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Abstract: In a series of papers, we suggested a non-statistical method for the detection of structural
breaks in a time series. It is based on the applications of special fuzzy modeling methods, namely
Fuzzy transform (F-transform) and selected methods of Fuzzy Natural Logic (FNL). In this paper, we
combine our method with the principles of the classical Chow test, which is a well-known statistical
method for testing the presence of a structural break. The idea is to construct testing statistics similar
to that of the Chow test which is formed from components of the first-degree F-transform. These
components contain an estimation of the average values of the tangents (slopes) of the time series
over an imprecisely specified time interval. In this paper, we illustrate our method and its statistical
test on a real-time series and compare it with three classical statistical methods.

Keywords: time series; structural breaks; Chow test; fuzzy transform; F-transform; evaluative
linguistic expressions; fuzzy natural logic

1. Introduction

Structural breaks in time series are sudden unexpected changes in their course trig-
gered by a structural change in the system (for example, opening a new factory), by an
attack from outside, or by some other outer cause. Unlike single outliers, structural breaks
are characterized by a longer duration. There are various statistical methods for detection
and testing whether a structural break occurs in the given time point, see [1–5], and also
non-statistical methods such as genetic algorithms [6].

However, a structural break hardly occurs just at one point. It is a phenomenon lasting
usually over several time points. Hence, we argue that techniques based on methods of
fuzzy modeling are better suited for this purpose. In [7] and elsewhere, we presented an
effective non-statistical method for finding structural breaks. It is based on the application
of the so-called fuzzy transform (F-transform) in combination with methods of fuzzy natural
logic (FNL). They enable us to detect intervals of specific monotonic behavior and to
discover existing structural breaks in a time series. The main idea consists of the fact that
the F-transform provides an estimation of the average value of the slope in an imprecisely
specified time interval (cf. [8]). The former is then evaluated using a specific evaluative
linguistic expression whose semantics is modeled inside FNL (for the details, see [9]). The
method is very effective and we argue that it can find the real structural breaks. However,
it is non-statistical and so it is a challenge to prove that the detected structural breaks can
also be statistically verified. This is the topic of this paper. We modify the classical Chow
test [1]. First, we form a modified null hypothesis stating that there is no structural break
in the given area and then prove that it is rejected if a structural break is indeed present
and detected using our fuzzy method.

The paper is structured as follows. Section 2 contains preliminaries in which we recall
the principles of the Chow test, fuzzy transform, and the theory of evaluative linguistic
expressions (as a part of FNL). In Section 3, we introduce the algorithm for finding structural
breaks using our method, suggest modification of Chow test, and prove that if a structural
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break is detected then the null hypothesis stating that there is no structural break is rejected.
Section 4 contains experimental verification of our results and also a comparison with three
statistical techniques, namely the classical Chow, Bai-Perron, and Pettitt’s tests.

2. Preliminaries
2.1. Chow Test

This is one of the first statistical tests (see [1,4]) using which it is possible to decide
whether we are facing a structural break or not. Its idea consists of splitting the data
having n observations into two parts: n1 observations before the break in time t0 and n2
observations after it. Then we construct two linear regressions models

y1(t) = α1 + β1X1(t) + ε1, t = 1, . . . , n1

y2(t) = α2 + β2X2(t) + ε2, t = n1 + 1, . . . , n1 + n2

which are compared with the general regression model

y(t) = α + βX(t) + ε, t = 1, . . . , n

(n = n1 + n2).
The ordinary least squares method is applied to the models above and then we form

squares of residuals

• RSS1 which is the residual of squares before the break:

RSS1 =
n1

∑
t=1

(y1(t)− (α̂1 + β̂1X1(t)))2

• RSS2 is the residual of squares after the break:

RSS2 =
n2

∑
t=n1+1

(y2(t)− (α̂2 + β̂2X1(t)))2

• RSS3 is the residual of squares of the general regression model:

RSS3 =
n

∑
t=1

(y(t)− (α̂ + β̂X(t)))2.

The test of hypothesis related to the test of structural break is conducted by testing the
null hypothesis

H0 : α1 = α2, β1 = β2.

The structural change is caused due to different intercept terms as well as different regres-
sion coefficients. Under the assumption that the probability distribution of y1, y2 is normal,
we can test the null hypothesis by the statistics

Ftest =
(RSS3−(RSS1 +RSS2))/p

(RSS1 +RSS2)/(n1 + n2 − 2p)
(1)

which has the F-distribution F(p, n1 + n2 − 2p). The null hypothesis H0 is rejected if

Ftest > Fcrit

where Fcrit is a critical value of the F-distribution for a corresponding significance level α
(as usual, we consider α ∈ {0.1, 0.05, 0.01}).
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2.2. Fuzzy Transform (F-Transform)

The fuzzy transform is a technique for the approximation of continuous functions.
In our case, it can be effectively applied to analysis and forecasting of time series. Let a
bounded real continuous function f : [a, b]→ [c, d] be given, where a, b, c, d ∈ R.

Definition 1. Let c0 < · · · < cn be fixed nodes in the interval [a, b] where c0 = a, cn = b with
n ≥ 2 and a, b ∈ R. The set A = {A0, . . . , An} of fuzzy sets on [a, b] is called a fuzzy partition
of [a, b] if the following conditions are fulfilled:

• Ak : [a, b]→ [0, 1], Ak(ck) = 1;
• Ak(x) = 0 if x /∈ (ck−1, ck+1) (for c−1 = a and cn+1 = b );
• Ak is continuous;
• Ak strictly increases on [ck−1, ck] for k = 1, . . . , n and Ak strictly decreases on [ck, ck+1] for

k = 0, . . . , n− 1;

•
n
∑

k=0
Ak(x) = 1 for all x ∈ [a, b];

• If ck = a + hk, where h = (b − a)/n, then fuzzy partition A is called uniform and
the following holds for the fuzzy sets forming it: Ak(ck − x) = Ak(ck + x), x ∈ [0, h],
Ak(x) = Ak−1(x− h), Ak+1(x) = Ak(x− h) where k = 1, . . . , n− 1 and x ∈ [ck, ck+1].

The fuzzy sets Ak ∈ A are often called basic functions. Their shape can be arbitrary
(but fulfilling Definition 1). Most often they are simple triangles. The F-transform has two
phases: direct and inverse.

Definition 2. Let the set A = {A0, . . . , An} be a uniform fuzzy partition with triangular basic
functions, h be the distance between nodes and f : [a, b]→ [c, d] be a continuous function on [a, b].
The (n + 1)-tuple F[ f ] = (F0[ f ], . . . , Fn[ f ]) is a direct fuzzy transform of f where the elements
F0[ f ], . . . , Fn[ f ] are called components.

• The zero-degree fuzzy transform has components of the form

F0
k [ f ] =

∫ b
a f (x)Ak(x)dx

h
, k = 0, . . . , n. (2)

• The first-degree fuzzy transform has components of the form

F1
k [ f ](x) = (β0

k[ f ] + β1
k[ f ] · (x− ck)) (3)

where

β0
k[ f ] =

∫ ck+1
ck−1

f (x)Ak(x)dx

h
, (4)

β1
k[ f ] =

6
∫ ck+1

ck−1
f (x)(x− ck)Ak(x)dx

h3 . (5)

The coefficient β1
k[ f ] provides estimation of an average value of the tangent (slope) of

f over the area characterized by the fuzzy set Ak.

Remark 1. Note that the coefficients β0
k[ f ] are identical with the components (2) of the zero-degree

F-transform.
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Definition 3. Let Fm[ f ] = (Fm
0 [ f ], . . . , Fm

n [ f ]) be a direct F-transform of f due to Definition 2,
where m ∈ {0, 1}. (In fact, we can define F-transform of arbitrary degree. For our purposes,
however, zero and first degrees are sufficient.). The inverse F-transform of f is a function

f̂ m
h (x) =

n

∑
k=0

Fm
k [ f ] · Ak(x), x ∈ [a, b]. (6)

It can be proved that f̂ m
h approximates the original function f with arbitrary precision

(depending on h). We can set the parameters so that the approximating function f̂ m
h has

desired properties. The computational complexity of the F-transform is linear. More details
can be found in [8–10].

2.3. Fuzzy Natural Logic

Our applications to time series require selected methods of Fuzzy Natural Logic (FNL).
This is a class of mathematical models characterizing some parts of human common sense
thinking that is based on the use of natural language. It includes, besides others, the theory
of evaluative linguistic expressions and their semantics and fuzzy/linguistic IF-THEN rules.
In a form suitable for time series processing is FNL described in [9]. In this section, we will
recall some of the main points needed below.

Evaluative Linguistic Expressions (We will often omit the adjective “linguistic”.) are
special expressions of natural language in the form

〈linguistic hedge〉〈TE-adjective〉 (7)

where 〈linguistic hedge〉 is a special adverb standing before 〈TE-adjective〉, that makes
the adjective more or less specific. We will consider linguistic hedges extremely (Ex),
significantly (Si), very (Ve), rather (Ra), more or less (ML), roughly (Ro), very roughly (VR). The
TE-adjectives are canonical adjectives zero (Ze), small (Sm), medium (Me), big (Bi). Note that
they can be replaced by many other adjectives, for example shallow, medium deep, deep, etc.

Remark 2. Evaluative linguistic expressions (7) are called simple. We can introduce also complex
ones that are formed using connective (and, or). Their syntax and semantics, however, are more
complicated since they are not just boolean expressions. We need not consider them in this paper.

The model of the semantics of evaluative expressions requires the concept of context.
In our case, this is the interval w = [vL, vS] ∪ [vS, vR] where vL, vS, vR ∈ R. The numbers
have the following meaning: vL is the left bound, vS is a typical middle value, and vR is the
right bound.

Let B be an evaluative linguistic expression. The mathematical model of its meaning
is a function W → F (R) where W is a set of all contexts. Such a function is called intension
of B. If a context w ∈W is given then extension of B w.r.t. w is a fuzzy set from F (R). The
details of this model are described in [9].

Let a value x ∈ R be given. We may now ask, what is a proper evaluative linguistic
expression B using which we can characterize linguistically the value x? Of course, this
depends on the context w ∈W. For example, 100 USD may be a big money in a poor country
but very small in a rich one. Therefore, we consider a special function of local perception

B = LPerc(x, w) (8)

which assigns an evaluative expression B to the value x w.r.t. the context w ∈W. (LPerc is
implemented in the special software LFL Forecaster described, e.g., in [9,11].).

A special class of evaluative expressions are those characterizing the trend of time series:

Trend is 〈direction〉 (9)
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where

• 〈direction〉:= stagnating | 〈special hedge〉〈sign〉,
• 〈sign〉:= increasing | decreasing,
• 〈special hedge〉 := ∅ | negligibly | slightly | somewhat | clearly | roughly | sharply |

quite largely | fairly large| hugely| significantly.

We must also consider the context wtg for tangent that is here extended to have two
parts: positive w+

tg for the increase in time series and negative w−tg for its decrease.

3. Processing of Time Series Using Methods of Fuzzy Modeling
3.1. Processing of Time Series Using F-transform

A time series X is a mapping [12–15]

X : T×Ω→ R,

where T is a set of numbers interpreted as time moments, Ω is a nonempty set of elementary
random events and (Ω, C , P) is a probability space, where C is a σ-algebra over Ω and P is
a probability measure. In general, T ⊂ R can be an arbitrary set. For our purposes, we will
consider T to be a finite set of natural numbers T = {0, . . . , n} ⊂ N.

We assume that the time series can be decomposed into 4 components, namely

X(ω, t) = Tr(t) + C(t) + S(t) + R(ω, t), t ∈ T, ω ∈ Ω (10)

where Tr(t) and C(t) are trend and cyclic components of the time series. These two
components are usually combined into one component called trend-cycle TC(t) = Tr(t) +
C(t).

The S(t) is the seasonal component and R(ω, t) is a random noise. The trend, cycle
and seasonal components are ordinary functions not having stochastic character. The noise
R(ω, t) is assumed to be a sequence of independent random variables with the mean µ = 0
and variance σ2 < +∞.

It has been proved (see [9,16,17]) that using the F-transform, we can estimate trend Tr
or trend-cycle TC with high fidelity which means that the seasonal component S is almost
“wiped out” (i.e., its inverse F-transform is close to zero) and the noise R is significantly
reduced [18].

3.2. Detection of Structural Breaks in a Time Series

Detection of a structural break in a time series means to determine a time interval
in which the course of the time series abnormally changes in comparison with its previ-
ous/subsequent development. Our detection method presented in [7] is based on finding
short intervals with a steep slope of trend (big tangent) preceded or followed by an interval
with a small slope.

Let X be a time series, T̄ ⊆ T be a time interval. Let A be a basic function due to
Definition 1 with the support T̄ over which β1[X|T̄] is the slope of the trend of X computed
using (5). Let w−tg, w+

tg be the corresponding negative and positive parts of the context,
respectively. Then, the evaluative expression ±Ev[X|T̄] obtained using the function of local
perception (8)

±Ev[X|T̄] = LPerc(±β1[X|T̄], w±tg). (11)

evaluates the trend of the time series X in the interval T̄. Using evaluation (11), we can
decompose the time domain T into a set of intervals

T = {T̄i | i = 1, . . . , s},
⋃

T = T

in which the slope is evaluated by specific evaluative expressions. The intervals need not
necessarily be disjointed.
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Definition 4. Let ±Ev[X|T̄i−1],±Ev[X|T̄i],±Ev[X|T̄i+1] be evaluative expressions computed
using (11). An interval T̄i ∈ T is an area of a structural break in the course of X if ±Ev[X|T̄i] ∈
{±Ve Bi,±Si Bi,±Ex Bi} and ±Ev[X|T̄k] ∈ {Ze,±Ve Sm, ±Si Sm,±Ex Sm} where k = i− 1
or k = i + 1.

This definition is the basis for the following algorithm for finding structural breaks in
a time series X.

Algorithm for Finding Structural Breaks

• Set the distance h > 0 and determine a uniform fuzzy partition A over the time
domain T due to Definition 1.

• Set the context w−tg, w+
tg for evaluation of the trend in the areas determined by the

basic functions.
• Compute the direct first-degree fuzzy transform F1[X] = (F1

1 [X], . . . , F1
n−1[X]) over

the fuzzy partition A .
• Localize all pairs of components (F1

k [X],F1
k+1[X]) (cf. (3)) with the following properties:

– LPerc(β1
k[X], w±tg) ∈ {Ze, Ve Sm, Si Sm, Ex Sm}, i.e., the coefficient β1

k is close
to zero.

– LPerc(β1
k+1[X], w±tg) ∈ {Ve Bi, Si Bi, Ex Bi}, i.e., the coefficient β1

k+1 is unexpect-
edly big.

Alternatively, k and k + 1 can be interchanged, i.e., β1
k+1 is close to zero and β1

k is
unexpectedly big.

• The interval Tk (or Tk+1) which is a support of the basic function Ak ∈ A (or Ak+1 ∈ A )
is the area of a structural break due to Definition 4.

Without loss of generality, we will in the sequel assume that β1
k is close to zero and

β1
k+1 is unexpectedly big.

3.3. Combination of Fuzzy Techniques and Chow Test

Suppose that a time series X contains a structural break that occurs in the intersection of
two adjacent areas represented by the triangular basic functions (fuzzy sets) Ak, Ak+1 ∈ A
in the sense of the algorithm presented in the previous section. Moreover, we also consider a
third triangular basic function denoted by Ak,k+1 over the nodes ck−1, ck+2 where the node

ck,k+1 =
ck + ck+1

2

is added. Note that the fuzzy set Ak,k+1 is defined over nodes with the distance 3
2 h.

The situation is depicted in Figure 1 (the fuzzy set Ak,k+1 is depicted upside-down for
better visibility).

Figure 1. Fuzzy sets covering the structural break occurring in the interval [ck, ck+2] (the support of
the fuzzy set Ak+1).
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Remark 3. The triangular fuzzy set Ak w.r.t. the node ck is defined by the equation

Ak(t) = 1− |t− ck|
h

, t ∈ [ck−1, ck+1]

and analogously also the fuzzy sets Ak+1 and Ak,k+1. Note also that

t− ck,k+1 =
t− ck

2
+

t− ck+1
2

.

Lemma 1. Let the triangular fuzzy sets depicted in Figure 1 be given. Then

Ak,k+1(t) ≤ Ak(t) + Ak+1(t)

for all t ∈ T.

Proof. It is enough to consider only the interval [ck−1, ck+2. By simple computation, we
verify that Ak,k+1(t) ≤ Ak(t) for t ∈ [ck−1, ck] and Ak,k+1(t) ≤ Ak+1(t) for t ∈ [ck+1, ck+2].
For t ∈ [ck, ck+1] the inequality follows from the property Ak(t) + Ak+1(t) = 1.

Let us now consider the following F1-transform components:

F1
k [X](t) = β0

k[X] + β1
k[X] · (t− ck), (12)

F1
k+1[X](t) = β0

k+1[X] + β1
k+1[X] · (t− ck+1), (13)

F1
k,k+1[X](t) = β0

k,k+1[X] + β1
k,k+1[X] · (t− ck,k+1) (14)

where the coefficients β0, β1 are determined by the corresponding basic functions due to
Figure 1.

Lemma 2. Let the triangular fuzzy sets depicted in Figure 1 be given. Then

β0
k,k+1 ≤ β0

k + β0
k+1.

Proof. Using (4) and Lemma 1 we obtain

β0
k,k+1 =

1
3
2 h

∫ ck+2

ck−1

X(t)Ak,k+1(t)dt ≤ 1
h

∫ ck+2

ck−1

X(t)(Ak(t) + Ak+1(t))dt =

1
h

∫ ck+1

ck−1

X(t)Ak(t)dt +
1
h

∫ ck+2

ck

X(t)Ak+1(t)dt = β0
k + β0

k+1.

Lemma 3. Let the triangular fuzzy sets depicted in Figure 1 be given. Then

β1
k,k+1 ≤ β1

k + β1
k+1.

Proof. Using (5) and Lemma 1 we obtain
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β1
k,k+1 =

6
( 3

2 h)3

∫ ck+2

ck−1

X(t)(t− ck,k+1)Ak,k+1(t)dt ≤

6
h3

∫ ck+2

ck−1

X(t)(t− ck,k+1)(Ak(t) + Ak+1(t))dt =

1
2

[
6
h3

∫ ck+1

ck−1

X(t)(t− ck)Ak(t)dt +
6
h3

∫ ck+1

ck−1

X(t)(t− ck+1)Ak(t)dt
]
+

1
2

[
6
h3

∫ ck+2

ck

X(t)(t− ck)Ak+1(t)dt +
6
h3

∫ ck+2

ck

X(t)(t− ck+1)Ak+1(t)dt
]
=

=

[
1
2

β1
k +

1
2

β1
k −

h
2

6
h3

∫ ck+1

ck−1

Ak(t)
]
+

[
1
2

β1
k+1 +

1
2

β1
k+1 +

h
2

6
h3

∫ ck+2

ck

Ak(t)
]
=

β1
k −

6
h
+ β1

k+1 +
6
h
= β1

k + β1
k+1.

Lemma 4. Let (12)–(14) be components of the F1 transform according to the fuzzy partition
depicted in Figure 1. Let β1

k = 0 and β1
k+1 = K 6= 0. Then β1

k,k+1 6= 0.

Proof. It is sufficient to consider the interval [ck+1, ck+2], in which the fuzzy set Ak(t) = 0
and, therefore, it cannot affect the size of β1

k+1 and β1
k,k+1 (cf. formula (5)).

Put H = min{X(t) 6= 0 | t ∈ [ck+1, ck+2]}. By the assumption, if there is a structural
break over [ck, ck+2] then H 6= 0 and it should be large since the corresponding X(t) are not
covered by the fuzzy set Ak over which β1

k = 0 by the assumption. Then,

L =
∫ ck+2

ck+1

H(t− ck+1)Ak+1(t)dt ≤
∫ ck+2

ck+1

X(t)(t− ck+1)Ak+1(t)dt,

L′ =
∫ ck+2

ck+1

H(t− ck,k+1)Ak,k+1(t)dt ≤
∫ ck+2

ck+1

X(t)(t− ck,k+1)Ak,k+1(t)dt.

After computation, we obtain L = Hh2

6 and L′ = 5Hh2

18 which means that 0 6= L < L′.
Consequently, β1

k,k+1 6= 0.

Let us now define the following sums of squares of differences between values of the
time series and the F1-transform components corresponding to the basic functions from
Figure 1:

RSSk =
ck+2

∑
t=ck−1

(X(t)− F1
k [X](t))2 Ak(t), (15)

RSSk+1 =
ck+2

∑
t=ck−1

(X(t)− F1
k+1[X](t))2 Ak+1(t), (16)

RSSk,k+1 =
ck+2

∑
t=ck−1

(X(t)− F1
k,k+1[X](t))2. (17)

Then, analogously to the classical Chow test (1) we construct the statistics

Ftest =
(RSSk,k+1−(RSSk +RSSk+1))/p
(RSSk +RSSk+1)/(2n− 2p)

(18)

where n is the number of time points between [ck−1, ck+2] and p is the number of parameters
(note that p = 2 in our case). The statistics (18) has the F-distribution F(p, 2n− 2p). The
structural break is tested by the null hypothesis:

H0 : β0
k = β0

k+1, β1
k = β1

k+1. (19)
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The null hypothesis H0 is rejected if Ftest > Fcrit where Fcrit is a critical value.
The statistics (17) can be rewritten as

Ftest =
2(n− p)

p

(
RSSk,k+1

RSSk +RSSk+1
− 1
)

. (20)

We will refer to (18) or (20) as fuzzy Chow test.

Theorem 1. Let X(t) be a time series over the time domain T and A be a uniform triangular fuzzy
partition of T with the distance h between nodes. Then(

RSSk,k+1

RSSk +RSSk+1

)
> 1. (21)

Proof. By ([8], Corollary 2), X(t) = F1
k (t) + O(h2) for t ∈ [ck−1, ck+1]. Then,

(X(t)− F1
k (t))

2 ≤ Mh4

for some constant M and arbitrary h. Similar inequality holds also for F1
k+1 and t ∈ [ck, ck+2].

Hence,

RSSk +RSSk+1 = ∑
ck+2
t=ck−1

(X(t)− F1
k (t))

2 Ak(t) + ∑
ck+2
t=ck−1

(X(t)− F1
k+1(t))

2 Ak+1(t) < M′h4 (22)

for some constant M′ and t ∈ [ck−1, ck+2]. Considering a wider fuzzy partition with h′ = 3
2 h,

in a similar way we obtain that

RSSk,k+1 =
ck+2

∑
t=ck−1

(X(t)− F1
k,k+1[X](t))2 < M′

(
3
2

h
)4

(23)

(in both cases we can consider the same constant M′). We argue that

RSSk +RSSk+1 < RSSk,k+1 .

Indeed, let the opposite inequality hold. Then we choose h so that RSSk,k+1 < M′( 3
2 h)4 <

RSSk +RSSk+1 and, by the assumption and (22), we obtain

RSSk,k+1 < M′(
3
2

h)4 < RSSk +RSSk+1 < M′h4

which is a contradiction.

Theorem 2. Let X(t) be a time series over the time domain T and A be a uniform triangular fuzzy
partition of T with the distance h between the nodes. Let F1

k , F1
k+1 be two components identifying

structural break in the areas characterized by Ak, Ak+1 according to the algorithm presented in
Section 3.2(cf. Figure 1). Let

|X(t)− F0
k (t)| ≤ ε, t ∈ [ck−1, ck+1] and |X(t)− F1

k+1(t)| ≤ ε, t ∈ [ck, ck+2]. (24)

If
∑

t∈[ck−1,ck+2]

(X(t)− F1
k,k+1(t))

2 > mhε2

where mh is the number of time points between two nodes, then Ftest >> 1.

Proof. Let us consider formula (20) and denote the formulas after the sum symbol in (15)–(17)
by RSSk(t), RSSk+1(t), RSSk,k+1(t), respectively.
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(a) Let t ∈ [ck−1, ck]. Then

RSSk+1(t) = 0 and ∑
t∈[ck−1,ck ]

RSSk(t) ≤ mhε2,

i.e., ∑t∈[ck−1,ck ]
RSSk(t) + ∑t∈[ck−1,ck ]

RSSk+1(t) ≤ mhε2. Similarly we obtain

∑
t∈[ck+1,ck+2]

RSSk(t) + ∑
t∈[ck+1,ck+2]

RSSk+1(t) ≤ mhε2.

(b) Let t ∈ [ck, ck+1]. Then

ck+1

∑
t=ck

(X(t)− F1
k [X](t))2 Ak(t) +

ck+1

∑
t=ck

(X(t)− F1
k+1[X](t))2 Ak(t) ≤

ck+1

∑
t=ck

(ε2 Ak(t) + ε2 Ak+1(t)) = mhε2.

Consequently,
ck+2

∑
t=ck−1

RSSk(t) +
ck+2

∑
t=ck−1

RSSk+1(t) ≤ mhε2. (25)

Using the assumption, we thus obtain

1 <
RSSk,k+1

mhε2 ≤
RSSk,k+1

RSSk +RSSk+1
.

Realizing that for p = 2, the multiplicative constant in (20) can be fairly high, the value of
Ftest is also high.

So far, we did not see whether our method for detection of the structural breaks
has an impact on the statistics (20). In the following theorem we will show that when
detecting a structural break using the algorithm from Section 3.2, the nominator of (20)
significantly increases. For this purpose, we consider two time series X, X′ which differ
only in the interval t ∈ [ck,k+1, ck+2] where the structural break occurs, i.e., X′(t) = X(t)
for t ∈ [ck−1, ck,k+1]. We will denote the formulas (15)–(17) for the time series X′ by
RSS′k, RSS′k+1, RSS′k,k+1, respectively.

In the proof of the following theorem, we meet the formula

W = ∑
[ck−1,ck+2]

(t− ck,k+1)
2 =

1
2

mh(
3
2

mh + 1)(3mh + 1).

Theorem 3. Let mh be the number of time points between two nodes. Furthermore, we will assume:

(a) β1
k[X] = β1

k,k+1[X] = β1
k+1[X] = 0,

(b) the inequalities (24) hold for some ε > 0,
(c) |β1

k+1[X
′]| > 0,

(d) there are minimal ε′, ε′′ > 0 such that the following holds:

max{|X(t)− X(ck,k+1)| | t ∈ [ck−1, ck+2]} ≤
ε′

2
,

max{|X′(t)− X′(ck,k+1)| | t ∈ [ck−1, ck+2]} ≤
ε′′

2
.

If the slope β1
k,k+1[X

′] fulfills the inequality

|β1
k,k+1[X

′]| ≥
∑[ck−1,ck+2]

|t− ck,k+1| · |X(t)− β0
k,k+1[X]|

W
(26)
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then
RSSk,k+1 ≤ RSS′k,k+1 . (27)

Proof. Note that X′(ck,k+1) = X(ck,k+1) and so, it follows from the assumptions (c), (d)
that ε′ < ε′′ because (c) says that there is a structural break in [ck, ck+2]. Therefore, there
must be t0 ∈ [ck, ck+2] such that |X′(t0)− X(ck,k+1)| > ε′.

In the same way as is in the proof of ([10], Theorem 5), we can show that

|X(t)− β0
k,k+1[X]| ≤ ε′, and |X′(t)− β0

k,k+1[X
′]| ≤ ε′′

for t ∈ [ck−1, ck+2]. Then we have

∑
t∈[ck−1,ck+2]

(X(t)− β0
k,k+1[X])2 ≤ 3mhε′2 < ∑

t∈[ck−1,ck+2]

(X(t)− β0
k,k+1[X

′])2−

2|β1
k,k+1[X

′]| ∑
t∈[ck−1,ck+2]

|t− ck,k+1| · |X(t)− β0
k,k+1[X

′]|+(β1
k,k+1[X

′])2 ∑
t∈[ck−1,ck+2]

(t− ck,k+1)
2.

The third inequality is assured if

2|β1
k,k+1[X

′]| · ∑
t∈[ck−1,ck+2]

|t− ck,k+1| · |X(t)− β0
k,k+1[X

′]| ≤

(β1
k,k+1[X

′])2 ∑
t∈[ck−1,ck+2]

(t− ck,k+1)
2,

which implies that

|β1
k,k+1[X

′]| ≥
∑[ck−1,ck+2]

|t− ck,k+1| · |X(t)− β0
k,k+1[X]|

W
.

This assures inequality (27).

In this theorem, assumption (b) says that F0
k (t) and F1

k+1(t) well approximate X and
X′, respectively. Note that due to assumption (a), we may consider only F0

k instead of
F1

k (t). Note that Lemma 4 justifies assumption (c); assumption (d) is justified by the results
of [8,10].

Corollary 1. There is a context wtg = 〈0, vS, vR〉 such that LPerc(β1
k[X
′], wtg) ∈ {zero} and

LPerc(β1
k+1[X

′], wtg) ∈ {big} and the null hypothesis using the fuzzy Chow-test for the time series
X′ is rejected.

Proof. We take the context wtg such that vS is equal to the right-hand side of (26) and
vR big enough to assure that β1

k+1[X
′] is in (11) evaluated as big. Following the proof

of Theorem 2, we can assure that (21) holds true and, consequently, that Ftest in (20) is
sufficiently large.

4. Experiments
4.1. Detection of Structural Breaks

We will demonstrate our results on real data taken from a Micro subset of time series
from M4-Competition published on the Internet. For computations of the F-transform
components, we used the experimental software FT-studio. (It was developed in the
Institute for Research of Applications of Fuzzy Modeling of the University of Ostrava,
Czech Republic. Its author is Radek Valášek. Let us remark that in the R-repository is
available R-package lfl providing algorithms used in this paper, see [19]).

In Figure 2, a real time series is depicted together with two fuzzy partitions with
equidistant triangular basic functions. The structural breaks are detected using our method.
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Namely, the time series contains structural breaks occurring in areas characterized by
couples of fuzzy sets (A48, A52), (A204, A208), (A244, A248).

(a)

(b)

Figure 2. The time series is depicted together with fuzzy partitions with the basic functions of the
width: (a) 2h = 8 and (b) 2h = 12. In both images are marked basic functions over which the
structural breaks are detected.

We apply Fuzzy Chow test to the found structural breaks using fuzzy technique. The
first one is obtained from two F1-transform components

F1
48[X] = β0

48[X] + β1
48[X] · (t− c48) = 1013.19− 0.38 · (t− 48),

F1
52[X] = β0

52[X] + β1
52[X] · (t− c52) = 1065.41 + 20.83 · (t− 52).

To verify the found structural break also statistically, we will test the null hypothesis

H0 : β0
48[X(t)] = β0

52[X(t)] and β1
48[X(t)] = β1

52[X(t)]
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The squares of residuals RSS48, RSS52, RSS48,52 are computed as follows:

RSS48 =
56

∑
t=44

(Xt − F1
48[X](t))2 · A48(t) = 38.9604,

RSS52 =
56

∑
t=44

(Xt − F1
52[X](t))2 · A52(t) = 2441.03,

RSS48,52 =
56

∑
t=44

(Xt − F1
48,52[X](t))2 = 9406.196.

The Fuzzy Chow test is based on the statistics

Ftest =
(RSS48,52−RSS48−RSS52)/p
(RSS48 +RSS52)/(2n− 2p)

= 30.72

where n = 13 and p = 2.
We obtain Ftest = 30.72 > Fcrit = F(p, 2n− 2p) = 4.3828 for α = 0.025 and so, we reject

the null hypothesis. This means that we have sufficient evidence to say that a structural
break detected using our method indeed occurs in the interval t ∈ [44, 56].

We apply the same algorithm with two subsequent by fuzzy sets (A204, A208) and
(A244, A248), the structural breaks confirmed by testing the null hypothesis:

H0 :β0
204[X(t)] = β0

208[X(t)] and β1
204[X(t)] = β1

208[X(t)],

H0 :β0
244[X(t)] = β0

248[X(t)] and β1
244[X(t)] = β1

248[X(t)].

The results are summarized in Table 1.

Table 1. Fuzzy Chow Test results.

t Fuzzy Sets [Ak, Ak+1] Ftest Fcrit (α = 0.025) Decision
[44,56] [A48, A52] 30.72 4.3828 Reject H0

[200,212] [A204, A208] 26.52 4.3828 Reject H0
[240,252] [A244, A248] 39.77 4.3828 Reject H0

All of the results show that we have sufficient evidence to demonstrate that structural
breaks occur in the data in the time intervals stated above.

4.2. When Fuzzy Chow Test Does Not Reject the Null Hypothesis?

Our method for detection of structural breaks is non-statistical. Therefore, we should
also check whether the fuzzy Chow test does not falsely accept the null hypothesis about
the existence of a structural break in place where our method detects none.

For example, lets us check time intervals [80, 92], [112, 124], [152, 164], [228, 240] character-
ized by fuzzy sets (A84, A88), (A116, A120), (A156, A160), (A232, A236) where no structural break
is detected. We apply Fuzzy Chow test and so, we compute two F-transform components:

F1
84[X] = β0

84[X] + β1
84[X] · (t− c84),

F1
88[X] = β0

88[X] + β1
88[X] · (x− c88)

and form the null hypothesis:

H0 : β0
84[X] = β0

88[X] and β1
84[X] = β1

88[X]
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The statistics of the Fuzzy Chow test is

Ftest =
(RSS84,88−RSS84−RSS88)/p
(RSS84 +RSS88)/(2n− 2p)

= 3.13

where n = 13 and p = 2.
We may verify that Ftest = 3.13 < Fcrit = F(p, 2n− 2p) = 4.3828 for α = 0.025. Hence,

we cannot reject the null hypothesis. This means that we have no sufficient evidence to say
that a structural break occurs in the interval [80, 92].

Let us apply same algorithm with fuzzy sets (A116, A120), (A156, A160) and (A236, A240)
and form the following null hypotheses:

H0 :β0
116[X] = β0

120[X] and β1
116[X] = β1

120[X],

H0 :β0
156[X] = β0

160[X] and β1
156[X] = β1

160[X],

H0 :β0
236[X] = β0

240[X] and β1
236[X] = β1

240[X].

The results are summarized in Table 2.

Table 2. Fuzzy Chow Test results and Decisions.

Time Interval Fuzzy Sets (Ak, Ak+1) Ftest Fcrit (α = 0.025) Decision
[112,124] (A116, A120) 2.81 4.3828 H0 is not rejected
[152,164] (A156, A160) 1.46 4.3828 H0 is not rejected
[232,244] (A236, A240) 1.86 4.3828 H0 is not rejected

We conclude that the fuzzy Chow test indeed statistically verifies structural breaks
only on places in which our method described in Section 3.2 detects them.

4.3. Comparison with Classical Statistical Tests

In this section, we will compare our method with three classical statistical methods
for the detection of structural breaks. Namely, we will consider the classical Chow test
described in Section 2.1, Pettitt’s, and Bai-Perron tests.

4.3.1. Pettitt’S Test (1979)

The Pettitt’s test [20,21] is a way to find out when there was a big change in the mean
of a set of numbers over time when the exact time of the change is unknown. The data
collect n observations, and if it contains a change point at time t, then the change point will
split the data into two parts, each of which has a distinct distribution F1(x) and F2(x). The
test statistic K is defined by K = max|Ut| where

Ut =
t

∑
i=1

n

∑
j=t+1

sign(xi − xj) and sign(xi − xj) =


1 if (xi − xj) > 0,
0 if (xi − xj) = 0,
−1 if (xi − xj) < 0.

The confidence level for n samples is p = exp
(
−K

n2+n3

)
. The null hypothesis is rejected if

the value of p does not exceed the given confidence level.
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4.3.2. Bai-Perron Test (1998)

Another well known test for identification of several structural breaks in a time series
is Bai-Perron one [22–24].

With the null hypothesis: There is no structural break in the time series, the Bai-Perron
proccess suggests a multiple linear regression with k changes. The change points are
(T1, . . . , Tk) and are explicitly handled as unknown:

yt = xtβ + ztσ1 + εt, t = 1, . . . , T1,

yt = xtβ + ztσ2 + εt, t = T1 + 1, . . . , T2,

. . . . . . . . . . . . . . . . . . .

yt = xtβ + ztσk+1 + εt, t = Tk+1, . . . , T

where yt is the dependent variable, β and σ are coefficients corresponding to covariates xt
and zt, and ut is the residue term. The purpose is to estimate the unknown regression coef-
ficients and the break dates (β, σ1, . . . , σk+1, T1, . . . , Tk) when T observations on (yt, xt, zt)
are given.

4.3.3. Comparison of Statistical Methods with Fuzzy Chow Test

The results of the comparison can be seen in Figure 3. The computations have been
performed using R. The classical Chow test detected change points in t = 51, 130, 206, 251
and Bai-Perron test in t = 52, 131, 207, 252. Thus, the differences in the graph in Figure 3
are invisible. The Pettitt test found only three points in t = 51, 130, 206.

Our method detected three structural breaks in the intervals [44, 56], [200, 212], [240, 252]
which, as shown in Section 4.1, are also statistically significant by the fuzzy Chow test. Note
that these intervals cover the points found by Chow and Bai-Perron tests with the exception of
t = 130 (t = 131) where, however, there is no structural break. We argue that, as is apparent
from Figure 3, our method correctly detected real structural breaks occurring in the time series.
The following conclusions imply from the comparison with our method:

• Statistical methods detect the breaks as if occurring in one time point. However, it is
clear from the practice that this rarely happens; the break usually shows in a wider
area. Hence, the result of a statistical test should be taken as a point around which the
break occurs. But this is equal to what our fuzzy method provides explicitly, and thus
we argue that more realistically.

• Statistical methods are less robust and thus, more sensitive to the data. Hence, they
are prone to the detection of non-existing breaks. In our example, this happened to
all three statistical methods in point t = 130 (t = 131) where apparently there is no
structural break. Let us emphasize that our fuzzy method ignored this point/area due
to its robustness.

• Statistical methods require optimization and therefore, they are computationally
expensive. Our method is very simple and computationally effective since the fuzzy
transform has linear complexity.

It is important to emphasize that our goal is not to beat statistical methods. Vice-versa, we
want to employ maximally the synergy of both approaches.
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(a)

(b)

(c)

Figure 3. Results of statistical tests as well as of our method to finding structural breaks in the real
time series: (a) Chow and Bai-Perron tests (in the graph, there is no visible difference between them),
(b) Pettitt’s test, and (c) our method verified by the fuzzy Chow test.

5. Conclusions

In this paper, we focus on methods for the detection of structural breaks in time series.
In [7], we suggested a method based on the fuzzy transform (F-transform) and selected
methods of Fuzzy Natural Logic. In this paper, we suggested a combination of our method
with a statistical text that stems from the well-known Chow test [1]. Statistical significance
is demonstrated on the data. We have shown that our technique is effective in spotting
abnormalities and gives statistically significant results. Further research will be focused on
the combination of our fuzzy method with other kinds of statistical testing.
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