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Abstract: Fractional derivatives can express anomalous diffusion in brain tissue. Various brain
diseases such as Alzheimer’s disease, multiple sclerosis, and Parkinson’s disease are attributed to the
accumulation of proteins in axons. Discrete swellings along the axons cause other neuro diseases.
To model the propagation of voltage in axons with all those causes, a fractional cable geometry has
been adopted. Although a fractional cable model has already been presented, the non-existence
of fractional differential geometry based on the well-known fractional derivatives raises questions.
These minute parts of the human neural system are modeled as cables that function with a non-
uniform cross-section in the fractional realm based upon the Λ-fractional derivative (Λ-FD). That
derivative is considered the unique fractional derivative generating differential geometry. Examples
are presented so that fruitful conclusions can be made. The present work is going to help medical
and bioengineering scientists in controlling various brain diseases.
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1. Introduction

Fractional calculus (FC) is a mathematical procedure with global characteristics de-
manded by many scientific fields, from mechanics (Drapaca et al. [1], Di Paola et al. [2],
Carpinteri et al. [3]) to economics, and from medicine and biology (Magin [4]) to physics
(Hilfer [5], West et al. [6]), so that mathematical procedure expresses non-locality, generating
in addition non-uniform geometry. Eringen [7] has already presented non-local theories
in physics and mechanics applied to micro and nanoparticles and mechanics. He states
that problems in micro or nano fields should be considered in the context of non-local
theories. To be more precise, fractional calculus is based on fractional derivatives (FD),
mainly Riemann-Liouville, Grunwald-Letnikov, and Caputo (Kilbas et al. [8], Podlubny [9]).
Of course, many other fractional derivatives are applied in the scientific field, such as Riesz,
Miller–Ross, Hadamard, Caputo Fabrizio, and Atangana-Baleanu fractional derivatives,
to name a few. The main advantage of all these derivatives is their non-local behavior
in space as well as in time. That means fractional calculus appeals to global phenomena
and not local ones (Podlubny [9]). However, these derivatives are not derivatives in the
mathematical sense. Indeed, they do not satisfy the fundamental perquisites of differential
topology to correspond to differentials generating geometry (Chillingworth [10]). Therefore,
their use, although very fruitful in results, is questionable. Replacing derivatives in differ-
ential equations with relative fractional derivatives is unjustifiable from the perspective of
mathematical accuracy; therefore, one cannot develop a sound theory or model based on
those derivatives.

On the other hand, the Λ-fractional derivative tackles that problem best. That deriva-
tive, introduced in 2018 (Lazopoulos [11]), aspires to provide a way out of the dead end
that fractional derivatives face. Along with the Λ-transform (Λ-T) and Λ-space (Λ-S), that
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derivative transforms the initial fractional differential equation (FDE) into an ordinary
equation in Λ-space and then transfers the results of Λ-space to the initial space, using a
special transform formula. Therefore, the solution of the ordinary transformed equation is
developed in Λ-space, where all topological perquisites are satisfied and then transferred
back to the initial space.

Dendrites and axons are the building blocks of the human neural system. They carry
electric signals to each other, thus allowing the neural system to work harmoniously. Their
behavior is not local but mainly global, making them truly appealing to fractional calculus.
Hence, the model of the electric potential is discussed in the present article concerning the
dendrites and axons of the human neural network, where it is supposed that the behavior
of the system has non-local dependence due to the microphysics of the electric neural
network. To accomplish that, we model dendrites and axons as cables. Therefore, we focus
on the solution for the coaxial cylindrical cable problem (the radius of the cable R = R0
is constant), where the fractional derivatives in the corresponding differential equation
are thought to be the ones defined by K. Lazopoulos et al. [11]. According to Λ-fractional
analysis, we make the necessary transformation of the equation to Λ-space with the normal
derivatives, resulting in a solution for the voltage in Λ-space, thus solving the problem.

This article is structured thus: In Section 2, a brief description of the behavior of
Λ-fractional derivative, Λ-space, and Λ-transformation is given. In Section 3, the role of
fractional calculus in the study of dendrites and axons as cables is described. Finally, a
discussion is made in Section 4, and conclusions are drawn.

2. Foundations of Λ-Fractional Derivative, Λ-Transform, and Dual Λ-Space

To study fractional calculus, there are many thought-provoking books that the inter-
ested reader can refer to; Kilbas et al. [8], Podlubny [9], Samko et al. [12], Oldham [13], and
Mainardi [14] are some very intriguing propositions. Nevertheless, we will summarize
some essential points of FC to present them to the reader briefly.

Let us assume Ω = [α,b] (−∞ < α < b < ∞) to be a finite interval on the real axis. The
left and right Riemann-Liouville fractional integrals are then defined by (Kilbas [8]):

RL
a I γ

x f (x) =
1

Γ(γ)

∫ x

a

f (s)

(x − s)1−γ
ds (1)

RL
x I γ

b f (x) =
1

Γ(γ)

∫ b

x

f (s)

(s − x)1−γ
ds (2)

with γ (0 < γ ≤ 1) being the order of fractional integrals and Γ(x) = (x − 1)! (Γ(γ) is called
Euler’s Gamma function). Furthermore, since 0 < γ ≤ 1 applies, the Riemann-Liouville
(RL) Fractional Derivatives are defined by (Kilbas [8]):

RL
a Dγ

x f (x) =
d

dx

(
RL

a I1−γ
x f (x)

)
(3)

and

RL
x Dγ

b f (x) = − d
dx

(
RL

x I1−γ
b f (x)

)
(4)

where Equation (3) defines the left and Equation (4) the right Fractional Derivatives. More-
over, the fractional integrals with the corresponding Riemann-Liouville FDs are related by
the equation:

RL
a Dγ

x

(
RL

a I γ
x f (x)

)
= f (x) (5)
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The Riemann-Liouville Fractional Derivative is also essential to our methodology
since Λ-Derivative is defined as the fraction of two such derivatives (see Lazopoulos [10]):

Λ
a Dγ

x f (x) =
RL

α Dγ
x f (x)

RL
a Dγ

x x
=

dRL
a I x

1−γ f (x)
dx

dRL
a I x1−γx

dx

=
dRL

a I x
1−γ f (x)

dRL
a I x1−γx

(6)

It is clear that RL
α Dγ

x f (x) is the Riemann-Liouville Derivative of F(X), as described in
FC (Equations (4) and (5)), and RL

a I1−γ
x f (x) is the Riemann-Liouville fractional integral of

the real fractional dimension. In this article, 0 < γ ≤ 1 is considered (see Samko et al. [12],
Podlubny [9]).

Λ-transform consists of defining new variables and functions in Λ-space using
the transformation

F(X) = a I1–γ
x f (x(X)) (7)

for functions F(X) and
X = a I1–γ

x x (8)

for variables x.
F(X) and X then belong to Λ-space, and from there, they can form Λ-derivative

(Equation (6)) and Λ-fractional differential equations (Λ-FDE). These equations in Λ-space
have ordinary form; therefore, they can be treated conventionally, satisfying all perquisites
of differential topology and allowing a proper geometry to be formed. The solution H(X)
of the Λ-FDE is then transferred to the initial space using the formula

h(x) = RL
a D1−γ

x H(X(x)) (9)

(where h(x) is the solution in the initial space).

3. Λ-Fractional Calculus Studying Dendrites and Axons

Dendrites and axons transfer potential electric signals of potential V. We model these
minute parts of the neural system using fractional calculus and assume that these are
cables of constant radius R0. Since the phenomenon is non-local, fractional derivatives
are most suitable to describe this phenomenon. Λ-fractional derivative (introduced by
K.A. Lazopoulos in 2018 (Lazopoulos [11])) is used to model the electric current passing
through these building blocks of the neural system while Λ-transform and Λ-space are also
participating. The equation that governs the voltage of the electric current inside the cable
is (Lopez et al. [15])

CM
∂V(x, t)

∂t
=

d0

4rL

∂2V(x, t)
∂x2 − iion (10)

where d0 is the constant diameter of the cable, V(x,t) is the voltage of the current passing
through the cable, where CM denotes the specific membrane capacitance, rL denotes the
longitudinal resistance and iion is the ionic current per unit area into and out of the cable. In
the passive cable case, namely when iion = V/rM, with rM the specific membrane resistance,
we have this equation processed geometrically in Lopez et al. [15], so the final cable equation
can be extracted:

∂V(s, t)
∂t

=
1

rLCM
∫ 2π

0 dθ
√

detg(θ, s)

∂

∂s

(
a(s)

∂V(s, t)
∂s

)
− V(s, t)

rMCM
(11)

where s is the length of the cable, θ is the angle in the cross-section of the cable, a(s) is the
cross-sectional area of the cable, and g(θ,s) is the metric of the cable. It is important to stress
that this equation was solved using the Caputo derivative in Lopez et al. [15].
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According to the Lazopoulos approach, we make the necessary transformation of the
equation to Λ-space with the ordinary derivatives, resulting in the following solution for
the voltage in Λ-space (Lopez et al. [15]):

VΛ(T, S) = V0l0

√
rL · cM

2 · π · R0 · T
· e−

rL ·cM ·S2

2R0 ·T · e−
T

rL ·cM (12)

where T, S is the time and arc length of the cable in Λ-space. They are connected with the
ones in real space with the relations for fractional order γ:

t = [Γ(3 − γ) · T]
1

2−γ , s = [Γ(3 − γ) · S]
1

2−γ (13)

Following [15], the other parameters in Equation (12) are constants and take the values

cM = 0.001F/ cm2, rM = 3000 · Ω · cm2, rL = 100 · Ω · cm R0
= 10−4 cm, V0 = 1.3 × 10−6 V, l0 = 0.13 cm

Firstly, we will examine the case where the values of arc lengths S in Λ-space are
constants. In order to find the values of the voltage V(t,s) in the initial space, we impose
the following inverse transformation:

V(t, s) = RL
0 D1−γ

t

(
VΛ(t, s)

)
=

1
Γ(γ)

· d
dt

∫ t

0

VΛ(τ, s)

(t − τ)1−γ
dτ (14)

The results for voltage V(t, s) for various values of s and fractional order γ in real
space are shown in Figures 1–4. In these figures, we can see that as the value of arc length s
increases, we shift the voltage’s maximum to higher time values. We believe this delay in
maximum response is expected due to increased cable length. Also, for the same reason,
we have a decrease in the maximum value of voltage and broadness of the voltage curve as
the arc length s increases, denoting an inertial behavior across the cable.
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Finally, we must mention that in all cases of arc length values, the decrease of fractional
order γ gives greater maximum values in voltage and reverses the polarity of the resulting
voltage (from positive values to negative ones) as time passes.

Now, we will examine the voltage VΛ(T,S) (Equation (12)) as a two-variable function in
Λ-space. In order to transform it to the initial space, we will use the following formula of in-
verse transformation for both t and s, according to K. Lazopoulos’ [11] fractional approach:

V(t, s) = RL
0 D1−γ2

t (RL
0 D1−γ1

s (VΛ(τ, q))) =
1

Γ(γ2) · Γ(γ1)
· d

dt

∫ t

0

1

(t − τ)1−γ2
(

d
ds

∫ s

0

VΛ(τ, q)

(s − q)1−γ1
dq)dτ (15)

where the relation gives VΛ (τ,q):

VΛ(τ, q) = V0l0

√
rL · cM · Γ(3 − γ2)

2 · π · R0 · τ2−γ2
· e

− rL ·cM ·Γ(3−γ2)·q
4−2γ1

2R0 ·(Γ(3−γ1))
2 ·τ2−γ2 · e

− τ2−γ2
rL ·cM ·Γ(3−γ2) (16)
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Here, the fractional orders (γ2,γ1) for the inverse transformation are different for time
t and arc length s. Figures 5–11 present the voltage V(t,s) in real space for various values of
fractional orders. The constants in Equation (16) take the same values as in Equation (12).
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Figure 11. The voltage V(t,s) in real space as a function of time and arc length s, for fractional orders
γ2 = 0.6 and γ1 = 0.5.

Based on Figures 5–11, we can indeed conclude that as the fractional order for time
t (γ2) or arc length s (γ1) decreases, the maximum value reached by the voltage V(t,s)
increases. Also, in all cases, we have a change in the polarity of the voltage (positive to
negative) along the cable. Finally, we can observe that as fractional order for time t (γ2) or
arc length s (γ1) decreases, we have non-zero voltage values for higher values of arc length
s (longer cable).
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4. Conclusions

Dendrites and axons are modeled as cables using fractional calculus. The voltage
potential is transferred from Λ-space to the initial space. During this procedure, many
interesting conclusions can be addressed, such as the high influence of the length of the
cable s and the critical impact of the fractional order. More precisely, an increasing s results
in the increase of voltage, while the decrease in fractional order also increases the voltage.
The present work is addressed to medical and bioengineering researchers for controlling
the evolution of various brain diseases, refs. [16–19].
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