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Abstract

:

Three subclasses of analytic and bi-univalent functions are introduced through the use of   q −  Gegenbauer polynomials, which are a generalization of Gegenbauer polynomials. For functions falling within these subclasses, coefficient bounds    a 2    and    a 3    as well as Fekete–Szegö inequalities are derived. Specializing the parameters used in our main results leads to a number of new results.
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1. Introduction


Legendre first made the discovery of orthogonal polynomials in 1784 [1]. Under specific model restrictions, orthogonal polynomials are frequently employed to solve ordinary differential equations. Furthermore, a crucial function in the approximation theory is performed by orthogonal polynomials [2].



  P m   and   P n   are two polynomials of order m and n, respectively, and are orthogonal if


   ∫  a  b   P n   ( x )   P m   ( x )  s  ( x )  d x = 0 ,   for   m ≠ n ,  








where   s ( x )   is a suitably specified function in the interval   ( a , b )  ; therefore, all finite order polynomials    P n   ( x )    have a well-defined integral.



Gegenbauer polynomials are orthogonal polynomials of a specified type. As found in [3], when traditional algebraic formulations are used, the generating function of Gegenbauer polynomials and the integral representation of typically real functions   T R   are related to each other in a symbolic way   T R  . This undoubtedly caused a number of helpful inequalities to emerge from the world of Gegenbauer polynomials.



  q −  orthogonal polynomials are now of particular relevance in both physics and mathematics due to the development of quantum groups. The   q −  deformed harmonic oscillator, for instance, has a group-theoretic setting for the   q −  Laguerre and   q −  Hermite polynomials. Jackson’s   q −  exponential plays a crucial role in the mathematical framework required to characterize the properties of these   q −  polynomials, such as the recurrence relations, generating functions, and orthogonality relations. Jackson’s   q −  exponential has recently been expressed by Quesne [4] as a closed-form multiplicative series of regular exponentials with known coefficients. In this case, it is crucial to look into how this discovery might affect the theory of   q −  orthogonal polynomials. An effort in this regard was made in the current work. To obtain novel nonlinear connection equations for   q −  Gegenbauer polynomials in terms of their respective classical equivalents, we used the aforementioned result in particular.



This study analyzed various features of the class under consideration after associating some bi-univalent functions with   q −  Gegenbauer polynomials. The following part lays the foundation for mathematical notations and definitions.




2. Preliminaries


Let  A  denote the class of all analytical functions f that are defined on the open unit disk   U = { ξ ∈ C :  ξ  < 1 }   and normalized by the formula   f ( 0 ) =      f ′   ( 0 )  − 1 = 0  . As a result, each   f ∈ A   has the following Taylor–Maclaurin series expansion:


  f  ( ξ )  = ξ +  ∑  n = 2  ∞   a n   ξ n  ,    ( ξ ∈ U )  .       



(1)







In addition, let  S  denote the class of all functions   f ∈ A   that are univalent in  U .



Let the functions   g ( ξ )   and   f ( ξ )   be analytic in  U . We say that the function   f ( ξ )   is subordinate to   g ( ξ )  , written as   f ( ξ ) ≺ g ( ξ )  , if there exists a Schwarz function  ω  that is analytic in  U  with


  | ω ( ξ ) | < 1  and  ω ( 0 ) = 0       ( ξ ∈ U )  








such that


  g ( ω ( ξ ) ) = f ( ξ ) .  








Beside that, if the function g is univalent in  U , then the following equivalence holds:


  f ( ξ ) ≺ g ( ξ )  if  g ( 0 ) = f ( 0 )  








and


  f ( U ) ⊂ g ( U ) .  











It is well known that every function   f ∈ S    has an inverse   f  − 1   , defined by


  ξ =  f  − 1    ( f  ( ξ )  )    ( ξ ∈ U )   








and


   f  − 1    ( f  ( w )  )  = w   (  r 0   ( f )  ≥  1 4  ;   w  <  r 0   ( f )  )   








where


   f  − 1    ( w )  = w −  a 2   w 2  −  w 3   (  a 3  − 2  a  2  2  )  +  w 4   ( 5  a 2   a 3  −  a 4  − 5  a  2  3  )  + ⋯ .  



(2)







If both    f  − 1    ( ξ )    and   f ( ξ )   are univalent in  U , then a function is said to be bi-univalent in  U .



Let  Σ  denote the class of bi-univalent functions in  U  given by (1). Examples of functions in the class  Σ  are    ξ  1 − ξ   ,    log    1 + ξ   1 − ξ     .



Fekete and Szegö achieved a sharp bound of the functional   η  a  2  2  −  a 3   , with real  η   ( 0 ≤ η ≤ 1 )   for a univalent function f in 1933 [5]. Since that time, it has been known as the classical Fekete and Szegö problem of establishing the sharp bounds for this functional of any compact family of functions f  ∈ A   with any complex  η .



In 1983, Askey and Ismail [6] found a class of polynomials that can be interpreted as q–analogues of the Gegenbauer polynomials. These are essentially the polynomials    B  q   ( λ )    ( ξ , z )   


   G  q   ( λ )    ( x , ξ )  =  ∑  n = 0  ∞   C  n   ( λ )    ( x ; q )   ξ n  ,  



(3)




where   x ∈ [ − 1 , 1 ]   and   ξ ∈ U  .



In 2006, Chakrabarti et al. [7] found a class of polynomials that can be interpreted as q–analogues of the Gegenbauer polynomials by the following recurrence relations:


      C  0   ( λ )    ( x ; q )      = 1 ,   C  1   ( λ )    ( x ; q )  =   [ λ ]  q   C  1  1   ( x )  = 2   [ λ ]  q  x ,     



(4)






      C  2   ( λ )    ( x ; q )      =   [ λ ]   q 2    C  2  1   ( x )  −  1 2     [ λ ]   q 2   −   [ λ ]   q  2    C  1  2   ( x )  = 2    [ λ ]   q 2   +   [ λ ]   q  2    x 2  −   [ λ ]   q 2   .     



(5)




where   0 < q < 1   and   λ ∈ N =  1 , 2 , 3 , ⋯  .  



In 2021, Amourah et al. [8,9] considered the classical Gegenbauer polynomials    G  ( λ )    ( x , ξ )   , where   ξ ∈ U   and   x ∈ [ − 1 , 1 ]  . For fixed x, the function   G  ( λ )    is analytic in  U , so it can be expanded in a Taylor series as


   G  ( λ )    ( x , ξ )  =  ∑  n = 0  ∞   C  n  α   ( x )   ξ n  ,  








where    C  n  α   ( x )    is the classical Gegenbauer polynomial of degree n.



Recently, several authors have begun examining bi-univalent functions connected to orthogonal polynomials (such as [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]).



As far as we are aware, there is no published work on bi-univalent functions for   q −  Gegenbauer polynomials. The major objective of this work is to start an investigation of the characteristics of bi-univalent functions related to   q −  Gegenbauer polynomials. To perform this, we consider the following definitions in the next section.




3. Coefficient Bounds of the Class    B Σ   ( x , α ; q )   


Here, we introduce some new bi-univalent function subclasses that are subordinate to the   q −  Gegenbauer polynomial.



Definition 1. 

For   x ∈ (  1 2  , 1 ]   and   0 < q < 1  , if the following subordinations are satisfied, a function f belonging to Σ is said to be in the class    B Σ   ( x , α ; q )    given by (1):


   ∂ q  f  ( ξ )  ≺  G  q   ( λ )    ( x , ξ )   



(6)




and







   ∂ q  g  ( w )  ≺  G  q   ( λ )    ( x , w )  ,  



(7)




where   λ ∈ N =  1 , 2 , 3 , ⋯   ,  α  is a nonzero real constant, the function    f  − 1    ( w )  = g  ( w )    is defined by (2), and   G  q   ( λ )    is the generating function of q–analogues of the Gegenbauer polynomials given by (3).



We start by providing the coefficient estimates for the class    B Σ   ( x , α ; q )    specified in Definition 1.



Theorem 1. 

Let   f ∈ Σ   given by (1) be in the class    B Σ   ( x , α ; q )  .   Then,


     a 2   ≤   2 x |   [ λ ]  q  |   2   [ λ ]  q  x       [ 2 ]  q        4   [ 3 ]  q     [ 2 ]   q  2   − 2    [ λ ]   q  2  − 2   [ λ ]   q 2     x 2  +   [ λ ]  q      ,   








and


     a 3   ≤   4   [ λ ]   q  2   x 2     [ 2 ]   q  2   +   2 |   [ λ ]  q  | x    [ 3 ]  q   .   













Proof. 

Let   f ∈  B Σ   ( x , α ; q )   . From Definition 1, for some analytic functions w and v such that   w ( 0 ) = 0 = v ( 0 )   and   | w ( ξ ) | < 1  ,   | v ( w ) | < 1   for all   w , ξ ∈ U  ; then, we can write


   ∂ q  f  ( ξ )  =  G  q   ( λ )    ( x , w  ( ξ )  )   



(8)




and


   ∂ q  g  ( w )  =  G  q   ( λ )    ( x , v  ( w )  )  ,  



(9)







From the Equations (8) and (9), we obtain that


   ∂ q  f  ( ξ )  = 1 +  C  1   ( λ )    ( x ; q )   c 1  ξ +   C  1   ( λ )    ( x ; q )   c 2  +  C  2   ( λ )    ( x ; q )   c  1  2    ξ 2  + ⋯  



(10)




and


   ∂ q  g  ( w )  = 1 +  C  1   ( λ )    ( x ; q )   d 1  w +   C  1   ( λ )    ( x ; q )   d 2  +  C  2   ( λ )    ( x ; q )   d  1  2    )   w 2  + ⋯ .  



(11)







It is generally understood that if


   w ( ξ )  =   c 1  ξ +  c 2   ξ 2  +  c 3   ξ 3  + ⋯  < 1 ,    ( ξ ∈ U )   








and


   v ( w )  =   d 1  w +  d 2   w 2  +  d 3   w 3  + ⋯  < 1 ,    ( w ∈ U )  ,  








then


   |   c j   | ≤ 1  and  |   d j   | ≤ 1  for  all  j ∈ N .   



(12)







As a result, we have the following after comparing the relevant coefficients in (10) and (11):


    [ 2 ]  q   a 2  =  C  1   ( λ )    ( x ; q )   c 1  ,  



(13)






    [ 3 ]  q   a 3  =  C  1   ( λ )    ( x ; q )   c 2  +  C  2   ( λ )    ( x ; q )   c  1  2  ,  



(14)






  −   [ 2 ]  q   a 2  =  C  1   ( λ )    ( x ; q )   d 1  ,  



(15)




and


    [ 3 ]  q   2  a  2  2  −  a 3   =  C  1   ( λ )    ( x ; q )   d 2  +  C  2   ( λ )    ( x ; q )   d  1  2  .  



(16)







From the Equations (13) and (15), we have


   c 1  = −  d 1   



(17)




and


  2   [ 2 ]   q  2   a  2  2  =    C  1   ( λ )    ( x ; q )   2    c  1  2  +  d  1  2   .  



(18)







By adding (14) to (16), yields


  2   [ 3 ]  q   a  2  2  =  C  1   ( λ )    ( x ; q )    c 2  +  d 2   +  C  2   ( λ )    ( x ; q )    c  1  2  +  d  1  2   .  



(19)







We determine that, by replacing the value of    c  1  2  +  d  1  2    from (18) on the right side of (19),


   2   [ 3 ]  q  −   2  C  2   ( λ )    ( x ; q )    [ 2 ]   q  2      C  1   ( λ )    ( x ; q )   2     a  2  2  =  C  1   ( λ )    ( x ; q )    c 2  +  d 2   .  



(20)







Through computations using (11), (5) and (20), we find that


    a 2   ≤   2 |   [ λ ]  q  | x   2   [ λ ]  q  x       [ 2 ]  q        4   [ 3 ]  q     [ 2 ]   q  2   − 2    [ λ ]   q  2  − 2   [ λ ]   q 2     x 2  +   [ λ ]  q      .  











In addition, if we subtract (16) from (14), we obtain


  2   [ 3 ]  q    a 3  −  a  2  2   =  C  1   ( λ )    ( x ; q )    c 2  −  d 2   +  C  2   ( λ )    ( x ; q )    c  1  2  −  d  1  2   .  



(21)







Then, in view of (18) and (21), we obtain


   a 3  =     C  1   ( λ )    ( x ; q )   2   2   [ 2 ]   q  2      c  1  2  +  d  1  2   +    C  1   ( λ )    ( x ; q )    2   [ 3 ]  q      c 2  −  d 2   .  











By applying (4), we conclude that


    a 3   ≤   4   [ λ ]   q  2   x 2     [ 2 ]   q  2   +   2 |   [ λ ]  q  | x    [ 3 ]  q   .  











The proof of the theorem is now complete. □





Using the values of   a  2  2   and   a 3  , we prove the following Fekete–Szegö inequality for functions in the class    B Σ   ( x , α ; q )   .



Theorem 2. 

Let   f ∈ Σ   given by (1) be in the class    B Σ   ( x , α ; q )   . Then,


   |  a 3  − σ  a  2  2  | ≤        2 x    [ λ ]  q      [ 3 ]  q   ,      | σ − 1 |  ≤      2   [ 3 ]  q  −   [ 2 ]   q  2     [ λ ]   q  2  −   [ 2 ]   q  2    [ λ ]   q 2     x 2  + 2   [ 2 ]   q  2    [ λ ]   q 2     2   [ 3 ]  q    [ λ ]   q  2   x 2     ,           2  2   [ λ ]  q  x   h ( η )  ,      | σ − 1 |  ≥      2   [ 3 ]  q  −   [ 2 ]   q  2     [ λ ]   q  2  −   [ 2 ]   q  2    [ λ ]   q 2     x 2  + 2   [ 2 ]   q  2    [ λ ]   q 2     2   [ 3 ]  q    [ λ ]   q  2   x 2     .        













Proof. 

From (20) and (21),


      a 3  − σ  a  2  2      =  1 − σ       C  1   ( λ )    ( x ; q )   3    c 2  +  d 2     2   [ 3 ]  q     C  1   ( λ )    ( x ; q )   2  − 2   [ 2 ]   q  2   C  2   ( λ )    ( x ; q )    +    C  1   ( λ )    ( x ; q )    2   [ 3 ]  q      c 2  −  d 2            =  C  1  α   ( x )    h  ( η )  +  1  2   [ 3 ]  q      c 2  +  h  ( η )  −  1  2   [ 3 ]  q      d 2   ,     








where


  K  ( σ )  =      C  1   ( λ )    ( x ; q )   2   1 − σ    2   [ 3 ]  q     C  1   ( λ )    ( x ; q )   2  − 2   [ 2 ]   q  2   C  2   ( λ )    ( x ; q )    ,  











In view of (4) and (5), we conclude that


  |  a 3  − σ  a  2  2  | ≤         C  1   ( λ )    ( x ; q )     [ 3 ]  q   ,         K ( σ )  ≤  1  2   [ 3 ]  q    ,           2   C  1   ( λ )    ( x ; q )    K ( σ )  ,        K ( σ )  ≥  1  2   [ 3 ]  q    .       











The proof of the theorem is now complete. □





Corollary 1. 

Let   f ∈ Σ   given by (1) belong to the class    B Σ   ( x , α ; 1 )   . Then,


     a 2   ≤    α  x   2  α  x        α − 2   x 2  + 1  α    .             










     a 3   ≤  λ 2   x 2  +   2 | λ | x  3  ,              








and     a 3  − η  a  2  2   ≤        2  α  x  3  ,            2   α x  3   1 − η      α − 2   x 2  + 1  α   ,           η − 1  ≤     α − 2   x 2  + 1   3 α  x 2               η − 1  ≥     α − 2   x 2  + 1   3 α  x 2     .      





Corollary 2. 

Let   f ∈ Σ   given by (1) belong to the class    B Σ   ( x , 1 ; 1 )   . Then,


     a 2   ≤   x   2 x      1 −  x 2     ,   










     a 3   ≤  x 2  +   2 x  3  ,   








and


     a 3  − η  a  2  2   ≤        2 x  3  ,            2  x 3   1 − η    1 −  x 2    ,           η − 1  ≤    1 −  x 2    3  x 2               η − 1  ≥    1 −  x 2    3  x 2     .       














4. Coefficient Bounds of the Class    S Σ *   ( x , α ; q )   


Definition 2. 

For   x ∈ (  1 2  , 1 ]   and   0 < q < 1  , if the following subordinations are satisfied, a function f belonging to Σ is said to be in the class    S  Σ  *   ( x , α ; q )    given by (1):


    ξ  ∂ q  f  ( ξ )    f ( ξ )   ≺  G  q   ( λ )    ( x , ξ )  ,  



(22)




and







    w  ∂ q  g  ( w )    g ( w )   ≺  G  q   ( λ )    ( x , w )  ,  



(23)




where   λ ∈ N =  1 , 2 , 3 , ⋯   ,  α  is a nonzero real constant, the function   g  ( w )  =  f  − 1    ( w )    is defined by (2), and   G  q   ( λ )    is the generating function of the q–analogues of Gegenbauer polynomials given by (3).



Theorem 3. 

Let   f ∈ Σ   given by (1) belong to the class    S Σ *   ( x , α ; q )   . Then, we have


    |   a 2   | ≤    2 |   [ λ ]  q  | x   2   [ λ ]  q  x     q   2    [ λ ]   q  2  −   [ λ ]   q 2     x 2  +   [ λ ]   q 2       ,   








and


    |   a 3   | ≤    4   [ λ ]   q  2   x 2    q 2   +   2   [ λ ]  q  x   q  1 + q    .   













Proof. 

Let   f ∈  S  Σ  *   ( x , α ; q )   . From Definition 2, for some analytic functions w and v such that   w ( 0 ) = 0 = v ( 0 )   and   | w ( ξ ) | < 1 ,    | v ( w ) | < 1   for all   ξ , w ∈ U  ,


    ξ  ∂ q  f  ( ξ )    f ( ξ )   =  G  q   ( λ )    ( x , w  ( ξ )  )  ,  



(24)




and


    ξ  ∂ q  g  ( w )    g ( w )   =  G  q   ( λ )    ( x , v  ( w )  )  .  



(25)







From the equalities (24) and (25), we obtain that


    ξ  ∂ q  f  ( ξ )    f ( ξ )   = 1 +  C  1   ( λ )    ( x ; q )  ξ +   C  1   ( λ )    ( x ; q )   c 2  +  C  2   ( λ )    ( x ; q )   c  1  2    ξ 2  + ⋯  



(26)




and


    ξ  ∂ q  g  ( w )    g ( w )   = 1 +  C  1   ( λ )    ( x ; q )   d 1  w +   C  1   ( λ )    ( x ; q )   d 2  +  C  2   ( λ )    ( x ; q )   d  1  2    )   w 2  + ⋯ .  



(27)







Thus, upon comparing the corresponding coefficients in (26) and (27), we have


  q  a 2  =  C  1   ( λ )    ( x ; q )   c 1  ,  



(28)






  q  1 + q   a 3  − q  a  2  2  =  C  1   ( λ )    ( x ; q )   c 2  +  C  2   ( λ )    ( x ; q )   c  1  2  ,  



(29)






  − q  a 2  =  C  1   ( λ )    ( x ; q )   d 1  ,  



(30)




and


  q  1 + 2 q   a  2  2  − q  1 + q   a 3  =  C  1   ( λ )    ( x ; q )   d 2  +  C  2   ( λ )    ( x ; q )   d  1  2  .  



(31)







From the Equations (28) and (30), it follows that


   c 1  = −  d 1   



(32)




and


  2  q 2   a  2  2  =    C  1   ( λ )    ( x ; q )   2    c  1  2  +  d  1  2   .  



(33)







By adding (29) to (31), yields


  2  q 2   a  2  2  =  C  1   ( λ )    ( x ; q )    c 2  +  d 2   +  C  2   ( λ )    ( x ; q )    c  1  2  +  d  1  2   .  



(34)







We determine that, by replacing the value of    c  1  2  +  d  1  2    from (33) on the right side of (34),


  2  q 2   1 −    C  2   ( λ )    ( x ; q )      C  1   ( λ )    ( x ; q )   2     a  2  2  =  C  1   ( λ )    ( x ; q )    c 2  +  d 2   .  



(35)







Moreover, through computations using (5) and (35), we find that


   |   a 2   | ≤    2 |   [ λ ]  q  | x   2   [ λ ]  q  x     q   2    [ λ ]   q  2  −   [ λ ]   q 2     x 2  +   [ λ ]   q 2       .  











Now, if we subtract (31) from (29), we obtain


  2 q  1 + q    a 3  −  a  2  2   =  C  1   ( λ )    ( x ; q )    c 2  −  d 2   +  C  2   ( λ )    ( x ; q )    c  1  2  −  d  1  2   .  



(36)







By viewing of (33) and (36), we conclude that


   a 3  =     C  1   ( λ )    ( x ; q )   2   2  q 2      c  1  2  +  d  1  2   . +    C  1   ( λ )    ( x ; q )    2 q  1 + q      c 2  −  d 2   .  











By applying (4) and (5), we have


   |   a 3   | ≤    4   [ λ ]   q  2   x 2    q 2   +   2   [ λ ]  q  x   q  1 + q    .  











This completes the proof of the Theorem 3. □





Theorem 4. 

Let   f ∈ Σ   given by (1) belong to the class    S Σ *   ( x , α ; q )   . Then,


   |  a 3  − σ  a  2  2  | ≤           [ λ ]  q   x   q ( 1 + q )   ,       1 − σ  ≤    q 2    2    [ λ ]   q  2  −   [ λ ]   q 2     x 2   +   [ λ ]   q 2      8  ( 1 + q )  |   [ λ ]  q  x  | 3    ,             8 |   [ λ ]  q  x  | 3   1 − σ     q 2    2    [ λ ]   q  2  −   [ λ ]   q 2     x 2   +   [ λ ]   q 2      ,        1 − σ  ≥    q 2    2    [ λ ]   q  2  −   [ λ ]   q 2     x 2   +   [ λ ]   q 2      8  ( 1 + q )  |   [ λ ]  q  x  | 3    .        













Proof. 

From (35) and (36),


      a 3  − σ  a  2  2      =    ( 1 − σ )     C  1   ( λ )    ( x ; q )   3    2  q 2      C  1   ( λ )    ( x ; q )   2  −  C  2   ( λ )    ( x ; q )       c 2  +  d 2   +    C  1   ( λ )    ( x ; q )    2 q  1 + q      c 2  −  d 2            =    C  1   ( λ )    ( x ; q )    2 q     K  ( σ )  +  1  1 + q     c 2  +  K  ( σ )  −  1  1 + q     d 2   ,     








where


  K  ( σ )  =      C  1   ( λ )    ( x ; q )   2   1 − σ    q     C  1   ( λ )    ( x ; q )   2  −  C  2   ( λ )    ( x ; q )     ,  










   1 − σ  ≥    q 2    2    [ λ ]   q  2  −   [ λ ]   q 2     x 2   +   [ λ ]   q 2      8  ( 1 + q )  |   [ λ ]  q  x  | 3    ,  








then, in view of (4) and (5), we conclude that


  |  a 3  − σ  a  2  2  | ≤         C  1   ( λ )    ( x ; q )    2 q ( 1 + q )   ,       K ( σ )  ≤  1  1 + q   ,            1 q    C  1   ( λ )    ( x ; q )    K ( σ )  ,        K ( σ )  ≥  1  1 + q   .       











This completes the proof of the Theorem 4. □





Corollary 3. 

Let   f ∈ Σ   given by (1) belong to the class    S Σ *   ( x , α ; 1 )   . Then, we have


    |   a 2   | ≤    2 | λ | x   2 x      2  λ − 1   x 2  − 1    ,     |  a 3  |  ≤ λ  4 λ x + 1  ,   








and


   |  a 3  − σ  a  2  2  | ≤         λ  x  2  ,       1 − σ  ≤    2  λ − 1   x 2   + 1     16 | λ |  2   x 3    ,             8  λ 2   x 3   1 − σ     2  λ − 1   x 2   + 1   ,        1 − σ  ≥    2  λ − 1   x 2   + 1     16 | λ |  2   x 3    .        














5. Coefficient Bounds of the Class    C Σ   ( x , α ; q )   


Definition 3. 

For   x ∈ (  1 2  , 1 ]   and   0 < q < 1  , if the following subordinations are satisfied, a function f belonging to Σ is said to be in the class    C Σ   ( x , α ; q )    given by (1):


  1 +   ξ  ∂  q  2  f  ( ξ )     ∂ q  f  ( ξ )    ≺  G  q   ( λ )    ( x , ξ )   



(37)




and







  1 +   ξ  ∂  q  2  g  ( w )     ∂ q  g  ( w )    ≺  G  q   ( λ )    ( x , w )  ,  



(38)




where   λ ∈ N =  1 , 2 , 3 , ⋯   ,  α  is a nonzero real constant, the function   g  ( w )  =  f  − 1    ( w )    is defined by (2), and   G  q   ( λ )    is the generating function of the q–analogues of Gegenbauer polynomials given by (3).



Theorem 5. 

Let   f ∈ Σ   given by (1) belong to the class    C Σ   ( x , α ; q )   . Then,


   |  a 2  | ≤   2   [ λ ]  q  x     2 |  [ λ ]   q   | x         [ 2 ]  q     2   [ 3 ]  q  − 3   [ 2 ]  q     [ λ ]   q  2  − 2   [ 2 ]  q    [ λ ]   q 2     x 2  +   [ 2 ]  q    [ λ ]   q 2       ,   








and


   |  a 3  | ≤   4   [ λ ]   q  2   x 2     [ 2 ]   q  2   +   2   [ λ ]  q  x     [ 2 ]  q    [ 3 ]  q    .   













Proof. 

Let   f ∈  C Σ   ( x , α , μ ; q )   . From Definition 3, for some analytic functions   w ,   v such that   w ( 0 ) = v ( 0 ) = 0   and   | w ( ξ ) | < 1 ,    | v ( w ) | < 1   for all   ξ , w ∈ U  ,


  1 +   ξ  ∂  q  2  f  ( ξ )     ∂ q  f  ( ξ )    =  G  q   ( λ )    ( x , w  ( ξ )  )  ,  



(39)




and


  1 +   ξ  ∂  q  2  g  ( w )     ∂ q  g  ( w )    =  G  q   ( λ )    ( x , v  ( w )  )  .  



(40)







By expanding the Equations (39) and (40), we obtain that


  1 +   ξ  ∂  q  2  f  ( ξ )     ∂ q  f  ( ξ )    = 1 +  C  1   ( λ )    ( x ; q )   c 1  ξ +   C  1   ( λ )    ( x ; q )   c 2  +  C  2   ( λ )    ( x ; q )   c  1  2    ξ 2  + ⋯  



(41)




and


  1 +   ξ  ∂  q  2  g  ( w )     ∂ q  g  ( w )    = 1 +  C  1   ( λ )    ( x ; q )   d 1  w +   C  1   ( λ )    ( x ; q )   d 2  +  C  2   ( λ )    ( x ; q )   d  1  2    )   w 2  + ⋯ .  



(42)







Upon comparing the corresponding coefficients in (41) and (42), we have


    [ 2 ]  q   a 2  =  C  1   ( λ )    ( x ; q )   c 1  ,  



(43)






    [ 2 ]  q    [ 3 ]  q   a 3  −   [ 2 ]   q  2   a  2  2  =  C  1   ( λ )    ( x ; q )   c 2  +  C  2   ( λ )    ( x ; q )   c  1  2  ,  



(44)






  −   [ 2 ]  q   a 2  =  C  1   ( λ )    ( x ; q )   d 1  ,  



(45)




and


    [ 2 ]  q   2   [ 3 ]  q  −   [ 2 ]  q    a  2  2  −   [ 2 ]  q    [ 3 ]  q   a 3  =  C  1   ( λ )    ( x ; q )   d 2  +  C  2   ( λ )    ( x ; q )   d  1  2  .  



(46)







We get from (43) and (45) that


   c 1  = −  d 1   



(47)




and


  2     [ 2 ]  q   2   a  2  2  =    C  1   ( λ )    ( x ; q )   2    c  1  2  +  d  1  2   .  



(48)







By adding (44) to (46), we obtain


  2   [ 2 ]  q     [ 3 ]  q  −   [ 2 ]  q    a  2  2  =  C  1   ( λ )    ( x ; q )    c 2  +  d 2   +  C  2   ( λ )    ( x ; q )    c  1  2  +  d  1  2   .  



(49)







We determine that, by replacing the value of    c  1  2  +  d  1  2    from (48) on the right side of (49),


  2   [ 2 ]  q      [ 3 ]  q  −   [ 2 ]  q   −   [ 2 ]  q     C  2   ( λ )    ( x ; q )      C  1   ( λ )    ( x ; q )   2     a  2  2  =  C  1   ( λ )    ( x ; q )    c 2  +  d 2   .  



(50)







Moreover, by doing computations along (12) and (50), we find that


  |  a 2  | ≤   2   [ λ ]  q  x     2 |  [ λ ]   q   | x         [ 2 ]  q     2   [ 3 ]  q  − 3   [ 2 ]  q     [ λ ]   q  2  −   [ 2 ]  q    [ λ ]   q 2     x 2  +   [ 2 ]  q    [ λ ]   q 2       .  











By subtracting (44) from (46), we obtain


  2   [ 2 ]  q    [ 3 ]  q    a 3  −  a  2  2   =  C  1   ( λ )    ( x ; q )    c 2  −  d 2   +  C  2   ( λ )    ( x ; q )    c  1  2  −  d  1  2   .  



(51)







In view of (48) and (51), we obtain


   a 3  =     C  1   ( λ )    ( x ; q )   2   2     [ 2 ]  q   2      c  1  2  +  d  1  2   +    C  1   ( λ )    ( x ; q )    2   [ 2 ]  q    [ 3 ]  q      c 2  −  d 2   .  











By applying (5), we conclude that


  |  a 3  | ≤   4   [ λ ]   q  2   x 2     [ 2 ]   q  2   +   2   [ λ ]  q  x     [ 2 ]  q    [ 3 ]  q    .  








This completes the proof of the Theorem 5. □





Theorem 6. 

Let   f ∈ Σ   given by (1) belong to the class    C Σ   ( x , α ; q )   . Then,


   |  a 3  − σ  a  2  2  | ≤                               










         2  λ  x     [ 2 ]  q    [ 3 ]  q    ,      1 − σ  ≤ ϝ ,             16  1 − σ      [ λ ]  q   3   x 3      [ 2 ]  q    2   2   [ 3 ]  q  2 − 3   [ 2 ]  q     [ λ ]   q  2  − 2   [ 2 ]  q    [ λ ]   q 2      x 2  +   [ 2 ]  q    [ λ ]   q 2      ,      1 − σ  ≥ ϝ ,       








where


   ϝ =    2   2   [ 3 ]  q  2 − 3   [ 2 ]  q     [ λ ]   q  2  − 2   [ 2 ]  q    [ λ ]   q 2      x 2  +   [ 2 ]  q    [ λ ]   q 2     16   [ 2 ]  q    [ 3 ]  q    [ λ ]   q  2   x 2    .   













Proof. 

From (50) and (51),


      a 3  − σ  a  2  2      =  1 − σ      C  1   ( λ )    ( x ; q )   3   2   [ 2 ]  q    q 2     C  1   ( λ )    ( x ; q )   2  −   [ 2 ]  q   C  2   ( λ )    ( x ; q )       c 2  +  d 2            +    C  1   ( λ )    ( x ; q )    2   [ 2 ]  q    [ 3 ]  q      c 2  −  d 2            =  C  1   ( λ )    ( x ; q )    K  ( σ )  +  1  2   [ 2 ]  q    [ 3 ]  q      c 2  +  K  ( σ )  −  1  2   [ 2 ]  q    [ 3 ]  q      d 2   ,     








where


  K  ( σ )  =    1 − σ     C  1   ( λ )    ( x ; q )   2    2   [ 2 ]  q    q 2     C  1   ( λ )    ( x ; q )   2  −   [ 2 ]  q   C  2   ( λ )    ( x ; q )     ,  










   1 − σ  ≤   4  q 2    [ λ ]   q  2   x 2  −   [ 2 ]  q   C  2   ( λ )    ( x ; q )    4   [ 3 ]  q    [ λ ]   q  2   x      











Then, in view of (5), we conclude that


  |  a 3  − σ  a  2  2  | ≤         C  1   ( λ )    ( x ; q )      [ 2 ]  q    [ 3 ]  q    ,       K ( σ )  ≤  1  2   [ 2 ]  q    [ 3 ]  q    ,            1   [ 2 ]  q     C  1   ( λ )    ( x ; q )    K ( σ )  ,        K ( σ )  ≥  1  2   [ 2 ]  q    [ 3 ]  q    .       








This completes the proof of the last theorem. □





Corollary 4. 

Let   f ∈ Σ   given by (1) belong to the class    C Σ   ( x , α ; 1 )   . Then,


   |  a 2  | ≤   λ x   2 x      1 − 2  x 2     ,   










   |  a 3  | ≤   λ 2   x 2   +   λ x  3  .   








and


   |  a 3  − σ  a  2  2  | ≤        2    [ λ ]  q   x     [ 2 ]  q    [ 3 ]  q    ,         | σ − 1 |  ≤    1 − 2 λ  x 2    24 λ  x 2     ,        1   [ 2 ]  q     C  1   ( λ )    ( x ; q )    K ( σ )  ,       | σ − 1 |  ≥    1 − 2 λ  x 2    24 λ  x 2     .        














6. Conclusions


In the current study, we introduced and examined the coefficient issues related to each of the three new subclasses of the class of bi-univalent functions in the open unit disk  U :    B Σ   ( x , α ; q )   ,    S  Σ  *   ( x , α ; q )   , and    C Σ   ( x , α ; q )   . These bi-univalent function classes are described, accordingly, in Definitions 1 to 3. We calculated the estimates of the Fekete–Szegö functional problems and the Taylor–Maclaurin coefficients    a 2    and    a 3    for functions in each of these three bi-univalent function classes. Several more fresh outcomes are revealed to follow following specializing the parameters involved in our main results. Obtaining estimates on the bound of    a n    for   n ≥ 4 ; n ∈ N   for the classes that have been introduced here is still a problem.
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