considered is N = 4. As the waveform steepens, the edges form causing
a shock wave. We can notice how variance become relatively large close to the shock wave.
The maximum value of variance occurs exactly at the shock wave. The mean field u(x, t)
of the solution is shown in Figure 15. We present the mean field and the contour lines’
evolution up to the breaking time. The sinusoidal wave shape sharpens as the time evolves
till the shock wave occurs. The mean and variance for the solution is sketched at different
values of time as shown in Figure 16. Time values t = 1.1, t = 2.5, t = 3.5, and t = 4 are
considered in Figure 16. It can be observed that the sinusoidal wave shape is distorted. The
distortion of the wave profile starts from the initial data, and the dispersion of the wave
profile evolves with the time increase.
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5. Conclusions
The Burgers’ model with stochastic terms is an important problem which appears

in many applications such as the flow turbulence. Due to lack of analytical methods,
numerical techniques are required to analyze such important models. The stochastic
Burgers’ model is studied using DO and PCM methods in the current study. The DO
method introduces a computational low-dimensional framework that enables to capture
the relevant system dynamics for the stochastic Burgers’ model. The PCM is combined
with the DO to avoid the singularity of the DO evolution in case of deterministic initial
conditions. The approach is based on solving the model using the PCM up to a certain
switching time at which the stochasticity occurs, and then switching to the DO method.
The two strategies, DO and PCM-DO, are successfully applied to the stochastic Burgers’
model and are compared in terms of performance and accuracy with a reference solution.
The stochastic viscous and inviscid Burgers’ models combined with random forces are
considered with the two methods. We derived the quantities of the stochastic
coefficients and spatial bases for these models. When analyzing the test models, the DO
method shows a high level of agreement with the reference solution and has a
convergence rate increase with the number of modes.

Overall, the DO method is as accurate as the PCM method, but with higher
efficiency. This explains why the DO method could be a viable and gainful replacement
for the PCM. We also analyzed the shock wave formation using the DO by considering
the inviscid Burgers’ equation with suitable discretization of the convective tern to avoid
oscillatory solution. The sinusoidal wave shape sharpens and distorts as the time
evolves till the shock wave occurs. The mean solution shows the shock occurrence while
the variance explains the magnification of oscillations close to shock formation. Further
research should focus on more systematic studies to determine the suitable switching
time from PCM to DO methods. Moreover, other applications are to be considered using
the current presented techniques.
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5. Conclusions

The Burgers’ model with stochastic terms is an important problem which appears in
many applications such as the flow turbulence. Due to lack of analytical methods, numerical
techniques are required to analyze such important models. The stochastic Burgers’ model
is studied using DO and PCM methods in the current study. The DO method introduces
a computational low-dimensional framework that enables to capture the relevant system
dynamics for the stochastic Burgers’ model. The PCM is combined with the DO to avoid
the singularity of the DO evolution in case of deterministic initial conditions. The approach
is based on solving the model using the PCM up to a certain switching time at which
the stochasticity occurs, and then switching to the DO method. The two strategies, DO
and PCM-DO, are successfully applied to the stochastic Burgers’ model and are compared
in terms of performance and accuracy with a reference solution. The stochastic viscous
and inviscid Burgers’ models combined with random forces are considered with the two
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methods. We derived the quantities of the stochastic coefficients and spatial bases for these
models. When analyzing the test models, the DO method shows a high level of agreement
with the reference solution and has a convergence rate increase with the number of modes.

Overall, the DO method is as accurate as the PCM method, but with higher efficiency.
This explains why the DO method could be a viable and gainful replacement for the PCM.
We also analyzed the shock wave formation using the DO by considering the inviscid
Burgers’ equation with suitable discretization of the convective tern to avoid oscillatory
solution. The sinusoidal wave shape sharpens and distorts as the time evolves till the shock
wave occurs. The mean solution shows the shock occurrence while the variance explains
the magnification of oscillations close to shock formation. Further research should focus on
more systematic studies to determine the suitable switching time from PCM to DO methods.
Moreover, other applications are to be considered using the current presented techniques.
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