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Abstract: Within eye diseases, diabetic retinopathy and retinopathy of prematurity are considered
one of the main causes of blindness in adults and children. In order to prevent the disease from
reaching such an extreme, a timely diagnosis and effective treatment must be applied. Until now, the
way to verify the state of the retina has been to make qualitative observations of fundus images, all
carried out by an ophthalmological specialist; however, this is totally restricted to their experience,
and some changes in the vascular structure of the retina could be omitted, in addition to the fact that
very high resolution images would be needed to be able to detect significant changes. Accordingly,
with the help of computational tools, this diagnostic/monitoring process can be improved. This
paper presents a novel strategy for the modeling of the MTA by using an estimation of distribution
algorithm (EDA) based on the probability density function in order to determine the coefficients and
parameters (α, β) of a Jacobi polynomial series. A model using polynomials is the novel aspect of
this work since in the literature there are no models of the MTA of this type, in addition to seeking
to better cover the profile of the retinal vein. According to the experimental results, the proposed
method presents the advantage to achieve superior performance in terms of the mean distance to
the closest point (4.34 pixels), and the Hausdorff distance (14.43 pixels) with respect to different
state-of-the-art methods of the numerical modeling of the retina, using the DRIVE database of retinal
fundus images with a manual delineation of the MTA performed by an specialist.

Keywords: Boltzmann univariate marginal distribution algorithm; estimation of distribution algo-
rithm; jacobi polynomials; major temporal arcade; retinal fundus images

1. Introduction

Blindness is a condition that can occur in a patient who, due to not having been
treated promptly in the diagnosis of a disease such as diabetic retinopathy, experiences
non-recoverable loss of vision. Specifically, this disease prevails mainly in industrialized
countries, is prevalent in subjects between 20 and 64 years of age, and represents 10%
of new cases of annual blindness [1–3]. In addition to diabetic retinopathy, which only
adults present, there is also a very important type that affects infants: retinopathy of
prematurity (ROP). This is the main cause of childhood blindness worldwide; the diagnosis
and treatment must be timely because its evolution occurs in an accelerated manner within
the first 8 to 12 weeks after the birth of the infant [4].

Both diseases are the result of damage of the blood vessels of the tissue located in
the back of the eye, that is, in the retina. In order to carry out a diagnosis, it is necessary
to obtain a set of fundus images, which must be examined by an physician expert in
ophthalmology. However, this restricts the diagnosis to the experience acquired by the
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specialist, that is, it becomes qualitative. From fundus images, it is possible to carry out a
quantitative analysis of the vascular structure of the retina, which is helpful to the specialist
who can use the technique both for the diagnosis of the pathology and for its follow-up
throughout the treatment.

A great challenge that arises next is that the detection of small changes in the structure
of the retinal veins is a challenging task; for this, the images taken of the patient would be
required to have a very high resolution. However, using computational tools that process
medical images is a way to deal with this problem, which would result in a support tool for
specialists when giving a diagnosis.

On the other hand, the major temporal arcade (MTA) is the thickest branch present in
retinal fundus images. Structural changes in this vein have been identified by detailed anal-
ysis; these include tortuosity, change in thickness, and the angle of insertion, characteristics
that have emerged as sequelae in both diabetic retinopathy and ROP [5–8] . Likewise, when
there are changes in the opening of the MTA, this is understood as an important indicator
of the structural integrity of the macular region [8,9].

A complementary technique that can be used to help both the diagnosis and the
monitoring of the disease throughout its treatment is obtaining a simple mathematical
expression that allows one to model the MTA. Currently in the literature, there are some
works that have addressed modeling. Oloumi et al. [10,11] proposed two different methods
based on a parabolic modeling of the MTA; one consists of a single parabola and the
second of two parabolas, one for each branch extending from the optic nerve head. In both
two works, the well-known strategy of the Hough transform was used for detecting the
parabolic shape of the MTA. The objective of their work was to quantify changes in the
opening of the MTA associated with diabetic retinopathy as well as to measure the angle
of the arch, which showed significant differences when models obtained from images of
healthy subjects were compared with patients diagnosed with diabetic retinopathy. As
mentioned, one of the most used techniques for curve detection in images is the Hough
transform [12]. Unfortunately, the computational time of the Hough transform makes it
unfeasible to used in clinical practice. In this way, with the aim of reducing the analysis
time, new techniques have been explored. Valdez et al. [13] proposed a method for the
detection of MTA in fundus images. This consisted of hybridization by combining the
UMDA algorithm with simulated annealing (SA), which allowed one to guide the search to
promising regions. A segmented image was used as an objective function, being weighted
with the pixel according to the distance to the parabola vertex.

More recently, Giacinti et al. [14] proposed parabolic modeling; however, this was
done using the evolutionary univariate marginal distribution algorithm (UMDA). This
model yielded an average accuracy value of 0.85 compared to the ground-truth of the trace
performed by an ophthalmologist. Alvarado et al. [15] carried out a numerical modeling of
the MTA using second-order spline curves. However, it has the disadvantage that in some
images the modeling fails since the method is very sensitive to the automatic location of
the control points of the spline, making this a characteristic to improve in the technique, in
addition to the fact that only five control points are used to generate the second-order spline.

In this paper, a novel method based on Jacobi polynomials and the Boltzmann univari-
ate marginal distribution algorithm (BUMDA) for the numerical modeling of the MTA is
proposed. The method determines the optimal coefficients that build a linear combination
of polynomials up to fourth order, in addition to determining the value of the parameters
(α, β). The efficiency of the method was quantified using two measures: the mean dis-
tance to the closest point (MDCP) and the Hausdorff distance. The results obtained were
contrasted with those presented in the works mentioned above.

In this paper, a robust method for the detection and modeling of the MTA in fundus
images is presented. The algorithm follows a BUMDA strategy, building multiple MTA
models from pixels data of the blood-vessel segmented retinal image. Implementing a
model using polynomials is the novel aspect of this work since in the literature there are
no models of the MTA of this type, in addition to seeking to better cover the profile of the
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retinal vein. Each model consists of a Jacobi polynomial curve with the ability to consider
both symmetric and asymmetric scenarios. To choose the best MTA model, the method
considers the two smallest measures of the MDCP and the Hausdorff distance.

The contributions of this work are summarized as follows:

1. A modeling strategy addressing both symmetric and asymmetric scenarios is pre-
sented to improve the MTA characterization.

2. A BUMDA scheme together with Jacobi polynomials with the purpose of improve the
modeling of the MTA.

3. A set of MTA manual delineations for the benchmark DRIVE dataset has been released
for scientific purposes

The rest of this paper is organized as follows. In Section 2, the database of the MTA
images, a description of the Jacobi polynomials, and the BUMDA algorithm are detailed.
In Section 3, the proposed method is presented in addition to the MTA segmentation and
the evaluation metrics. Section 4 shows the experimental results and the discussion. Finally,
in Section 5, the most relevant conclusions of the work are presented.

2. Materials and Methods

The DRIVE database [16] of 40 retinal fundus images was used in experiments. Since
this database is used for blood vessel segmentation, the specific delineation of the MTA
was performed by an ophthalmologist (Dr. Luis M. López-Montero).

2.1. Database of the MTA Images

Each image used is in RGB 8-bits format with size 565 × 584 pixels. The DRIVE
database consists of 40 retinal fundus images, 20 images of training, and 20 images of
testing; this database is publicly available and is used mainly for blood-vessel segmentation.
In this paper, the database was only used for the detection of the MTA; the training and
testing sets of retinal fundus images were specifically outlined to work with the major
temporal arcade. This images were performed by an ophthalmological specialist (Dr. Luis
M. López-Montero) from the highly specialized medical unit (UMAE) T1-León.

2.2. Jacobi Polynomials

The Jacobi polynomials [17], expressed as J(α,β)
n (x), are an important class of orthogo-

nal polynomials. They are orthogonal with respect to the weight w(x) = (1− x)α(1 + x)β

on [−1, 1], with the restriction α, β > −1:

∫ 1

−1
J(α,β)
n (x)J(α,β)

m (x)(1− x)α(1 + x)βdx =
2α+β+1

2n + α + β + 1
Γ(n + α + 1)Γ(n + β + 1)

Γ(n + α + β + 1)
δn,m, (1)

being Γ(x) the gamma function.
The Jacobi polynomials J(α,β)

n (x) are the solution for the Sturm–Liouville equation:(
1− x2

)
y′′(x) + [β− α− (α + β + 2)x]y′(x) + n(n + α + β + 1)y(x) = 0. (2)

Each Jacobi polynomial can be obtained through the Rodrigues formula:

Jα,β
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn

[
(1− x)α(1 + x)β

(
1− x2

)n]
. (3)

For the calculation of the k-th derivative, it can be obtained by:

dk

dxk

[
J(α,β)
n (x)

]
=

Γ(α + β + n + 1 + k)
2kΓ(α + β + n + 1)

J(α+k,β+k)
n−k (x). (4)
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2.3. Boltzmann Univariate Marginal Distribution Algorithm (BUMDA)

In the search for the solution to an optimization problem, computational techniques
emerge as immediate strategies to be implemented. In order for these solutions to be found
in a reasonable amount of time, metaheuristic algorithms become the most appropriate.
In particular, the estimation of distribution algorithms (EDAs) builds probabilistic models
that are iteratively refined with the intention of obtaining better solutions for an objective
problem. Let us bear in mind that maintaining probabilistic models is more complicated
than simply applying evolutionary operators to a population; however, these models
allow EDAs to adapt to the structure of the problem, giving them an advantage over other
metaheuristics [18].

In the last decade, attention has been paid to the Boltzmann Probability Density Func-
tion (Boltzmann-PDF) [19] to the point of making it the probabilistic model of EDAs [20].
The Boltzmann-PDF emerged in the 19th century, in the area of physics for the field of
statistical mechanics, as a way to model the distribution of particles in their energy states

Px = P(x, β) =
1
Z

eβg(x), (5)

where Z is a normalization parameter known as “partition function”, and g(x) is the energy
of the states x and β = 1

T , with T the temperature of the system. Equation (5) shows that
there is a greater probability of the particles occupying the states of lower energy than those
of higher energy, and that it is less probable that they occupy more energetic states. Thus,
by coupling this Boltzmann-PDF to an EDA, the minimization of an “energy” function will
be sought through stochastic optimizations.

So far it can be inferred that it is simply enough to use the said PDF to solve any
optimization problem through an EDA. However, a significant problem arises: it is im-
possible to generate new possible solutions through the Boltzmann distribution since it
lacks parameters such as the mean and standard deviation. However, this problem can be
addressed by approximating the Boltzmann distribution to a Gaussian distribution, which
is defined as

Qx = Q(x; µ, ν) =
1√
2πν

exp

(
−1

2
(x− µ)2

ν

)
. (6)

That approximation is carried out by minimizing a measure of divergence between
the two PDFs with respect to the parameters of interest, which in this case would be those
of the Gaussian

(
µ, ν = σ2). The divergence measure to be used is the Kullback–Liebler

divergence (KL-divergence), which is given by the following equation:

DKL(Q, P) =
∫

x
Qx log

(
Qx

Px

)
dx. (7)

Then, a mathematical analysis associated with a minimization process and taking into
account the considerations as in [20] must be carried out, and selection operators that are
Boltzmann-based (µ, ν) can be obtained that will allow numerical calculations to be made
for the mean and standard deviation ,

µ ≈
∑j g(xj)xj

∑j g(xj)
, (8)

and

ν ≈
∑j g(xj)

(
xj − µ

)2

1 + ∑j g(xj)
. (9)

Once the selection operators have been determined, it will be possible to estimate new
individuals in subsequent generations during the evolutionary process. The steps to be
followed by the BUMDA are shown in the following Algorithm 1.
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Algorithm 1 MTA numerical modeling by BUMDA
Input: Population Size, Generations
Output: Pbest

1: Initialize Population (randomly real numbers)
2: Evaluate Population . Obtain fitness values
3: Sort fitness values
4: Elite Selection . Best individual is extracted
5: for gen 2 to Generations do
6: Compute the approximations to µ and ν
7: Generate a New Population, (n− 1 individuals) keeping the elite value from the last generation
8: Evaluate Population
9: Sort fitness values (Obtain New Best Fitness)

10: if New Best Fitness is better than Best Fitness then
11: Upload Best Solution
12: end if
13: end for
14: return Pbest

3. Proposed Method for the Numerical Modeling of the MTA

In order to improve the previous numerical modelings of the MTA, it is proposed to
use a polynomial fit by means of a linear combination of Jacobi polynomials [21] because,
throughout history, polynomials in general are considered adequate functions to carry out
fit of data sets [22–24].

3.1. MTA Segmentation

To perform the numerical modeling of the MTA, a binary segmentation step is required
in order to extract the thickest vessel from the background image. In this step, the multiscale
Gaussian matched filter (MGMF) [25] was applied on the set of retinal fundus images since
it presents suitable results in multiscale blood vessel segmentation. The method is governed
by the four parameters σ, κ, L, T, and the neural network architecture. The main idea of the
method is to approximate blood vessels by using a Gaussian profile as a matching template.
This template is formed by a Gaussian curve, which can be defined as follows:

G(x, y) = exp
(

x2 + y2

2σ2

)
, (10)

where σ controls the width of the vessel-like structures, L and T are the length and width
of the template, and κ is the number of oriented filters. In the present work, the MGMF
parameters were experimentally determined as sigma = [1.8, 2.2], L = 13, T = 15, κ = 12,
and the neural network was designed with 2 hidden layers with 3 and 8 hidden neurons,
respectively.

3.2. BUMDA and Jacobi Polynomials

A linear combination of the first four Jacobi polynomials has been proposed to build
the curve that models the MTA. The general expression for the fit function is given as

f (x; α, β) = C0 + C1 J(α,β)
1 (x) + C2 J(α,β)

2 (x) + C3 J(α,β)
3 (x) + C4 J(α,β)

4 (x) = C0 +
4

∑
i=1

Ci J
(α,β)
i (x), (11)

where J(α,β)
i is the i-th Jacobi polynomial, Ci the coefficients associated with each of them,

and α, β > −1. The search space for the coefficients that accompany each polynomial in the
general fit function was established in an interval of [−200, 200]. Likewise, the parameters
(α, β) had a search space in the interval (−1, 1].

The decision to take only the first four polynomials to generate the fit curve was based
on the fact that in previous papers the fit was made using a second degree curve so that
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when performing several experiments it was observed that a good fit was obtained through
curves generated by a fourth order function, that is, using only the first four polynomials.

Both, the set of coefficients Ci and the parameters (α, β) were determined using the
BUMDA algorithm since it has fast convergence and its computational cost is low. A brief
description of the operation of this type of algorithm is given below.

The BUMDA algorithm optimizes seven parameters: five coefficients corresponding
to the polynomial series and the two parameters associated with the determination of the
specific Jacobi polynomial.

The proposed method consists of the following steps: (1) the blood vessel segmenta-
tion of the retinal fundus image; (2) the skeletonization and extraction of the parameters
of interest; (3) the construction of the numerical model of the MTA from the extracted pa-
rameter and the evolutionary algorithm; and (4) demonstrating the best solution. Figure 1
shows a general scheme of the methodology proposed in this work to obtain the adjustment
function for the MTA.

Blood vessel segmentation Skeletonization

Data: XY coordinates matrix

Maxwell-Boltzmann

distribution

Best solution

Solution space

1 2

3

4

Sele

Sel

Selection by

Boltzmann distribution

Figure 1. MTA-modeling schematic diagram. (1) Segmentation of the MTA; (2) skeletonization
performance and data acquisition; (3) execution of the BUMDA algorithm with Boltzmann-based
selection operators to sample new solutions; and (4) solutions that best fit the MTA.

3.3. Evaluation Measures

Once the stop criteria are achieved (i.e., an optimal solution has been found), it is
necessary to analyze how close it is to the original data set; for this, two measures are
used—the mean distance to the closest point (MDCP) and the Hausdorff distance—since
they have been commonly used in literature to solve this problem.
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MDCP calculates the average of the distances from each point (coordinate) of the
set obtained by the algorithm with respect to the original data set; this is mathematically
expressed as

MDCP(A, B) =
1
N

N

∑
i=1

DCP(ai, B), (12)

where N is the cardinality of the obtained set and DCP is the distance to the closest point,
which is calculated as

DCP(ai, B) = min||ai − bj||. (13)

On the other hand, the Hausdorff distance performs a calculation very similar to the
MDCP. The way in which the DCP is calculated is exactly the same; the change now occurs
in the fact that an average is not calculated, but rather the maximum value of the DCP
is taken.

H(A, B) = maxDCP(ai, B). (14)

Small values in both metrics ensure that the model generated by the algorithm at the
end of the evolutionary process is good enough.

The proposed method can be seen in summary form in Algorithm 2.

Algorithm 2 Proposed Method
Input: Fundus Image
Output: Best MTA fit

1: Load fundus image
2: Perform MTA segmentation
3: Skeletonization of the image to choose principal pixels
4: Execution of BUMDA-Jacobi Algorithm . Algorithm 1
5: Calculation of evaluation measures . MDCP and Hausdorff Distance
6: Return Best MTA fit

4. Experimental Results and Discussion

The BUMDA-Jacobi algorithm was coded and executed in MATLAB® R2021b running
on MacOS Catalina. The experiments were carried out with Intel®CoreTMi5-45706SM CPU
@ 2.9–3.6 GHz, and 16 GB RAM. For each of the twenty testing images in the DRIVE
database, thirty runs were performed with the intention of obtaining enough informa-
tion for subsequent statistical analysis. Based on several experiments carried out, the
starting configuration of the algorithm was set to 200 individuals in the population and
40 generations of evolution.

In Table 1, the mean, median, variance, and maximum and minimum values of the
results obtained for the MDCP, the Hausdorff distance, and the execution time of the thirty
executions of the best solution found by the BUMDA are reported.

Table 1. Statistical values obtained from 30 runs by the proposed method using the test set of 20 retinal
fundus images.

MDCP (px.) Hausdorff (px.) Time (s)

Mean 7.51 26.27 3.44
Median 6.17 21.29 3.43
Variance 16.30 190.91 0.001

Maximum 21.36 69.92 3.54
Minimum 4.34 14.43 3.4

Regarding convergence, Figure 2 shows the behavior of each of the 30 executions for
the MTA modeling. It can be seen that the optimal result is reached below generation 40.
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Figure 2. Convergence profile for the 30 runs by the proposed method using the test set of 20 retinal fundus
images.

For the distance values, Table 2 shows the results obtained from the best fit for the
MDCP and the Hausdorff distance together with the values reported in the literature.

Table 2. Mean Distance to the Closest Point and Hausdorff distance values for proposed method and
the methods reported in the literature for several types of modeling approximation for MTA.

Method MDCP (px.) Hausdorff (px.)
Mean ± Std. Mean ± Std.

General Hough 31.28± 0.00 64.49± 0.00
MIPAV 25.69± 0.00 59.91± 0.00

UMDA + SA 30.45± 12.94 105.8± 27.54
weigthed-RANSAC 7.40± 5.34 27.96± 17.66
Proposed Method 7.51± 4.1 26.27± 14.05

Table 3 shows the execution time used by each method; it is observed that the
UMDA + SA method is the one that requires the least time during its execution; how-
ever, the BUMDA method is less than two seconds above it, unlike the two others where
the time required is much longer.

Table 3. Execution time comparison of the MTA detection and numerical modeling.

Method Execution Time (s)

General Hough 4.7641 (per pixel)
MIPAV 230

UMDA + SA 1.68
weighted-RANSAC 9.93
Proposed method 3.4

Table 4 shows a comparison of the evaluation measures results of the existing methods
in the literature and the proposed method. The first column shows the compared method;
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in the second and third column, values for differences between the existing method and the
proposed method are calculated. The results for the weighted-RANSAC method are the
closest to those of the proposed method, having a better result in the MDCP value, with
0.11 px less. However, there is 1.69 px more for the Hausdorff distance.

Table 4. Comparison table for MDCP and Hausdorff distance between the four methods in literature
and proposed method.

Method Compared MDCP (px.) Hausdorff (px.)

General Hough 23.77 38.22
MIPAV 18.18 33.64

UMDA + SA 22.94 79.53
weigthed-RANSAC −0.11 1.69

In Table 5, the difference in the execution time between the proposed method and
the methods in the literature is presented. Regarding the general Hough method, since its
execution time is calculated per pixel, the total time is high compared to the other methods.
The negative value shown by the UMDA + SA method indicates this method is 1.72 s faster
than the proposed method.

Table 5. Difference for the execution time between proposed method and literature methods.

Method Compared Execution Time Difference (s)

General Hough very high
MIPAV 226.6

UMDA + SA −1.72
weighted-RANSAC 6.54

Figure 3 shows a subset of retinal fundus images overlapping the outline with the
numerical modeling. In each image, the MTA appears in white, and its best fit is represented
in green. Table 6 shows the polynomial series together with their coefficients for each image
of Figure 3.

Table 6. Fourth-order polynomial series for each MTA fit from images of Figure 3 (in order, left to
right and upper to bottom).

Image (α, β) Polynomial Serie

01_test (−0.6190,−0.6274) 154.37− 203.8Jα,β
1 + 139.89Jα,β

2 − 22.28Jα,β
3 + 36.52Jα,β

4

03_test (−0.8510,−0.7823) 138.51− 134.27Jα,β
1 + 172.28Jα,β

2 + 2.54Jα,β
3 + 32.49Jα,β

4

06_test (−0.5412,−0.9929) 148.23− 6.32Jα,β
1 + 165.49Jα,β

2 − 16.78Jα,β
3 + 16.07Jα,β

4

07_test (−0.9687,−0.4990) 103.17− 34.92Jα,β
1 + 125.34Jα,β

2 − 15.44Jα,β
3 3.98Jα,β

4

09_test (−0.9713,−0.1148) 102.76− 67.39Jα,β
1 + 114.92Jα,β

2 − 5.16Jα,β
3 + 20.85Jα,β

4

12_test (−0.5027,−0.4413) 139.96 + 5.90Jα,β
1 + 137.52Jα,β

2 + 32.75Jα,β
3 + 14.43Jα,β

4

14_test (−0.6905,−0.9758) 134.44− 8.25Jα,β
1 + 207.18Jα,β

2 + 6.35Jα,β
3 + 16.69Jα,β

4

16_test (−0.7432,−0.6318) 141.09− 11.64Jα,β
1 + 195.86Jα,β

2 − 1.14Jα,β
3 + 8.98Jα,β

4

17_test (−0.9920,−0.4718) 81.91− 88.11Jα,β
1 + 159.60Jα,β

2 − 1.82Jα,β
3 + 28.04Jα,β

4
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Figure 3. Numerical modeling on a subset of retinal fundus images.

The proposed method seeks to generate a numerical model that best fits the set of
pixels that make up the major temporal arcade in fundus images. Using a BUMDA-
type evolutionary algorithm, the coefficients and parameters associated with a linear
combination of the first four Jacobi polynomials were optimized. From the previous works
that have addressed this problem, the values of the MDCP and the Hausdorff distance
have been used to verify how good the model obtained is. The results generated for the
proposed method produce values of 22.94 and 79.53 pixels, respectively, below for the
fastest state-of-the-art method. Although the results for the measures values between the
proposed method and the weighted-RANSAC are very similar, the execution time is 6.53 s
faster for the BUMDA proposed.

On the other hand, the proposed method reaches convergence quickly, and as can be
seen in Figure 3, the model found is quite close to the MTA. Another important factor to
consider is the time used to generate the model; the proposed method requires an average
of 3.44 s, a particularly short time considering that one seeks to apply the method in the
clinic to patients during a consultation.

Knowing the functional expression for adjustment allows some type of mathematical
analysis to be carried out in such a way that more information can be extracted to help with
the diagnosis and monitoring of the type of eye disease presented by the subject whose
fundus images have been analyzed by the proposed method.

5. Conclusions

In this paper, the modeling of the Major Temporal Arcade in fundus images was carried
out using an evolutionary algorithm strategy with a linear combination of the first four
Jacobi polynomials. Here lies the novelty of this paper since the numerical modeling of the
MTA using any kind of polynomial has not been addressed in the literature. The proposed
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method consists of using a BUMDA algorithm for the determination of the five coefficients
of the polynomial series, in addition to the two parameters (α, β) associated with each
polynomial. Once the parameters were determined, the fit function obtained was evaluated
using two measures (the mean distance to the closest point (MDCP) and the Hausdorff
distance) in order to verify how close the fit was to the delineation made by the expert. The
results obtained were compared with four models from the literature. In the first instance,
the proposed method generated numerical models for the MTA in a very short time, only
3.4 s. Although the UMDA + SA method remained the fastest, the difference with the
proposed method was only 1.76 s; nevertheless the MDCP and Hausdorff distance values
were 22.94 and 79.53 pixels, respectively, higher than the proposed method. Additionally,
analyzing the results for the measurements of the MDCP and the Hausdorff distance
allowed for the verification of the high closeness of the numerical model generated by
the proposed method with respect to the original data set. With the proposed method,
it was possible to generate a good numerical model to be able to describe in the best
possible way the profile described by the MTA. For all of the above, the BUMDA method
for polynomial adjustment by Jacobi polynomials can be considered as a support tool for
the ophthalmologist for the diagnosis and treatment of diseases associated with diabetic
retinopathy and ROP.
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