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Abstract: We analyze the problem of the uniqueness of characterization of groups by their weak
congruence lattices. We discuss the possibility that the same algebraic lattice L acts as a weak congru-
ence lattice of a group in more than one way, so that the corresponding diagonals are represented
by different elements of L. If this is impossible, that is, if L can be interpreted as a weak congru-
ence lattice of a group in a single way, we say that L is a sharp lattice. We prove that groups in
many classes have a sharp weak congruence lattice. In particular, we analyze connections among
isomorphisms of subgroup lattices of groups and isomorphisms of their weak congruence lattices.
Summing up, we prove that there is a one-to-one correspondence between many known classes of
groups and lattice-theoretic properties associated with each of these classes. Finally, an open problem
is formulated related to the uniqueness of the element corresponding to the diagonal in the lattice of
weak congruences of a group.

Keywords: weak congruence lattice; subgroup lattice; group

MSC: 20E15; 20F99; 08A30

1. Introduction
1.1. Historical Background

Important tools for structural investigations of algebras are subalgebra and congruence
lattices. Generally, these lattices are lattice-theoretically independent and are therefore
investigated separately. Both lattices provide important properties of algebras, in particular,
varieties are well characterized by congruence lattices. Concerning groups, congruences
form modular lattices embeddable into the lattices of subgroups. Still, the corresponding
sublattice in general could not be identified only by lattice properties. Consequently,
investigations are mostly applied to the lattice of subgroups as a whole. These lattices
have been used for characterizing various classes of groups from the beginning of the 20th
century; among numerous experts, we mention those which are relevant for the present
research: Dedekind, Baer [1], Iwasawa [2], Ore [3], and Suzuki [4]. The results about groups
in the framework of subgroup lattices, as the basic starting structure for us, are collected
in the mentioned book [4] by Suzuki, as well as in the more recent book [5] by Schmidt;
there is also a nicely written survey paper [6] by Pàlfy. Among recently published papers
dealing with the characterization of groups by the subgroup lattices, we also mention [7] by
Shareshian and Woodroofe, [8] by De Falco, De Giovanni, and Musella, and [9] by Ferrara
and Trombetti.

Our research of groups is also situated in the framework of lattices. We use the lattice
of weak congruences, which contains, up to isomorphism, both the above-mentioned lat-
tices as sublattices. In universal algebra, weak congruence relations were introduced in [10]
(for details, see monograph [11]). Weak congruences of an algebra A are congruences
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on subalgebras considered as relations on the whole algebra A. They form an algebraic
lattice Wcon(A) under inclusion. If this algebra is a group G, then each element of Wcon(G)
uniquely corresponds to a normal subgroup of some subgroup of G and vice versa. More-
over, Sub(G) ∼= ↓∆ and Con(G) = ↑∆, where ∆ is the diagonal relation of G generating
an ideal and a filter in Wcon(G); analogously, for a subgroup H of G, Sub(H) ∼= ↓∆H and
Con(H) = [∆H , H2] (an interval sublattice). This holds in the weak congruence lattice of
every algebra; for groups, ↑∆ is additionally embeddable into ↓∆.

Our previous research of groups by weak congruence lattices is presented in
papers [12,13]. More recently, a special lattice-theoretic approach to groups via weak
congruence lattices is given in [14–16]; the results consist of characterizations, that is, neces-
sary and sufficient conditions for Wcon(G)—under which G belongs to a particular class of
groups (Dedekind, Hamiltonian, abelian, solvable, etc.). Here, we use the lattice-theoretic
approach from these papers, in particular lattices with normal elements , a class of algebraic
lattices that possess the main properties of weak congruence lattices of groups.

Through the present research, we show that in the case of groups, lattices of weak
congruences characterize groups more precisely than lattices of subgroups. This applies
not only to many classes of groups but also to single groups.

1.2. Review of Results

In our previous papers on the same topic, we analyzed groups with particular algebraic
properties, characterizing them via their weak congruence lattices. In the present paper, we
are more concentrated on lattice properties of the weak congruence lattices of groups. We
analyze order isomorphisms and also the role, as well as uniqueness, of special elements in
these lattices.

First, we extend the notion of projectivity, i.e., the isomorphism between subgroup
lattices of two groups, replacing lattices of subgroups by weak congruence lattices. We
call the corresponding isomorphism a w-projectivity. If it exists, these groups are said to be
weak congruence lattice isomorphic. We deal with the connection between projectivity and
w-projectivity, i.e., we give conditions under which each of these properties implies the
other. One of the basic sufficient conditions for these implications is the uniqueness of the
element in the weak congruence lattice of a group, representing the diagonal relation in
this lattice. If the element is unique, the lattice in question can be interpreted as a weak
congruence lattice of a group in a single way. We say that such lattices are sharp. We analyze
the algebraic properties of a group and lattice-theoretic properties of the weak congruence
lattice, under which this lattice is sharp.

We recall a definition of a class of groups (see e.g., [17,18]) as a set-theoretic collection
of groups closed under isomorphism and containing a trivial group. We list the classes
that are characterized here and in previous investigations and we relate these classes to
particular classes of lattices.

Finally, summing up the results, we prove that there is a one-to-one correspondence
between all classes of groups that we list and lattice properties that determine the corre-
sponding lattices of weak congruences.

Since it is not known whether the weak congruence lattice of each group is sharp, we
formulate this question as an open problem.

2. Preliminaries
2.1. Lattices with Normal Elements

We list lattice notions that we use and their basic properties. For more about general
notions, see, e.g., books [19–21]. For lattices with normal elements, in addition to what is
given here, see papers [14,16].

If a ∈ L, then a is a codistributive element if for all x, y ∈ L, a∧ (x∨ y) = (a∧ x)∨ (a∧ y).
We also use a distributive element as a dual notion.

For a ∈ L, ma is the map L→ ↓a, defined by ma(x) := x ∧ a, and by na, we denote the
dual map L→ ↑a, i.e., such that na(x) := x ∨ a. Observe that a is a codistributive element
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in a lattice L if and only if ma is an endomorphism on L. The kernel of ma is here denoted
by ϕa.

Dual properties hold for a distributive element.
We consider a lattice L to be algebraic, and the mentioned element a is assumed to be

codistributive. For x ∈ L, x is the top element of the ϕa-class to which x belongs; we also
denote by Ta ⊆ L the set of all the top elements:

x :=
∨
[x]ϕa ; Ta = {x | x ∈ L}. (1)

Ta is a lattice under the order from L, a meet-subsemilattice of L. The classes under ϕa are
specific intervals in L: for x ∈ L, there is b ∈ ↓a, such that [x]ϕa = [b, b].

Concerning notation, let us mention that for any x ∈ L, [x]ϕa = [b, b] = [x ∧ a, x],
where x ∧ a = b ∈ ↓a and, obviously, for any y in this interval, we have y ∧ a = b,
and y = b.

As usual, we denote by ACC and DCC the Ascending and Descending Chain Condition
of a lattice L, respectively.

If X 6= ∅, then ∆X is a diagonal of X: ∆X := {(x, x) | x ∈ X}.
A lattice L with a bottom element 0 is atomic if, for every b ∈ L, b > 0, there is an atom

a such that b > a > 0. A lattice L with a bottom element 0 is atomistic if every element is a
join of atoms. If a lattice L with a bottom element is atomic and it has a single atom x, then
x is a monolith in L.

The following is introduced in [16], with the motivation to capture lattice properties of
group notions and to formulate them in pure lattice-theoretic terms.

We say that a codistributive element a in an algebraic lattice L is a full codistributive
element of L if

(a) Ta is closed under joins and (b) for every b ∈ ↓a, b =
∨

ci, i ∈ I, so that for every i
intervals [0, ci] and [ci, ci] are isomorphic under x 7→ x ∨ ci.

Proposition 1 ([16]). If a is a full codistributive element in L, then:

(i) Every b ∈ ↓a is a full codistributive element in the sublattice ↓b.
(ii) The map ξ : ↓a −→ Ta, x 7→ x is a lattice isomorphism.

Let a be a full codistributive element in L, and x ∈ L. Then, the element xa ∈ ↓a is
defined by:

xa :=
∨
(y ∈ ↓a | y 6 x). (2)

In addition, let n, b ∈ ↓a, n 6 b. If n = xa, for some x ∈ [b, b], then n is said to be
normal in ↓b, and we denote it by nJ b (the sign is filled in to thus indicate the difference
from the normality among groups).

As introduced in [16], we say that a lattice L is a lattice with normal elements determined
by a if it is an algebraic lattice in which a is a fixed full codistributive element, we call it the
main codistributive element, and the following postulates ((Pi)–(Pv)) hold.

(Pi) For every x ∈ ↓a, [x]ϕa is a modular lattice; in particular, [0]ϕa = {0}, as the only
one-element ϕa-class.

(Pii) For every x ∈ L, x = xa ∨ (x ∧ a).
(Piii) For all x, y ∈ ↓a, if x < y and x 6J y, then there are xi ∈ ↓a, i ∈ I, forming the

antichain x, xi, i ∈ I so that:

(a) xi ∨ y = x ∨ y for all i ∈ I;
(b) x ∧ (

∧
i∈I xi)J y; moreover, it is the greatest element in ↓x which is normal

in ↓y.

(Piv) The map f : L→ Ta, such that f (x) = xa satisfies the following:

(a) if χ = ker f , then χ-classes are closed under joins in L.
(b) f is compatible with joins in ϕa-classes.
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(Pv) Let b, c ∈ ↓a, bJ c. Furthermore, let {di, i ∈ I} be the set of all elements in [b, b ∨ c]
such that:

(a) di is normal in [b, b ∨ c], for every i ∈ I;
(b) [di, c] is a modular lattice for every i ∈ I;
(c) [di, di ∨ c] does not have an interval sublattice isomorphic with Q given in

Figure 1.

Then, {di, i ∈ I} has a bottom element.

Figure 1. Lattice Q.

Lemma 1 ([16]). Let n, b ∈ ↓a, n 6 b. Then, nJ b if and only if [n, n ∨ b] ∩ Ta = {n}.

Let b, c ∈ ↓a so that bJ c. We define c/b := b ∨ c. Here, c/b is the quotient (of c
modulo b).

Obviously, every x ∈ L is a quotient: if [x]ϕa = [b, b], where b ∈ ↓a, then by (Piii)
xa J b, and x = xa ∨ b, so x = b/xa. In addition, for every x ∈ L, the quotient representation
is well-defined. Indeed, by the definition of xa and by postulate (Piii), the quotient
representation is unique, since x = c/b = e/d implies b = d and c = e.

Theorem 1 ([12,16]). Let L be a lattice with normal elements determined by a. The following
are equivalent:

(a) for every n ∈ ↓a, nJ a;
(b) the map g : ↑a −→ ↓a, x 7→ xa is an isomorphism;
(c) for b ∈ ↓a, ↑b is a lattice with normal elements determined by b ∨ a;
(d) L is a modular lattice.

Proposition 2 ([16]). In a lattice L with normal elements determined by a, for b ∈ ↓a, the map
gb : [b, b]→ ↓a, gb(x) := xa is an embedding; gb([b, b]) is a modular sublattice of ↓b, consisting
of all normal elements in ↓b.

L is an A-lattice if it is a modular lattice with normal elements determined by a in
which ↓a does not have an interval sublattice which is isomorphic with the lattice Q in Fig. 1
(Q represents the subgroup lattice of the quaternion group, which is uniquely determined
by the subgroup lattice).

2.2. Groups

By H 6 G (or H < G if H 6= G) and H CG, we denote that H is a subgroup and
a normal subgroup of G, respectively. Sub(G) is the algebraic lattice of all subgroups
of G, ordered by the set inclusion. Subn(G) is a complete modular sublattice of Sub(G),
consisting of all normal subgroups of G. A group of whose subgroups are all normal is a
Dedekind group, which may be abelian and nonabelian, i.e., Hamiltonian.
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According to [5], if G and G1 are groups, then an isomorphism from Sub(G) to Sub(G1)
is a projectivity from G to G1. If such an isomorphism exists, then G and G1 are here said to
be subalgebra lattice isomorphic.

A group satisfies the maximal condition for subgroups if every strictly ascending chain of
subgroups G1 ⊂ G2 ⊂ G3 ⊂ . . . is finite. Groups fulfilling this condition are known to be
finitely generated. Such are, e.g., cyclic groups and, more generally, locally cyclic groups,
i.e., groups for which every finite subset generates a cyclic subgroup.

Theorem 2 (Ore [3], Schmidt [5], p. 13). (i) A group G is locally cyclic if and only if the lattice
Sub(G) of subgroups of G is distributive.

(ii) A group G is cyclic if and only if Sub(G) is a distributive lattice satisfying the ACC.

A group G is simple if it does not have proper normal subgroups (different from G
and from {e}). We say that a simple group G is fully simple if all its proper subgroups are
simple. A Tarski monster group is an infinite group G, such that every proper subgroup of G
is a cyclic group whose order is a fixed prime number p (also called a Tarski p-group), see,
e.g., [5], p. 82. Since it is simple, a Tarski monster group is fully simple. The existence of
such groups was proved in 1979 by Olshanskii; actually, they are effectively constructed
(see [22,23] and the book [22]). A finite group is said to be semisimple if it has no nontrivial
normal abelian subgroups (Robinson, [24], p. 89).

According to [18], and also [17], a class of groups C is a collection of groups with the
property that if G ∈ C, then every group isomorphic to G is also in C; it is assumed to also
contain the trivial, one-element group. A closely related notion to a class of groups is a group
theoretical property, or simply property of groups: such is every property that is preserved under
the isomorphism of groups. Observe that there is a one-to-one correspondence between the
group classes and the group theoretical properties. Clearly, classes can be ordered under
inclusion. In this investigation, we deal with numerous classes of groups, showing that these
classes can be characterized by lattice-theoretic properties of their weak congruence lattices.
Some of the characterizations are presented in this paper, and others in our previous papers.

For more details about all above-mentioned and other notions related to groups, see,
e.g., books [17,24–28].

2.3. Weak Congruences

A weak congruence of a group G is a symmetric and transitive subuniverse of G2. Thus,
the collection Wcon(G) of all weak congruences on G is a lattice which is the set union
of all congruences on all subgroups of G, and it also contains, up to an isomorphism,
the subgroup lattice as the principal ideal generated by the diagonal of G. For details
see [11] (also the references therein). In particular, groups are investigated in this context
in [12–14]. Some basic facts ([11]): Wcon(G) is under inclusion an algebraic lattice in which
the diagonal ∆ is a full codistributive element. The set T∆, defined by (1) as Ta, is the set of
squares of subgroups of G, forming a complete sublattice of Wcon(G).

Theorem 3 ([16]). The lattice Wcon(G) of a group G is a lattice with normal elements determined
by ∆. If H, K are subgroups of G, then H CK if and only if ∆H J∆K in the lattice Wcon(G).

Corollary 1 ([16]). If H is a subgroup of a group G, then H CG if and only if the principal filter
↑(H2) in Wcon(G) is a lattice with normal elements determined by H2 ∨∆ as the weak congruence
lattice of G/H. Analogously, for subgroups H, K of G, H CK if and only if the interval [H2, K2]
in Wcon(G) is a lattice with normal elements determined with H2 ∨ ∆K as the weak congruence
lattice of K/H.

Theorem 4 ([12,16]). The following are equivalent for a group G:

(i) G is a Dedekind group;
(ii) the lattice Wcon(G) of weak congruences of G is modular.
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Theorem 5 ([16]). A group G is abelian if and only if Wcon(G) is an A-lattice.

In [16], we gave characterizations of particular classes of groups in terms of lattice com-
mutators, e.g., solvable and supersolvable groups. Finite nilpotent groups are characterized
by lower semimodularity of Wcon(G) in [14].

Theorem 6 ([12]). A group G is locally cyclic if and only if the lattice Wcon(G) is distributive. G
is cyclic if and only if Wcon(G) is a distributive lattice fulfilling the ACC.

3. Results
3.1. w-Projectivity, Uniqueness of Main Codistributive Element, and Sharp Lattices with
Normal Elements

Let G and G1 be groups. We say that an isomorphism from Wcon(G) to Wcon(G1)
is a w-projectivity from G to G1; if such an isomorphism exists, we say that G and G1 are
weak congruence lattice isomorphic. Recall that an isomorphism from Sub(G) to Sub(G1) is a
projectivity from G to G1; in this case, G and G1 are said to be subalgebra lattice isomorphic.

Recall that Sub(G) is an ideal sublattice of Wcon(G) up to the embedding which sends
each subgroup H to the corresponding diagonal relation ∆H . Therefore, it is reasonable to
analyze connections between projectivity and w-projectivity in terms of properties of these
two groups and of the corresponding lattices.

Firstly, let us mention that projectivity does not necessarily imply w-projectivity: if
there is an isomorphism from Sub(G) to Sub(G1), then the weak congruence lattices of
these two groups need not be isomorphic. For example, there are nonabelian groups with
modular subgroup lattices which are lattice isomorphic with abelian groups ([5], p. 88); by
our characterization of abelian groups (Theorem 5), the corresponding weak congruence
lattices could not be isomorphic. In the present paper, we prove that, for some classes of
groups, this implication (projectivity→ w-projectivity) does hold.

Here, we also deal with the converse. Namely, we analyze the problem of whether, in
general, w-projectivity implies projectivity:

Question. If groups G and G1 are weak congruence lattice isomorphic, are they (or,
under which conditions are they) subalgebra lattice isomorphic?

Denote by L the lattice with normal elements representing in such a case the weak
congruence lattice of several groups. If the answer to Question 1 is yes, then:

(i) either L has a single main codistributive element, which corresponds to the diagonal
relation of each of these groups, or (ii) there is a lattice automorphism on L, sending the
element representing the diagonal of G onto the element corresponding to the diagonal
relation of G1.

In terms of lattices with normal elements, the negative answer to the Question would
mean that there are different full codistributive elements in the lattices of weak congru-
ences of some groups, corresponding to diagonals of two different groups. In addition,
the ideals generated by these full codistributive elements are not isomorphic. Consequently,
the groups G and G1 would be weak congruence lattice isomorphic but not subalgebra
lattice isomorphic, i.e., in such a case w-projectivity would not imply projectivity.

The problems we deal with are essentially lattice-theoretic; therefore, we analyze
the uniqueness of full codistributive elements in lattices with normal elements related to
groups, as we make precise in the following definition.

If G is a group and L = Wcon(G), then L is a lattice with normal elements determined
by the element a corresponding to the diagonal relation of G. We say that L is a sharp lattice
with normal elements if it is not isomorphic to the weak congruence lattice of some other
group, whose diagonal is represented by some b 6= a. Note that the mentioned group is
not necessarily different from G, meaning that the diagonal of the same group G could be
represented by another element of L.

The above-mentioned particular case, where the diagonal of the same group is repre-
sented by two different elements a, b ∈ L, is illustrated by the following example.
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Example 1. The lattice L in Figure 2 is a lattice with normal elements determined by a and also
by b.

L is the weak congruence lattice of any group G of order p2, p-prime. Each of the two elements
a and b can represent the diagonal relation ∆ of G. Hence, each of the two different elements of L
can represent the diagonal of the same group.

Figure 2. A lattice with normal elements possible determined by two elements.

Next, we formulate the theorem illustrating our first reason for investigating the
sharpness of weak congruence lattices for groups. Other reasons are related to classes of
groups, as formulated in Section 3.4.

Theorem 7. Let G and G1 be groups such that there exists a w-projectivity f : Wcon(G) −→
Wcon(G1). If Wcon(G) is sharp, then there is a projectivity g : Sub(G) −→ Sub(G1).

Proof. From the assumption that Wcon(G) is sharp, we have that Wcon(G1) is sharp, too.
Furthermore, f (∆G) is the main codistributive element in f (Wcon(G)), and it plays the
role of ∆G. Since Wcon(G1) is sharp, there is only one element in this lattice that can be the
diagonal relation of G1, and that is ∆G1 . Hence, f (∆G) = ∆G1 has to hold. Now, this implies
f (↓∆G) = (↓∆G1), so ↓∆G ∼= ↓∆G1 under the restriction of f . This, of course, implies
Sub(G) ∼= Sub(G1), which completes the proof.

Remark 1. Observe that the property of being sharp applies to lattices with normal elements
fulfilling both a lattice-theoretic and an algebraic property:

- They are determined by a unique full codistributive element;
- They are lattices of weak congruences of groups in which these unique full codistributive

elements correspond to the diagonal relation.

3.2. Auxiliary Results Related to Lattices with Normal Elements

In order to further investigate the sharpness of lattices of weak congruences of groups,
in the sequel, we analyze relevant properties of lattices with normal elements. Dealing with
lattice properties, we concentrate on the mentioned uniqueness of the full codistributive ele-
ment.

Recall that, in any lattice, atoms are join-irreducible and coatoms are meet-irreducible
elements. Additional similar properties of other elements in lattices with normal elements
are as follows.

Lemma 2. If L is a lattice with normal elements determined by a, and b ∈ L is a join-irreducible
element, then either b ∈ ↓a, or b ∈ Ta.
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Proof. Let b ∈ L be join-irreducible and b /∈ ↓a, b /∈ Ta. From b /∈ ↓a, we have b > b ∧ a.
Furthermore, by (Pii), b = c ∨ (b ∧ a), where c =

∨{y ∈ ↓a | y 6 b}; here, c < b holds
from b /∈ Ta. This implies b is join-reducible, contrary to the assumption.

Lemma 3. Let L be a lattice with normal elements determined by a, then:

(i) Each element from ↓a different from 0 and from a is meet-reducible in L. In addition, for every
nonzero b fulfilling b < a, there is c 6∈ ↓a, such that b < c;

(ii) For every atom c of L, c is join-irreducible;
(iii) For every coatom d of the sublattice ↓a, d is meet-irreducible in L.

Proof. (i) If b ∈ ↓a, b 6= a, b 6= 0, then b = b ∧ a and b < b, for otherwise, we have
[b]ϕa = {b}, which implies b = 0 by (Pi). Hence, b is meet-reducible. Furthermore, every
element c 6= b of the class [b]ϕa = [b, b] fulfills c 6∈ ↓a and b < c. Since b < b, there is at least
one such element.

(ii) First, let us notice that for an atom c in L, c ∈ ↓a holds. Namely, if c /∈ ↓a, then
c ∧ a < c, so c ∧ a = 0, and c ∈ [0]ϕa = {0}, hence c = 0 by (Pi). Moreover, for every c 6= 0,
c ∈ ↓a, we have c < c for the same reason.

Assume c is join-reducible for an atom c. Then, c = x ∨ y for some x, y ∈ L such that
x < c, y < c. Now, using the codistributivity of a, we have c = c ∧ a = (x ∨ y) ∧ a =
(x ∧ a) ∨ (y ∧ a). Since c is an atom, it is join-irreducible, so x ∧ a = c or y ∧ a = c holds.
(In fact, x ∧ a = y ∧ a = c has to hold, for otherwise, if, say, y ∧ a < c, we have y ∧ a = 0,
hence y ∈ [0]ϕa , so y = 0, which implies c = x, contrary to the assumption above.) So,
x, y ∈ [c]ϕa = [c, c].

Next we prove that [c, c] = {c, c} holds in L. Notice that by Propositions 1(ii) and (2),
ca = 0 and (c)a = c. Now, if c < y < c by Proposition 2, 0 = ca < ya < (c)a = c, contrary
to the assumption that c is an atom in L.

Hence, x, y ∈ {c, c}, and from c = x ∨ y, c < c, we have x = c or y = c, contrary to
the assumption.

(iii) Let d ≺ a in ↓a. By Proposition 1(ii), d < 1. First, we show that ↑d = {d, d ∨ a, 1}
in L.

Using (Pii), for every x ∈ L such that d < x < 1, we have d < xa ∨ (x ∧ a) < 1,
and d 6 xa 6 a. From d ≺ a in ↓a, we have xa = d or xa = a, but xa = a implies
x = 1, contrary to the assumption, hence xa = d holds. Furthermore, d < x < 1 implies
d = d ∧ a 6 x ∧ a 6 a, that is x ∧ a = d or x ∧ a = a; x ∧ a = d implies x < d, contrary to
the assumption, so x ∧ a = a. Therefore x = d ∨ a, and ↑d = {d, d ∨ a, 1} in L.

If d is meet-reducible in L, then d = x ∧ y for some x, y ∈ L, such that d < x, d < y, so
x, y ∈ {d ∨ a, 1}, which implies x ∧ y > d, contrary to the assumption.

Lemma 4. In a lattice L with normal elements determined by a, this element a does not have a
relative complement in any principal ideal in L to which a belongs, except for ↓a.

Proof. Indeed, if x ∈ L is a relative complement of a in ↓(x ∨ a), then a ∧ x = 0 = a ∧ 0,
implying x ∈ [0]ϕa , i.e., x = 0 by (Pi), and x ∨ a = a.

Corollary 2. Let L be a lattice such that it can be determined as a lattice with normal elements by
two of its elements, a, b ∈ L, a 6= b. Then, 0 < a ∧ b.

Proof. First, notice that a 6= 0, b 6= 0, for otherwise L is a trivial lattice. Now, if a ∧ b =
0, then b is a relative complement of a in ↓(a ∨ b). Since b 6= 0 by Lemma 4, this is
impossible.

Proposition 3. A finite lattice L with normal elements determined by a cannot be determined as
a lattice with normal elements by an element b, which is comparable with a, i.e., by some b ∈ L,
a < b or b < a.
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Proof. Let L be a finite lattice with normal elements determined by a and let b ∈ ↑a, b 6= a.
Assume that L is also a lattice with normal elements determined by b. By postulate (Pii),
b = c ∨ a, where c = ba, as defined by (2) and cJ a. Notice that c 6= 0, for otherwise we
would have b = a. Moreover, c < b holds, since if c = b, then b ∈ Ta, and from b ∈ [a]ϕa ,
we obtain b = 1, which implies L is a trivial lattice. By Lemma 3(i), since 0 < c < b, there
exists x /∈ ↓b, such that c < x. By the proof of Lemma 3(i), this element x is any element
of the class [c]ϕb other than c. (It is easy to see that c is the bottom element of this class
and also the only element in [c]ϕb ∩ ↓b. Moreover, since c 6= 0, the class has more than one
element by (Pi).) Moreover, since L is finite, there exists an element d ∈ [c]ϕb such that
c ≺ d. So, we have c ≺ d, d /∈ ↓b, d ∧ b = c.

Furthermore, with respect to a as the main codistributive element of L, we have the
following: c < c ≺ d, cJ a, so cJ a ∧ d. (The last implication is due to one of the basic
properties of normal elements in lattices with normal elements, all proven in [16].) So, there
exists y ∈ [a ∧ d, a ∧ d], such that c = ya, that is, y = c ∨ (a ∧ d), and c 6 y 6 d holds.

Moreover, from c ≺ d, y = c or y = d.
If y = c, then a ∧ d 6 c, so a ∧ d 6 c, and given c ≺ d, we obtain a ∧ d = c. Hence, we

have a ∧ d ≺ d in L. This is impossible, since d ∈ [a ∧ d]ϕa .
For y = d, we have c ∨ (a ∧ d) = d, so b = c ∨ a > c ∨ (a ∧ d) = d, contrary to the

choice of d. This completes the proof.
This clearly also proves the other possibility, when b < a.

Observe that Proposition 3 can be straightforwardly generalized to the case where
finiteness of the lattice is replaced by the condition that it fulfills the ACC. The proof
is similar.

Proposition 4. Let L be a lattice with normal elements determined by a and satisfying the ACC
condition. Then, L cannot be determined as a lattice with normal elements by an element b
comparable with a, i.e., by some b ∈ L such that a < b or b < a.

Furthermore, directly from Lemma 3, we obtain the following.

Proposition 5. Let L be an algebraic lattice and let A be the set of atoms in L. Let 〈A〉 be the
sublattice of L generated by A and 〈A〉∗ the smallest complete sublattice of L that contains 〈A〉.
Then, for every element b ∈ L such that L is a lattice with normal elements determined by b, ↓b
contains the sublattice 〈A〉∗.

Proof. In Lemma 3(ii), we proved that for every atom c in a lattice L with normal elements
determined by b, c ∈ ↓b holds. Hence, A ⊆ ↓b, so 〈A〉 is obviously a sublattice in ↓b.
Furthermore, since ↓b is a complete sublattice in L, we have 〈A〉∗ 6 ↓b.

Corollary 3. Let L be a lattice with normal elements determined by a and satisfying the ACC
condition. If ↓a is an atomistic lattice, then L is uniquely determined by a.

Proof. By Proposition 5, 〈A〉∗ is a sublattice in ↓a, where A is a set of atoms in L. Since ↓a is
atomistic, we have 〈A〉∗ = ↓a. Now, if L is also a lattice with normal elements determined
by b for some b 6= a, then, by Proposition 5, 〈A〉∗ is a sublattice in ↓b, hence a < b holds,
contrary to Proposition 4 above.

Next, we show that particular modular lattices can be uniquely extended to modular
lattices with normal elements. Consequences for groups are formulated as Corollaries 4–6
and explicitly by Corollary 8.

Proposition 6. Let S be an algebraic modular lattice such that for all x, y ∈ S, x 6 y the
following holds:

If {zi | i ∈ I} is the set of all elements from [x, y] such that the interval [zi, y] does not have
an interval sublattice isomorphic to Q in Figure 1, then this set has a bottom element.
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Then, there is a unique (up to isomorphism) modular lattice L with normal elements determined
by the top element 1S of S, in which S = ↓1S.

Proof. It is easy to see that S× S is an algebraic modular lattice. Its compact elements are
exactly the pairs of compact elements in S. Now, let L be the following sublattice of S× S:

L := {(u, v) | u, v ∈ S, u 6 v}.

Consequently, L is an algebraic modular lattice with compact elements being all pairs
(a, b), where a, b are compact in S and a 6 b.

First we prove (0, 1) is a full codistributive element in L. Let (a, b), (u, v) ∈ L. Then,
(0, 1) ∧ ((a, b) ∨ (u, v)) = (0, 1) ∧ (a ∨ u, b ∨ v) = (0, b ∨ v) = ((0, 1) ∧ (a, b)) ∨ ((0, 1) ∧
(u, v)), hence (0, 1) is codistributive in L. To simplify the notation, we further denote (0, 1)
by α. So, the mapping mα : L −→ L, (x, y) 7→ (x, y) ∧ (0, 1) = (0, y) is an endomorphsm of
L, ϕα = Ker(mα) = {((x, y), (u, y)) ∈ L× L}, and for every (x, y) ∈ L, [(x, y)]ϕα = {(z, y) |
z 6 y} = [(0, y), (y, y)] in L. The set of top elements of ϕα classes is Tα = {(y, y) | y ∈ S}.
This set is closed under arbitrary meets in L.

Let (yi, yi) ∈ Tα for i ∈ I. Then,
∨

i∈I(yi, yi) = (
∨

i∈I yi,
∨

i∈I yi) ∈ Tα, hence Tα is
closed under arbitrary joins in L. Moreover, let (0, w) ∈ ↓(0, 1) in L. Since w ∈ S, it is a join
of some compact elements in S, say, w =

∨
i∈I wi. Now, (0, w) =

∨
i∈I(0, wi) in L, where

(0, wi) are compact in L. It is easy to prove that [(0, 0), (0, wi)] ∼= [(0, wi), (wi, wi)] under
the map (0, z) 7→ (z, wi) for all i ∈ I, so (0, 1) is a full codistributive element in L.

Next, we prove the postulates (Pi)–(Pv) for L.
(Pi) For every (0, y) ∈ ↓(0, 1), [(0, y)]ϕα = [(0, y), (y, y)] in L, hence it is a modular

lattice since L is modular. Moreover, [(0, 0)]ϕα = {(0, 0)}, and it is the only one-element
ϕα-class (if (x, y) 6= (0, 0), then y 6= 0, hence (0, y) 6= (y, y), so the class [(x, y)]ϕα has at
least two elements).

(Pii) Notice that in L (x, y)α =
∨{(0, z) ∈ ↓(0, 1) | (z, z) 6 (x, y)} holds, hence

(x, y)α = (0, x). Now, let (x, y) ∈ L. Then, (x, y) = (x, x) ∨ ((x, y) ∧ (0, 1)).
(Piii) First, notice that in L (0, y) is normal in ↓(0, z) for all (0, y), (0, z) ∈ ↓(0, 1),

such that (0, y) 6 (0, z). Namely, (0, y) = (y, z)α and (y, z) ∈ [(0, z), (z, z)] = [(0, z)]ϕα .
Therefore, this postulate trivially holds.

(Piv) In L, we have the following: f : L −→ Tα, (x, y) 7→ (x, x); χ = Ker( f ) =
{((a, b), (u, v)) ∈ L × L | (a, a) = (u, u)} = {((a, b), (a, v)) ∈ L × L}. So, for (a, b) ∈
L, [(a, b)]χ = {(a, v) ∈ L} = [(a, a), (a, 1)]. Let (a, xi) ∈ [(a, b)]χ, i ∈ I;

∨
i∈I(a, xi) =

(a,
∨

i∈I xi) ∈ [(a, b)]χ. The classes of χ are closed under joins in L.
Let [(0, y), (y, y)] be an arbitrary ϕα-class. Let (xi, y) ∈ [(0, y), (y, y)] for i ∈ I;

f (
∨

i∈I(xi, y)) = f (
∨

i∈I xi, y) = (
∨

i∈I xi,
∨

i∈I xi) =
∨

i∈I( f (xi, y)), which proves f is com-
patible with joins in ϕα-classes.

(Pv) First, notice that in an arbitrary lattice with normal elements determined by a,
for b, c ∈ ↓a such that bJ c, di is normal in [b, b ∨ c] if and only if di = b ∨ ni for some
ni ∈ [b, c], ni J c. (This is proved in [16].)

Now, in the current lattice L: let (0, x), (0, y) ∈ ↓(0, 1), x 6 y in S. This implies
(0, x)J (0, y), as proved above. We consider the set of all elements (x, zi) in [(x, x), (x, y)]
fulfilling the conditions (a), (b), and (c) of the postulate (Pv), and this set should have a bot-
tom element. Since (x, zi) = (x, x)∨ (0, zi) , where (0, zi) ∈ [(0, x), (0, y)] and (0, zi)J (0, y),
we conclude that every (x, zi) from the interval [(x, x), (x, y)] is normal in this interval and,
hence, satisfies the condition (a) from this postulate.

In condition (b), for every [(x, zi)], we consider the interval [(zi, zi), (y, y)] in L. It is a
modular lattice for every (x, zi) ∈ [(x, x), (x, y)], that is, for every zi ∈ [x, y], as a sublattice
of L. So, condition (b) is also fulfilled for all elements (x, zi) of [(x, x), (z, y)].

For condition (c), let {(x, zi) | i ∈ I} be the set of all elements from [(x, x), (x, y)] such
that the interval [(zi, zi), (zi, y)] in L does not have an interval sublattice isomorphic to
Q in Figure 1. Now, the interval [(zi, zi), (zi, y)] in L does not have an interval sublattice
isomorphic to Q if and only if the interval [zi, y] in S does not have an interval sublattice
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isomorphic to Q. Furthermore, if {zi | i ∈ I} is the set of all elements in S satisfying the
previous condition, then this set has a bottom element, say z =

∧{zi | i ∈ I}. It is easy to
see that the corresponding set in L has a bottom element, too, and (x, z) =

∧{(x, zi) | i ∈ I}
holds. Therefore, (Pv) holds for L, and L is a lattice with normal elements determined
by (0, 1).

Now, it is easy to show that S ∼= ↓(0, 1) under the map x 7→ (0, x).
In the end, we have to show uniqueness.
First, notice that, by Theorem 1, if L is a lattice that satisfies the conditions of this

proposition, and it is determined by a, then (∀n ∈ ↓a) nJ a. Now, using quotient rep-
resentations, the elements of L are exactly c/b for all b, c ∈ ↓a, b 6 c. Furthermore, let
us assume that L1 and L2 are lattices that satisfy the conditions of this proposition. Let
them be determined by elements a and b, respectively, so that ↓a ∼= S and ↓b ∼= S. Let
ξ : ↓a −→ ↓b be the isomorphism induced by these two isomorphisms. Based on what we
said above, every element in L1 is of the form y/x for some x, y ∈ ↓a, and the analogue
holds in L2. An isomorphism between lattices L1 and L2 is defined like this: χ : L1 −→ L2,
y/x 7→ ξ(y)/ξ(x) (or, x ∨ y 7→ ξ(x) ∨ ξ(y)). This proves the uniqueness of this lattice (up
to isomorphism).

Corollary 4. Let S be an algebraic modular lattice that does not have an interval sublattice isomor-
phic to Q in Figure 1. Then, there is a unique, up to isomorphism, A-lattice L determined by the top
element 1S of S, in which S = ↓1S.

Notice that the previous result also holds for every lattice S with fewer than five elements.

Corollary 5. Let S be a complete chain. Then, there is a unique, up to isomorphism, A-lattice L
determined by the top element 1S of S, in which S = ↓1S.

Proposition 7. Let L be an algebraic lattice determined as a lattice with normal elements by a and
by b, for some a, b ∈ L, a 6= b. If L satisfies DCC condition and a ∧ b is a monolith in L, then L is a
six-element lattice, represented in Figure 2.

Proof. First, notice that a ∧ b < b holds in L. Otherwise, we have b = a ∧ b, so b is an atom
in L and ↓b = {0, b}. Since L is a lattice with normal elements determined by b, every
element in L has a unique quotient representation y/x for some x, y ∈ ↓b, x 6 y. This
implies L = {b/b, b/0, 0/0} = {0, b, 1}. (Recall that b 6= 0, b 6= 1, for otherwise the lattice
with normal elements is trivial.) So, L is a three-element lattice, there is no a 6= b such that
L is determined by a, too, which contradicts the assumption.

Similarly. a ∧ b < a holds in L.
If we consider L as a lattice with normal elements determined by a, then b ∈ [a ∧ b]ϕa .

By Proposition 2, [a ∧ b]ϕa is embeddable into the ideal ↓(a ∧ b), which has two elements.
Therefore, [a ∧ b]ϕa = {a ∧ b, b}. Since the class is an interval, we have a ∧ b ≺ b in L (and
also a ∧ b = b regarding congruence ϕa).

Analogously, [a∧ b]ϕb = {a∧ b, a}, a∧ b ≺ a in L and a ∧ b
∗
= a, where a ∧ b

∗
denotes

the top element of the class [a ∧ b]ϕb .
So, we have 0 ≺ a ∧ b ≺ a and 0 ≺ a ∧ b ≺ b in L. Furthermore, from the fact

that a ∧ b is a monolith in L and that L (or ↓a) satisfies DCC, we obtain ↓a = {0, a ∧ b, a},
a three-element chain. Now, we show a ∧ bJ a regarding ϕa.

Let x = a ∧ b ∨ a = b ∨ a. So, x ∈ [a]ϕa , and, by definition, xa =
∨{z ∈ ↓a | z 6 x}. It

is easy to see that 0 = 0, a = 1, and a ∧ b = b, hence xa = a ∧ b, which implies a ∧ bJ a.
Now, we have ↓a = {0, a ∧ b, a} and a ∧ bJ a. Elements of L are exactly the quotients

0/0 = 0, (a ∧ b)/0 = a ∧ b, (a ∧ b)/(a ∧ b) = b, a/(a ∧ b) = b ∨ a, a/0 = a, and a/a = 1.
The lattice L is obviously isomorphic to the six-element lattice represented in Figure 2.
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Remark 2. The DCC condition for L can be slightly weakened, namely, it is enough to ask for ↓a
to satisfy the DCC and not to require it for the whole lattice.

3.3. Applications to Groups

The above lattice-theoretic results can be formulated for weak congruence lattices of
concrete classes of groups, as follows.

Corollary 6. Let S be a finite chain. Then, the lattice L from Corollary 5 is a weak congruence
lattice for a cyclic group G of order pn for some prime p. Moreover, L ∼= {(p, q) | p, q ∈ S, p 6 q},
and L has a single coatom.

We also have the following.

Theorem 8. In the class of Dedekind groups, projectivity implies w-projectivity.

Proof. Let G1 and G2 be Dedekind groups and ξ : Sub(G1) −→ Sub(G2) a projectivity. We
have isomorphisms χ1 : Sub(G1) −→ ↓∆1, χ2 : Sub(G2) −→ ↓∆2, where ∆1 and ∆2 are
elements corresponding to diagonal relations in Wcon(G1) and Wcon(G2). Furthermore,
χ2 ◦ ξ ◦ (χ1)

−1 is an isomorphism between ↓∆1 and ↓∆2; let us denote this isomorphism
by ζ, ζ : ↓∆1 −→ ↓∆2. By Theorem 3, for all a, b ∈ ↓∆1 such that a 6 b, aJ b holds,
and the same in ↓∆2. It is easy to show now, using quotient representations, that the map
µ : Wcon(G1) −→ Wcon(G2), y/x 7→ ζ(y)/ζ(x) is an isomorphism.

Theorem 9. The weak congruence lattice Wcon(G) of a finite group G is modular, and it has a
single coatom if and only if G is a cyclic group of order pn, p-prime.

Proof. It is straightforward to check that the weak congruence lattice of a cyclic group G
whose order is pn, p-prime, fulfills the requirements of the theorem. Conversely, suppose a
finite group G fulfills the requirements of the theorem. Then, it is a Dedekind group with
a single maximal subgroup, which is normal. Such finite groups are cyclic p-groups, and
their subgroups are linearly ordered by inclusion.

The lattice of weak congruences of a cyclic group of order pn, p-prime is represented
in Figure 3.

Theorem 10. The weak congruence lattice of a cyclic group of order pn, p-prime is sharp.

Proof. Straightforward, since the lattice represented in Figure 3 is a lattice with normal
elements, determined as such only by the element denoted by ∆.

Figure 3. The weak congruence lattice of the cyclic group of order pk.

Next, we characterize several classes of simple groups.
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The following introductory result related to simple groups is obvious.

Theorem 11. A group G is simple if and only if the diagonal ∆ is a coatom in the lattice Wcon(G).

Proof. Directly, since ↑∆ is the congruence lattice of G.

Theorem 12. The weak congruence lattice L of a finite simple group G is sharp (Figure 4).

Figure 4. The weak congruence lattice of a finite simple group.

Proof. We use the result from [29], by which a finite simple group G is a K-group, i.e., the
lattice Sub(G) is complemented. The lattice L = Wcon(G) is sketched in Fig. 4 as the weak
congruence lattice of G, so the ideal ↓∆ is a complemented lattice. Suppose now that L is
a lattice with normal elements determined by b for some b 6= ∆. Since L is a finite lattice,
by Proposition 4, b and ∆ are incomparable in L. Then, b ∧ ∆ ∈ ↓∆ and b ∧ ∆ < ∆. Since
↓∆ is a complemented lattice, b ∧ ∆ has a complement ∆′ in ↓∆. So, b ∧ ∆ ∧ ∆′ = 0, hence
b ∧ ∆′ = 0, and (b ∧ ∆) ∨ ∆′ = ∆. By assumption, L is a lattice with normal elements
determined by b, so b ∧ ∆′ = 0 implies ∆′ ∈ [0]ϕb , that is, ∆′ = 0. Furthermore, this implies
b ∧ ∆ = ∆, and b > ∆.

Similar arguments as for the finite simple groups above can be used for an analogue
statement related to the symmetric group Sn, as follows. The corresponding weak congru-
ence lattice is sketched in Figure 5.

Figure 5. The weak congruence lattice of the symmetric group Sn.

Theorem 13. The weak congruence lattice L of the symmetric group Sn, n 6= 4 is a sharp lattice
with normal elements.
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Proof. See the proof of Theorem 12.

In order to characterize semisimple groups, we introduce the following property of
lattices with normal elements determined by a:

For every b ∈ ↓a such that bJ a and b 6= 0, ↓b is not an A-lattice. (∗)

Theorem 14. A finite group G is semisimple if and only if Wcon(G) fulfills the property (∗).

Proof. Indeed, by Theorem 5, (∗) is a lattice reformulation of the definiens for a semisimple
group. Namely, ↓b is the weak congruence lattice of the normal subgroup corresponding to
the element b, which represents its diagonal.

Finally, any Tarski monster group, which is fully simple, also has the same sharpness
property of the weak congruence lattice.

Theorem 15. The weak congruence lattice of any Tarski monster group is a sharp lattice with
normal elements.

Proof. Indeed, the diagonal ∆ is the only nontrivial codistributive element in the corre-
sponding weak congruence lattice (see Figure 6).

Figure 6. Weak congruence lattice of a Tarski monster group.

3.4. Classes of Groups and Classes of Lattices with Normal Elements

As defined in the Preliminaries, a class of groups is a set-theoretic collection of groups
closed under group isomorphism and which contains a trivial group; clearly, this is a class
in the ordinary set-theoretic sense.

In the sequel, we list the classes of groups characterized in papers [14–16] and also
in the present one, omitting the full name of the class; e.g., instead of the class of all abelian
groups, we write abelian groups:

Empty class of groups, all finite groups, Dedekind groups, abelian groups, Hamilto-
nian groups, finite nilpotent groups, solvable groups, supersolvable groups, cyclic groups,
metabelian groups, perfect groups, T-groups, metacyclic groups, hyperabelian groups, hy-
percyclic groups, polycyclic groups, cocyclic groups, N-groups, Ñ-groups, finite symmetric
groups, finite simple groups, semisimple groups, and fully simple groups.

Let G be the collection of all mentioned classes of groups. Clearly, the classes are not
generally disjoint, and they can be ordered by inclusion.

Analogously, as for groups, we consider classes of lattices with normal elements,
closed under lattice isomorphism. The classes are determined by lattice properties of weak
congruence lattices of the corresponding groups. For example, we have the class of modular
lattices with normal elements, A-lattices with normal elements, lower semimodular lattices with
normal elements, and so on. We do not list these classes here; in the sequel, they appear
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along with the characterization of the corresponding class of groups in the related theorems
in this paper and in [14–16].

We denote by L the collection of the mentioned classes of lattices with normal elements
that correspond to the mentioned classes of groups.

Theorem 16. There is a one-to-one correspondence between classes of groups in G and classes of
lattices with normal elements in L.

Proof. Indeed, for a group G in a class G from G, we have a characterization theorem of
the form G ∈ G if and only if Wcon(G) has lattice properties which determine the corresponding
class of lattices.

Every class of groups (lattices) listed above corresponds to a group (lattice)-theoretic
property. Therefore, by Theorem 16, (classes of) groups are characterized by the associated
lattice properties.

Let us mention that nothing similar to the correspondence described by Theorem 16
exists if the weak congruence lattices are replaced by subgroup lattices. In this context,
an analogous characterization can be established only for a rather small number of (classes
of) groups.

Due to properties given in Theorems 16 and 7, there is an additional straightforward
way to see how weak congruence lattices determine groups:

Theorem 17. Classes of groups in G which have sharp lattices of weak congruences are closed
under w-projectivity.

In other words, for many classes of groups, for many classes of groups, only groups
from the same class can have isomorphic weak congruence lattices.

We conclude with an open problem.
Problem. Prove or find a counterexample for the claim: The weak congruence lattice of
every group G, |G| 6= p2, p - prime is sharp.

4. Conclusions

As a part of the investigation of groups by their weak congruence lattices, here, we
presented some important related lattice problems. Namely, conditions are given under
which weak congruence lattices of different groups are isomorphic and also how this
isomorphism is related to the isomorphisms of subgroup lattices. In this framework,
an important lattice problem is the uniqueness of the element representing the diagonal of
the group. This problem is solved for some classes of groups but remains open in general.

In the future, we intend to deal with groups having linearly ordered infinite systems
of subgroups, possibly indexed by ordinal numbers. These are mostly generalized solvable
groups, and the technique we use will also be applied to some classes of infinite simple
groups (characterized by the absence of the mentioned series of subgroups). Our task is to
characterize such groups by the corresponding linearly ordered sublattices in their lattices
of weak congruences.
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28. Grulović, M.Z. Basics of Group Theory; Institute of Mathematics: Novi Sad, Serbia, 1997. (In Serbian)
29. Costantini M.; Zacher G. The finite simple groups have complemented subgroup lattices. Pac. J. Math. 2004, 213, 245–251.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.2307/2371383
http://dx.doi.org/10.4099/jjm1924.18.0_709
http://www.ncbi.nlm.nih.gov/pubmed/36772010
http://dx.doi.org/10.1215/S0012-7094-38-00419-3
http://dx.doi.org/10.1016/j.jalgebra.2011.10.032
http://dx.doi.org/10.1007/s00013-021-01665-2
http://dx.doi.org/10.1007/s13366-021-00597-w
http://dx.doi.org/10.1007/BF01229965
http://dx.doi.org/10.1007/s00012-010-0059-2
http://dx.doi.org/10.1007/s00012-008-2076-y
http://dx.doi.org/10.1007/s00012-021-00716-7
http://dx.doi.org/10.1142/S0218196723500121
http://dx.doi.org/10.1007/s00012-021-00759-w
http://dx.doi.org/10.2140/pjm.2004.213.245

	Introduction
	Historical Background
	Review of Results

	Preliminaries
	Lattices with Normal Elements
	Groups
	Weak Congruences

	Results
	w-Projectivity, Uniqueness of Main Codistributive Element, and Sharp Lattices with Normal Elements
	Auxiliary Results Related to Lattices with Normal Elements
	Applications to Groups
	Classes of Groups and Classes of Lattices with Normal Elements

	Conclusions
	References

