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Abstract: This paper presents a lifetime model with properties representing increasing, decreasing,
and bathtub curve shapes for failure rates. The proposed model was built based on the additive
methodology, for which the Chen distribution was used as the base model, thus introducing the
Additive Chen Distribution (AddC). An essential feature of AddC is this model’s excellent flexibility in
describing failure rates with non-monotonic behavior or with the shape of a bathtub curve concerning
other current models. Statistical properties of AddC are presented and analyzed for different fields of
study. For the estimation of AddC’s parameters, the maximum likelihood method (MLE) was used.
Three case studies in different fields of application are presented, from which AddC is compared
against other probability distributions with similar properties. The results show that AddC offers
competitive results.

Keywords: Additive Chen Distribution; bathtub distribution; Chen distribution; lifetime data
analysis; non-monotone failure rate

MSC: 62N02; 62N05; 62P30

1. Introduction

Reliability analysis determines a device’s behavior by the bathtub curve, which estab-
lishes the stages a product passes throughout its useful life. To verify whether the device
follows a bathtub curve behavior, practitioners use statistical probability distributions
and analyze the behaviors to determine essentials such as warranty and optimal mainte-
nance times. Due to mathematical flexibility, classical probability distributions, such as
the Weibull, Exponential or Lognormal distribution, are commonly used to describe this
behavior. Nevertheless, this type of distribution cannot fit the data well if they have a
non-monotonic behavior, such as the bathtub curve. The above causes uncertainty in the
description of the information, and sometimes the conclusions of the analysis drop off due
to the properties of certain distributions before different types of data.

Some researchers have proposed different methodologies to solve the problem of data
representation with non-monotonic behavior. For example, refs. [1–7] developed models
based on the additive methodology, which consists of adding the hazard functions of two
statistical distributions, this to combine properties of the distributions. Other authors estab-
lished the use of mathematical transformations to make the behavior of base distributions
more flexible. By making the parameters of the distributions more flexible, it is possible to
cover a more significant number of behaviors, including non-monotone. Examples of these
works can be appreciated in [8–19]. Finally, another current of researchers has chosen to
modify classical distributions such as the Weibull. The modifications presented consist of
exponentiating parameters or adding a parameter to the distribution under analysis. These
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modifications have been popular since they allow mathematical flexibility with which the
analysis is simplified. Examples of these distributions can be seen in [20–25].

One of the main disadvantages of the work presented above is that the non-monotonic
representation of the data resembles a “J” or “V” shape, which biases the complete infor-
mation of the subject under analysis. This problem can be seen reflected in the design and
quality of the product. Therefore, the device’s behavior representation must be close to the
bathtub curve and the designed specifications.

On the other hand, Chen [26] proposed distribution with two parameters, with which
it is possible to represent data with a tendency to have incremental, decremental, or bathtub-
shaped behavior. The hazard function of the Chen distribution (ChD) is defined as:

hChD(x) = αβx(β−1)exβ
, (1)

where α and β are the shape parameters. The ChD problem is that the representation of the
failure rate is not symmetric to a bathtub shape, leading to the ChD being modified; this
is because the ChD does not have a scale parameter that can make the distribution more
flexible. For example, Thanh Thach and Briš [27], Tarvirdizade and Ahmadpour [28] pre-
sented the Additive Chen-Weibull (ACW), which combines the properties of the ChD and
Weibull to obtain a hybrid model that offers very competitive results for survival analysis.
Other studies proposed an extension of ChD based on transformations o generalizations;
these works can be seen in [29–32]. The transformations mentioned above represent an
alternative for reliability analysis but may not be a good option to determine the behavior
of the lifetimes of the devices under analysis.

Therefore, this paper aims to present a new variant of the ChD, with which practi-
tioners can represent the behavior of data with non-monotonic behavior in a way closer to
that established by the bathtub curve. The proposed distribution is based on the additive
methodology presented by Xie and Lai [1]. Thus, the Additive Chen Distribution (AddC) is
preset and has two extra parameters to the base ChD. The extra parameters of AddC allow
more flexibility for representing data with trends to be increasing, decreasing, or bathtub
shaped. In turn, the MLE was used to estimate the parameters of the new distribution.
On the other hand, to verify the properties of AddC, three case studies were designed,
where AddC is compared against other distributions that have the property of modeling
non-monotone or bathtub-shaped behavior. The Akaike information criterion (AIC), the
Bayesian information criterion (BIC), the Kolmogorov Smirnov test (K-S), and the P-value
were used to derive the conclusions of the case studies. The importance of AddC lies in
offering competitive results concerning other distributions with similar properties, which
helps practitioners to consider new analysis perspectives when performing reliability tests.
For this new distribution, some functional statistical and mathematical properties are pre-
sented and discussed to demonstrate that AddC can be considered in real applications to
determine the reliability of some devices’ underperformance or acceleration life testing

Finally, this paper is organized as follows. Section 2 presents the general equations
of AddC. Section 3 presents the Measures of Central Tendency of APD. Section 4 presents
the moments and Incomplete Moments. Section 5 presents the order statistics. Section 6
presents the mean residual lifetime function. Section 7 presents the Rényi Entropy. Section 8
presents the Stress Strength Reliability. Section 9 presents the likelihood function to calculate
the parameters proposed in Section 2. Section 10 presents the case studies of the paper. The
last section provides concluding remarks and future work about the proposed model.

2. The New Lifetime Distribution

The additive methodology establishes that the hazard function of the new distribution,
the sum of the hazard function of each distribution intended to be combined, must be
made. Therefore, taking into account Equation (1) and retaking the same reparameterized
equation to differentiate the ChDs, we obtain:

h(x) = hChD1(x) + hChD2(x),
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where hChD1(x) = αβx(β−1)exβ
and hChD2(x) = λθx(θ−1)exθ

Finally, the h(x) of CPD is constituted by:

h(x) = αβx(β−1)exβ
+ λθx(θ−1)exθ

, (2)

where, α, λ, β, θ are the shape parameters of AddC with α, β, λ, θ > 0.
The Probability Density Function (PDF) of AddC from Equation (2) can be defined as:

f (x) = h(x) · exp
(
−
∫ x

0
h(v)dv

)
,

=
(

αβx(β−1)exβ
+ λθx(θ−1)exθ

)
· eα

(
1−exβ

)
+λ
(

1−exθ
)

. (3)

The Survival Function S(x) of AddC from Equations (2) and (3) can be written as:

S(x) =
f (x)
h(x)

,

= eα
(

1−exβ
)
+λ
(

1−exθ
)

. (4)

The Cumulative Density Function (CDF) F(x) of AddC can be calculated as:

F(x) = 1− S(x),

= 1−
(

eα
(

1−exβ
)
+λ
(

1−exθ
))

. (5)

Finally, the Cumulative Hazard Function of AddC H(x) is defined as:

H(x) = −ln[S(x)],

= α
(

exβ − 1
)
+ λ

(
exθ − 1

)
. (6)

In Figures 1 and 2 you can see some forms that AddC takes for some random values.

Figure 1. PDF for some parameter values derived of AddC.
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Figure 2. Hazard Rate for some parameter values derived of AddC.

3. Measures of Central Tendency

In this section, some statistical metrics of AddC are presented.

3.1. Quantile

The quantile is a useful equation in some branches of science to obtain random data
with which it is possible to carry out PDF simulations. The p-th quantile qp denoted by x of
AddC based on Equation (5), can be calculated as:

p =

(
1−

(
eα
(

1−eqβ
)
+λ
(

1−eqθ
)))

. (7)

For the case of AddC, Equation (7), does not have an analytical form. For this, numeri-
cal methods must be used to approximate solutions.

The median can be obtained from Equation (7) by setting q = 0.5.

3.2. Mode

The mode of AddC can be calculated by considering f ′(x) = 0, so by taking Equa-
tion (3) and taking the first derivative; the following is obtained:

1
x2 eα+λ

(
−exθ

)
+λ−αexβ

·
[
−θλexθ

xθ
{

θ
(

xθ
〈

λexθ − 1
〉
− 1
)
+ 1
}
+ αβexβ

xβ
(

β− 2θλexθ
xθ − 1

)
− αβ2exβ

x2β
(

αexβ − 1
)]

= 0. (8)

As can be seen in Equation (8), the mode does not have an analytical solution, so as in
the Quantile, it must be estimated by considering numerical methods.

4. Moments and Incomplete Moments

This section presents the formulation to obtain the equation of moments and incom-
plete moments, which are vital in lifetime models to determine the Mean Time To Failure
(MTTF), the variance, and mean deviations between the mean and median.

4.1. Moments

The rth row moment of AddC is given by:

E(Xr) =
∫ ∞

0
rxr−1S(x)dx.



Axioms 2023, 12, 118 5 of 20

=
∫ ∞

0

[
rxr−1eα

(
1−exβ

)
+λ
(

1−exθ
)]

dx. (9)

Applying series expansion, Equation (9) can be reduced as:

E(Xr) =
∞

∑
ı,,k=0

r(−1)ıαııe(α+λ)

ı!!k!

∫ ∞

0

(
x(β+r−1)exβk

)
dx.

Finally, the moments of AddC can be calculated as:

E(Xr) =
∞

∑
ı,,k=0

r(−1)ıαııe(α+λ)

ı!!k!
Γ
(

β + r
βk

)
. (10)

4.2. Incomplete Moments

The incomplete moments of AddC can be calculated from the following equation:

Mr(y) =
∫ y

0
xr f (x)dx,

=
∫ y

0
xr
[(

αβx(β−1)exβ
+ λθx(θ−1)exθ

)
· eα

(
1−exβ

)
+λ
(

1−exθ
)]

dx. (11)

Expanding by series Equation (11), the following is obtained:

Mr(y) =
∞

∑
ı,,k,`=0

(−1)ı+kαııλkk`e(α+λ)

ı!!k!`!

∫ y

0

[
xr+β+`θ

(
αβxβ−1exβ

+ λθxθ−1exθ
)]

dx.

By solving the last integral, the incomplete moments of AddC can be expressed as:

Mr(y) =
∞

∑
ı,,k,`=0

(−1)ı+kαııλkk`e(α+λ)

ı!!k!`!
· Γ
(

β + λ(θ + 1) + r
θ

)
. (12)

5. Order Statistics

Order statistics are a popular representation in some branches of engineering, where
redundancy blocks are used to prevent a system from stopping working. The order statistics
are defined mathematically as:

fk:n(x) = n
(

n− 1
k− 1

)
F(x)k−1(1− F(x))n−k f (x). (13)

By taking Equations (3) and (5) and replace them in Equation (13), the following is
obtained:

fk:n(x) = n
(

n− 1
k− 1

)[
1−

(
eα
(

1−exβ
)
+λ
(

1−exθ
))]k−1

(14)[
eα
(

1−exβ
)
+λ
(

1−exθ
)]n−k[(

αβx(β−1)exβ
+ λθx(θ−1)exθ

)
· eα

(
1−exβ

)
+λ
(

1−exθ
)]

By expanding Equation (14) by Taylor and Binomial series, the following is obtained:

= n
(

n− 1
k− 1

)(
αβx(β−1)exβ

+ λθx(θ−1)exθ
)
·

n−k

∑
ı=1

[
eα
(

1−exβ
)
+λ
(

1−exθ
)]ı

·
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[
1− eα

(
1−exβ

)
+λ
(

1−exθ
)]k−1

· eα
(

1−exβ
)
+λ
(

1−exθ
)

= n
(

n− 1
k− 1

)(
αβx(β−1)exβ

+ λθx(θ−1)exθ
)
·

n−k

∑
ı=1

[
eα
(

1−exβ
)
+λ
(

1−exθ
)]ı

·

k−1

∑
=1

(−1)(k− 1)

[
eα
(

1−exβ
)
+λ
(

1−exθ
)]j

Finally, the k-out-n state of AddC can be described as:

fk:n(x) = n
(

n− 1
k− 1

)
h(x) ·

n−k

∑
ı=1

k−1

∑
=1

[
(−1)S(x)ı+(k− 1)

]
(15)

6. Mean Residual Lifetime

In survival or reliability analysis, the mean residual lifetime (MRL) is essential to
characterize the models. Thus, the expected additional lifetime in life testing scenarios has
given that a component system that has survived until time x is called the MRL [33]. The
MRL is defined as:

M(t) = E(X− t|X > t) =
1

S(t)

∫ ∞

t
S(x)dx =

1
S(t)

∫ ∞

0
S(x + t)dx. (16)

By taking Equation (4) and replace it into Equation (16), the following is obtained:

M(t) =
1

eα
(

1−etβ
)
+λ
(

1−etθ
) ∫ ∞

0

[
eα
(

1−e(x+t)β
)
+λ
(

1−e(x+t)θ
)]

dx.

Developing by series and solving the integral, the MRL of AddC is expressed as:

M(t) =
e−α

(
1+etβ

)
−λ
(

1+etθ
)

θ

∞

∑
ı,=0

λıı

ı!!λıβ+1 Γ
(

β + 1
θ

)
. (17)

7. Entropy

One way to quantify the uncertainty or randomness of systems is through entropy.
For AddC, we will formulate the Rényi entropy, which is defined as:

IR(δ) =
1

1− δ
· log

∫ ∞

0
f (x)δdx. (18)

By taking Equation (3) and substituting in Equation (18), the Rényi Entropy for AddC
can be calculated as follows:

IR(δ) =
1

1− δ
· log

∫ ∞

0

[(
αβx(β−1)exβ

+ λθx(θ−1)exθ
)
· eα

(
1−exβ

)
+λ
(

1−exθ
)]δ

dx.

Applying the Taylor series expansion to the function f (x)δ, the following is obtained:

IR(δ) =
1

1− δ
· log

δ

∑
ı=0

0

∑
,k,`,µ,ν,ρ,τ

(
δ

ı

)
(δ− 1)ı(αβ)(λθ)`(δα)µµν(−λδ)ρρτ

µ!ν!ρ!τ!

·
∫ ∞

0

(
x+β(µ+1)+θ(k+ρ+1)+`−2eıxθ

)
dx.
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By solving the last integral, the Rényi Entropy of AddC can be written as:

IR(δ) =
1

1− δ
· log

δ

∑
ı=0

0

∑
,k,`,µ,ν,ρ,τ

(
δ

ı

)
(δ− 1)ı(αβ)(λθ)`(δα)µµν(−λδ)ρρτ

µ!ν!ρ!τ!
· (19)

Γ
(

β(µ + 1) + θ(µ + k + 1) + `

θ

)
8. Stress-Strength Reliability

This equation is primarily used in reliability engineering to determine the probability
of a component performing a specified function under a stated stress condition in a specified
scenario. The Stress-Strength (SS) is defined as follows:

R = P(X1 > X2) =
∫ ∞

0
f x1(x) · Fx2(x)dx. (20)

Taken Equations (3) and (5) and following Equation (20), the SS can be obtained as:

R =
∫ ∞

0

(
α1β1x(β1−1)

1 ex
β1
1 + λ1θ1x(θ1−1)

1 ex
θ1
1

)
· e

α1

(
1−ex

β1
1

)
+λ

(
1−ex

θ1
1

)

·

1−

e
α2

(
1−ex

β2
2

)
+λ2

(
1−ex

θ2
2

)
dx.

Expanding by series and reducing terms by mathematical means the SS for AddC can
be written as:

R =
∞

∑
ı,,k,`=0

∞

∑
m,η,o,ρ=0

(−1)ı+k+m+oαı
1αm

2 ımηλk
1k`oρλo

2 eα1+θ1−(α2+θ2)

ı!!k!`!m!η!o!ρ!
· (21)

Γ
(

ηβ2 + β1( + 1) + `θ1 + ρθ2

θ1β2

)
.

9. Maximum Likelihood Estimator

A primordial aspect of statistical models is the formulation of a method that will
estimate the values of each parameter in the distribution. For the case of AddC, the use of
the MLE is proposed. Let X1, X2 . . . Xm be a random sample from the lifetime distribution
with PDF f (x) and based on a sample of size m. Then the likelihood function of Equation (3)
is written as follows:

L =
m

∏
ı=1

[(
αβx(β−1)exβ

+ λθx(θ−1)exθ
)
· eα

(
1−exβ

)
+λ
(

1−exθ
)]

.

If we compute the natural logarithm of the above equation, the log-likelihood (Λ)
function becomes:

Λ = m(α + λ) +
m

∑
ı=1

[
ln
(

αβxβ−1
i exβ

i + λθxθ−1
i exθ

i

)]
+

m

∑
ı=1

[
−α exβ

i − λ exθ
i

]
. (22)

By taking the first partial derivative of Equation (22), the estimation for each parameter
α, β, λ, and θ can be calculated as follow:

∂Λ
∂α

= m +
m

∑
ı=1

 βxβ
i exβ

i

αβxβ
i exβ

i + λθxθ
i exθ

i

− exβ
i

. (23)
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∂Λ
∂β

=
m

∑
ı=1

αβxβ−1
i ln(xi)exβ

i + αβx2β−1
i ln(xi)exβ

i + αxβ−1
i exβ

i

αβxβ−1
i exβ

i + λθxθ−1
i exθ

i

− αxβ
i ln(xi)exβ

i

. (24)

∂Λ
∂θ

=
m

∑
ı=1

λθxθ−1
i ln(xi)exθ

i + λθx2θ−1
i ln(xi)exθ

i + λxθ−1
i exθ

i

αβxβ−1
i exβ

i + λθxθ−1
i exθ

i

− λxθ
i ln(xi)exθ

i

. (25)

∂Λ
∂λ

= m +
m

∑
ı=1

 θxθ−1
i exθ

i

αβxβ−1
i exβ

i + λθxθ−1
i exθ

i

− exθ
i

. (26)

From Equations (23)–(26), we can derive the Fisher observation matrix, with which
it is possible to obtain the Hessian. In Appendix A, the elements of the Fisher matrix are
presented.

10. Case of Study

In this section, the behavior of AddC is analyzed in three case studies where the
data has non-monotonic behavior. To verify the methodology established in this paper,
a comparative study was designed between AddC and other distributions with similar
properties. The distributions considered were the ACW proposed by Thanh Thach and
Briš [27], Tarvirdizade and Ahmadpour [28], the Additive Weibull Distribution (AWD)
proposed by Xie and Lai [1], the Additive Perks-Weibull (APW) proposed by Singh [5],
Perks4 proposed by Zeng et al. [34], Modified Weibull Distribution (MW) proposed by Al-
malki and Yuan [22], and the Sarhan and Zaindin modified Weibull (SZMW) proposed
by Zaindin and Sarhan [23]. Table 1 shows the hazard functions of each distribution used
for the comparative analysis.

Table 1. Bathtub Shape Distributions.

Model h(x)

ACW αβxβ−1exβ
+ λθxθ−1

APW αλeλx

1+αeλx + θβxβ − 1
ADW αλxλ−1 + βθxθ−1

Perks4 θ+e(βx+α)

1−e(−βx+λ)

MW β(α + λt)xα−1eλx

SZMW α + βλxλ−1

In all of the proposed case studies, the parameters were estimated through the MLE.
This algorithm was programmed through R using the MaxLik package [35]. In turn, the
AIC, BIC, K-S, and P-Value were calculated for each distribution to establish the discussion
and draw conclusions from the results.

10.1. Case Study 1: Lifetime of 50 Devices

This case study focuses on determining the behavior of the failure times of 50 devices.
The data was obtained by Aarset [36] and is presented in Table 2.



Axioms 2023, 12, 118 9 of 20

Table 2. Aarset Data of 50 Devices.

DATA

0.1 0.2 1 1 1 1 1 2 3 6
7 11 12 18 18 18 18 18 21 32

36 40 45 46 47 50 55 60 63 63
67 67 67 67 72 75 79 82 82 83
84 84 84 85 85 85 85 85 86 86

To identify the behavior of the data, the total test time (TTT) curve is used. Therefore,
in Figure 3, the TTT of the data presented in Table 2 is presented.

Figure 3. TTT plot for Data presented in Table 2.

The results shown in Figure 3, show that the data presented in Table 2 exhibit a
non-monotonic behavior.

On the other hand, Table 3 shows the estimation of each parameter for each of the
models presented in Table 1 and AddC. The information presented in Table 3 shows
statistical evidence that AddC offers a better description of the behavior of device failure
times concerning the distributions listed in Table 1. The previous is based on the AIC
and BIC criteria, where AddC has the smallest value of these criteria concerning the other
distributions compared within the analysis carried out, which indicates that AddC may
be a good candidate for the description of the data in Table 2. On the other hand, AddC
shows a better fit in the data representation, based on the P-value described in Table 3. This
P-value represents that the data will be as close as possible to the device’s behavior under
the operating conditions that the manufacturer has described.

In turn, with the information obtained in Table 3, it is possible to make a graphic
description of the behavior of the devices over time, for which Figure 4 shows the represen-
tation of the PDF, Reliability, Hazard, and Cumulative Hazard.
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Table 3. Estimated Values, standard errors in brackets and Statistics metrics for the Case of Study 1.

Parameters Statistics

Model α β λ θ Loglik AIC BIC K-S p-Value

AddC 5.977× 10−2(5.958× 10−4) 0.249(7.114× 10−3) 2.082× 10−17(1.146× 10−22) 0.822(1.654× 10−2) −203.054 414.108 421.756 0.060 0.975
ACW 4.215× 10−2(1.021× 10−5) 0.278(2.224× 10−2) 1.1183× 10−2(3.995× 10−4) 86.231(2.414) −205.350 418.710 426.360 0.070 0.965
APW 7.158× 10−17(1.112× 10−19) 0.688(1.025× 10−2) 0.443(1.921× 10−2) 5.320× 10−2(4.221× 10−2) −212.870 433.750 441.440 0.091 0.804
ADW 8.448× 10−9(1.224× 10−10) 0.091(3.814× 10−2) 4.279(4.911× 10−2) 0.466(9.814× 10−2) −221.350 450.712 458.360 0.127 0.393
Perks4 −71.432(9.124) 0.839(0.111) −6.211× 10−2(1.321× 10−4) 1.534× 10−2(1.194× 10−3) −205.610 419.112 424.824 0.079 0.901
MW 0.355(0.115) 6.221× 10−2(2.701× 10−2) 2.311× 10−2(5× 10−3) − −227.150 460.310 464.045 0.134 0.334
SZMW 1.311× 10−2(3.014× 10−3) 3.808× 10−9(6.805× 10−10) 4.405(0.145) − −229.410 464.821 470.560 0.151 0.202
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(a) PDF plot (b) Reliability plot

(c) Hazard plot (d) Cumulative Hazard plot

Figure 4. Reliability Plots for Lifetime data presented in Table 2.

Figure 4a shows the PDF behavior for each distribution under analysis by considering
how the data histogram in Table 2, Perks4, AWC, APW, and AddC offer a good represen-
tation of the distribution of lifetimes. Although the above does not represent convincing
evidence, it can give an idea of which distributions can offer behaviors close to the reality of
the device under analysis. Figure 4b shows the behavior of the lifetimes of Table 2 concern-
ing the reliability equation of each distribution under analysis. The graph mentioned above
is used within reliability engineering to determine essential aspects such as determining
the estimated lifetime of the device under analysis or maintenance times to extend the
product’s life. For the specific case and considering the Kaplan–Meier empirical reliability,
AddC offers a better fit concerning the other distributions used in the comparative analysis.
That means AddC will more accurately describe lifetimes, maintenance times, and MTTF;
those metrics are essential in reliability analysis. Figure 4c shows the form taken by the
failures of the device under analysis. As seen in the vast majority of the distributions,
a behavior similar to the bathtub curve can be observed, which confirms the empirical
behavior obtained by the TTT plot (see Figure 3). Now, suppose we visually contrast the
behavior of the distributions and compare it against the results of Table 3. In that case, we
can conclude that AddC touches the empirical behavior in more points, which indicates
that AddC offers a more competitive representation of failures within the device. Product
engineers can consider the above information to improve designs, reduce manufacturing,
and estimate maintenance costs. Finally, Figure 4d shows the behavior of the accumulated
hazard. In this graph, it can be seen that AddC is closer to the Kaplan–Meier empirical
representation. The preceding indicates that AddC will better model the failures of the
device as its useful life elapses.

10.2. Case of Study 2: Field-Tracking Study of a Larger System

This case study analyzed the behavior of 30 devices inserted into the primary electrical
system after a series of determined conditions and time had elapsed. These data were
presented by Meeker et al. [37]. In turn, the failures were classified into two types; failures
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due to wear or electrical variation produced by the electrical source. The result of the failure
cycles are presented in Table 4.

Table 4. Meeker and Escobar Data of 30 Devices.

DATA

275 13 147 23 181 30 65 10 300 173
106 300 300 212 300 300 300 2 261 293
88 247 28 143 300 23 300 80 245 266

The TTT plot of the data presented in Table 4 is presented in Figure 5.

Figure 5. TTT plot for Data presented in Table 4.

The form that the data takes, as established in the TTT plot of Figure 5, indicates
that the data of Table 4 have a behavior similar to that of a bathtub curve. Therefore, it is
submitted to the analysis with the distributions established in Table 1. Table 5 shows the
results obtained from the estimates of each parameter for the models under analysis.

Table 5 shows that AddC offers a better fit than the other distributions under analysis.
However, the adjustment of AddC is not the best since the P-Value reaches a value above 0.7,
which is possible that for this specific case, AddC may not represent all the data presented
in Table 4. Those mentioned above can be better exposed when representing the behavior
of the estimates and the data of this case study, so Figure 6 shows the behavior graphs of
the data presented in Table 4.

Figure 6a shows the behavior of the PDF for each of the distributions established
in the comparative analysis. As can be seen, AddC represents more competitively the
behavior of the data density. The previous offer AddC a competitive advantage that
reliability practitioners make decisions about what kind of distributions they can use to
obtain analyzes closer to the reality of the product they are analyzing. In Figure 6b, the
behavior of the distributions’ reliability curve is observed and compared concerning the
Kaplan–Meier representation. The conclusion obtained from Figure 6b is that AddC passes
the Kaplan–Meier representation through a more significant number of points concerning
the distributions listed in Table 1; This means that AddC can get closer to the device
operation times such as warranty times, MTTF and maintenance times. These times are
vital in the design of the product since, with these times, it is possible to establish substantial
improvements.
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(a) PDF plot (b) Reliability plot

(c) Hazard plot (d) Cumulative Hazard plot

Figure 6. Reliability Plots for Lifetime data presented in Table 4.

On the other hand, Figure 6c shows the behavior of the hazard function of failure
times, where it is notable that despite the data described in Table 4 being known to behave
similarly to a bathtub curve. Some distributions that possess the above property cannot
reliably represent non-monotonic behavior. The above described leads to an essential loss
of information in describing the behavior of the device under analysis, so practitioners
must consider this when choosing the distribution that will describe the failure times.

The AddC shows a very competitive fit concerning the non-parametric representation
of the data presented in Table 4 and the distributions presented in Table 1. So It can be
concluded that AddC is the best option to describe the failure times in this case study.
Finally, Figure 6d shows the behavior of the cumulative hazard. As in the previous cases, if
we compare each distribution’s form concerning the non-parametric representation. We
can observe that AddC better adjusts the faults accumulated in the device, which gives an
idea more precise to the practitioners of how it is that the faults are presented throughout
the useful life of the device under analysis.
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Table 5. Estimated Values, standard errors in brackets and Statistics metrics for the Case of Study 2.

Parameters Statistics

Model α β λ θ Loglik AIC BIC K-S p-Value

AddC 3.042× 10−11(5.958× 10−13) 0.561(7.114× 10−3) 0.407(1.146× 10−2) 8.419× 10−2(1.654× 10−3) −147.887 303.774 311.422 0.112 0.714
ACW 1.518× 10−2(2.101× 10−3) 0.260(3.014× 10−3) 3.331× 10−3(1.741× 10−5) 259.427(14.558) −151.340 310.670 316.280 0.132 0.652
APW 5.142× 10−12(8.063× 10−8) 0.807(0.172) 8.802× 10−2(2.114× 10−3) 1.114× 10−2(9.332× 10−3) −167.910 343.820 349.420 0.134 0.655
ADW 6.915× 10−9(9.867× 10−10) 1.803× 10−2(1.788× 10−2) 3.349(5.422× 10−2) 0.642(0.196) −176.97 361.940 367.540 0.163 0.401
Perks4 −95.721(11.665) 0.579(0.111) −2.421× 10−3(1.025× 10−4) 1.534× 10−2(1.194× 10−3) −180.225 368.450 374.054 0.185 0.251
MW 0.495(0.228) 6.221× 10−2(2.701× 10−2) 2.311× 10−2(5× 10−3) − −178.160 362.330 366.530 0.168 0.362
SZMW 3.012× 10−3(1.025× 10−3) 8.853× 10−9(2.955× 10−9) 3.266(6.241× 10−2) − −178.470 362.940 367.140 0.175 0.316
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10.3. Case of Study 3: Lifetime of 18 Electronic Devices

The following case study is based on the results obtained by Wang [7], who tested
18 electronic devices. The failure times obtained are shown in Table 6.

Table 6. Wang [7] Data of 18 electronic devices.

Data

5 11 21 31 46 75 98 122 145
165 196 224 245 293 321 330 350 420

The TTT plot is obtained to verify the behavior of the data presented in Table 6.
Therefore, Figure 7 shows the behavior of the data presented by Wang [7].

Figure 7. TTT plot for Data presented in Table 6.

As shown in Figure 7, empirically, the TTT plot indicates that the data presented in
Table 6 show behavior resembling the bathtub curve. Therefore, the estimation of the
parameters is carried out through the MLE for all the distributions placed under analysis.
Table 7 presents the results of the parameters’ estimations and the statistical decision criteria.

Based on the evidence shown in Table 7, it can be established that AddC has good re-
sults for describing the data established in Table 6. Although, it should be noted that in this
case study, some of the distributions established for the analysis offer very competitive re-
sults, where the difference is minimal concerning AddC. Nevertheless, this slight difference
can establish a decision criterion regarding which distribution to use in the analysis.

The graphical representation of the results obtained in Table 7 is shown in Figure 8.
As in the two previous case studies, Figure 8 shows the device’s behavior under the

different reliability representations. The representation of the PDF is shown in Figure 8a,
where it can be seen that the distributions under analysis offer a good representation of
the histogram of the data presented in Table 6. So, in this case, the PDF cannot draw a
satisfactory conclusion about which distribution can be used practically. The reliability
graph presented in Figure 8b shows that the adjustment of AddC touches the Kaplan–Meier
representation in a more significant number of points. This aspect shows that AddC could
express closer to the operating environments the behavior of the device under analysis.
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Table 7. Estimated Values, standard errors in brackets and Statistics metrics for the Case of Study 3.

Parameters Statistics

Model α β λ θ Loglik AIC BIC K-S p-Value

AddC 1.946× 10−7(1.642× 10−6) 0.460(8.594× 10−2) 1.576× 10−2(1.266× 10−2) 0.263(3.619× 10−2) −107.584 223.168 226.729 0.045 0.997
ACW 6.884× 10−2(3.225× 10−3) 0.228(5.332× 10−2) 4.638× 10−2(6.452× 10−3) 0.224(1.445× 10−2) −116.738 241.477 245.039 0.378 0.325
APW 1.012× 10−4(2.014× 10−3) 0.799(0.325) 2.722× 10−2(4.321× 10−2) 1.322× 10−2(1.722) −108.201 224.402 227.963 0.059 0.994
ADW 4.361× 10−7(4.058× 10−6) 1.522× 10−2(2.145× 10−2) 4.025× 10−3(2.025× 10−3) 2.557(0.545) −108.880 225.760 229.320 0.092 0.991
Perks4 −9.282(2.225) 1.441× 10−2(2.225× 10−2) −0.422(1.022× 10−2) 2.821× 10−3(3.221× 10−5) −108.125 224.250 227.811 0.095 0.995
MW 0.646(0.309) 1.522× 10−2(2.012× 10−2) 4.012× 10−3(2.114× 10−3) − −108.935 223.860 226.540 0.094 0.992
SZMW 2.311× 10−3(7.012× 10−3) 6.211× 10−4(5.114× 10−3) 1.306(1.113) − −110.340 226.680 229.350 0.107 0.971
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(a) PDF plot (b) Reliability plot

(c) Hazard plot (d) Cumulative Hazard plot

Figure 8. Reliability Plots for Lifetime data presented in Table 6.

The shape taken by the failure times in Figure 8c shows that AddC manages to get
closer to the shape of the bathtub curve. In turn, the other distributions listed in Table 1
exhibit a non-monotonous behavior but without a defined bathtub curve shape. In this
case, AddC could be a good choice for practitioners of reliability engineering.

Finally, Figure 8d shows the shape of the cumulative hazard plot of each distribution
included in the analysis. In this case, we can see that AddC and the APW have a good fit,
but AddC shows slightly closer to the non-parametric representation, with which AddC
can establish the representation of device faults.

11. Conclusions

In this paper, a statistical distribution with applications to reliability engineering
for the description of device failure times was presented. The distribution was based
on the Chen distribution and the additive methodology, thus introducing AddC, with
two shape and scale parameters. The AddC has the property of competitively describing
non-monotonic behaviors, especially in the form of a bathtub curve, which theoretically
represents the useful life of any device.

The statistical properties analyzed show the flexibility that AddC can have in different
analysis scenarios, which allows AddC to approach describing the real behavior of the
devices under analysis. In turn, it allows reliability practitioners to determine essential
aspects in the analysis, such as warranty and maintenance times. With this information, it
is possible to improve device designs and reduce manufacturing costs. The assumptions or
conditions for the use of AddC are similar to those of any probability distribution. So the
results that AddC yields are based on the quality of the data put under analysis; therefore,
there are no special conditions for AddC application.

The competitiveness of AddC was tested on three case studies designed where the
failure times of the devices are non-monotonic. In all case studies, the results obtained
from AddC were compared against other statistical distributions with similar mathematical
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properties. This comparative study aimed to demonstrate that AddC can be a good option
for reliability analysis in different devices.

In future work to extend the applications of AddC, Bayesian techniques are proposed
to know the differences between the results obtained by MLE and the Bayes techniques.
On the other hand, AddC can be modified to be used in accelerated life tests, which is one
of the most used techniques in reliability for obtaining information in short times through
the acceleration of some variable that directly affects the life of the devices under analysis.
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Appendix A. AddC Elements of the Fisher Matrix

The elements of the Fisher matrix with which the Hessian is calculated are presented
in this appendix. Those elements are combined with the equations of Section 9 to obtain the
estimates of AddC. The elements of the Fisher matrix based on Equation (22) are defined as:

J(δ) = −


Iαα Iαβ Iαθ Iαλ

Iβα Iββ Iβθ Iβλ

Iθα Iθβ Iθθ Iθλ

Iλα Iλβ Iλθ Iλλ

. (A1)

Each element of the matrix obtained in Equation (A1) can be obtained from the second
partial derivation of Equations (23)–(26), which results in the following:

a = ln(xı)exβ
ı +2xθ

ı x2θ+2β−1
ı βλθ + x2θ+β−1

ı θλ(β ln(xı) + 1)exβ
ı +2xθ

ı .

b = α
[
(β ln(xı) + 1)xθ−1+2β

ı + x3β+θ−1
ı β ln(xı)

]
β e2xβ

ı +xθ
ı .

c = ln(xı)
[
(3β ln(xı) + 2)x2β−1

ı + (β ln(xı) + 2)xβ−1
ı + x3β−1

ı ln(xı)β
]
exβ

ı α.

d = exθ
i ln(xi)

(
(3θ ln(xi) + 2)x2θ−1

i + (θ ln(xi) + 2)xθ−1
i + x3θ−1

i ln(xi)θ
)

λ.

Iαα = −β2
m

∑
ı=1

 x2β
i e2xβ

i(
αβxβ

ı exβ
i + λθxθ

i exθ
ı

)2

.

Iαβ =
m

∑
ı=1

 λθ(a + b)xı(
αβxβ

i exβ
ı + λθxθ

ı exθ
ı

)3 − xβ
ı ln(xı)exβ

ı

.

Iαθ = −λβ

 m

∑
ı=1


exβ

ı +xθ
ı

(
ln(xı)xβ+2θ

ı θ + ln(xı)xβ+θ
ı θ + xβ+θ

ı

)
(

αβxβ
ı exβ

ı + λθxθ
ı exθ

ı

)2


.
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Iαλ = −βθ

 m
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 exβ
ı +xθ

ı xβ+θ
ı(

αβxβ
ı exβ
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ı

)2


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Iβα = Iαβ.

Iββ =
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ı=1

 c
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i exβ
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i
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(
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i

)2
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i
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i ln(xi)

2α
(

xβ
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i

).
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