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Abstract: In recent research endeavors, discrete models have gained considerable attention, even in
cases where the observed variables are continuous. These variables can often be effectively approxi-
mated by a normal distribution. Given the prevalence of processes requiring robust quality control,
models associated with the normal distribution have found widespread applicability; nevertheless,
there remains a persistent need for enhanced accuracy in normality analysis, prompting the explo-
ration of novel and improved solutions. This paper introduces a discrete parameter-free distribution
linked to the normal distribution, derived from a quality control methodology rooted in the renowned
‘3-sigma’ rule. The development of a novel normality test, based on this distribution, is presented. A
comprehensive examination encompasses mathematical derivation, distribution tables generated
through Monte Carlo simulation studies, properties, power analysis, and comparative analysis, all
with key features illustrated graphically. Notably, the proposed normality test surpasses conventional
methods in performance. Termed the ‘Zone distribution’, this newly introduced distribution, along
with its accompanying ‘Zone test’, demonstrates superior efficacy through illustrative examples. This
research contributes a valuable tool to the field of normality analysis, offering a robust alternative for
applications requiring precise and reliable assessments.

Keywords: zone; 3-sigma rule; discrete distribution; quality control; normal distribution; power of
the test
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1. Introduction

Existing and well-established solutions concerning discrete distributions, such as the
Binomial distribution, Geometric distribution, and Poisson distribution, are still extensively
in use [1]; however, new approaches are frequently being developed as solutions to theo-
retical as well as empirical problems [2–8]. In the past two years, most attention has been
directed toward describing and forecasting COVID-19 time series data [3,7,8]. However,
other areas of application, such as medicine and agriculture [2], quality control [4], genetics
and biology [7], life index, reading accuracy and intelligence [9], the failure times of de-
vices and electronic components [2,3,9], age dependency ratio modelling [10], etc., have
not been neglected.

In the authors’ last paper, a new discrete distribution was developed and its applica-
tion in the new Quantile-Zone normality test was elaborated on. While that distribution
has proven exceptionally useful in normality testing, its application in other contexts is
challenging. This difficulty arises from its connection to the empirical distribution function
(EDF), making it impractical or extremely complicated to determine functional and numeri-
cal characteristics [4]. The idea for such an approach was derived from research in quality
control that the authors have also been working on [11,12]. Essentially, the concept of the
X-bar chart has been modified to give new approaches in control charts, Quantile-Zone
distribution, and normality testing. These findings have been crucial to this paper as the
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newly introduced Zone distribution relies on a similar zoning concept inspired by the
‘3-sigma’ (3σ) rule and is applied for normality testing. The research suggests that both the
Quantile-Zone distribution and Zone distribution hold significant potential for applications
in quality control. This recognition aligns with the growing importance of quality control
as a notable research topic, both in theory and practical application [11–17].

Another significant subject pertains to distributions associated with the normal dis-
tribution [4,9,10], as it is one of the most commonly observed distributions in empirical
variables, such as those found in nature, medicine, engineering, and other fields. Addi-
tionally, the reliability of parametric statistical analysis methods depends on the normality
of the referent variables. The normal distribution and its properties, graphical and other
methods of preliminary normality analysis, as well as normality tests, have all been ana-
lyzed, elaborated on, and widely used [18]; nevertheless, given its significance, it appears
that research on the normal distribution, particularly regarding normality tests, is far from
reaching conclusion. This paper comprehensively addresses these issues. Specifically,
a novel discrete distribution, linked to the normal distribution through 3σ-rule zoning,
derived from a modified Shewhart-type control chart approach, has been formulated. This
development yields noteworthy outcomes in the domain of quality control. Lastly, the
resulting distribution is employed in a novel normality test, adding to the advancements in
this field.

When it comes to normality tests, the most used, as well as other known tests, have
been a topic of discussion [4,18,19], in which their properties, advantages, disadvantages,
and power analyses are elaborated on in detail. Extensive power and comparative analysis
have been provided as well [4,19,20]. Power analysis, in cases of less usual alternative
distributions, has also been discussed [21–23]. Using parameter estimates, which better
reflect actual values than assumed values, and employing the cumulative distribution
function (CDF) of the test statistics in the null hypothesis, will enhance the power of
normality tests. Such an approach has shown to be very efficient with the Quantile-Zone
test [4] and Lilliefors test [19]. New approaches are constantly suggested, implemented,
improved on, and analyzed in order to determine and emphasize their advantages over
existing ones [4,19,22–26]. Some insights into the proficient mathematical development of
goodness-of-fit tests, as well as their properties, are also available [22,27–29].

This study focuses on leveraging the Zone distribution to describe potential models
arising in various practical applications. The consequential Zone test is employed to
enhance normality analysis due to its simplicity and superior performance compared to
many conventional tests. The outcomes of this research have broader implications for
improving quality control achieved by control charts. The relevance of these innovations is
underscored by the findings reported in recent publications [2–17,19,21,26,29].

In this section, a brief display of the previous and current results on topics of impor-
tance is offered. In Section 2, the definition and mathematical development of the functional
characteristics of the new Zone distribution, with graphical illustrations, as well as some
of its most important numerical characteristics, are given. In Section 3, the use of the
Zone distribution application in normality testing with extensive power and comparative
analysis, with highly illustrative graphics, is elaborated on. In Section 4, a brief insight
into the application in normality testing via the Zone test, is given via examples. Finally,
Section 5 concludes the paper with some important remarks on the results obtained.

2. Zone Distribution
2.1. Motivation and Definition

Let
X1, X2, . . . , Xn; n ∈ N

be iid variables, where Xj; j = 1, . . . , n has the normal N
(
µ, σ2) distribution.

The 3σ rule can be interpreted in two variants: standard and adjusted, as illustrated in
Figure 1.
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Figure 2. Graphical illustration of the zone function. 

Remark 1. The choice of the value 2.81 is explained by the expressions 

𝐹 𝐹(2.58) + 𝑙𝑖𝑚→ 𝐹(𝑥)2 = 2.81 

and 

Figure 1. The 3σ rule. (a) Standard variant. (b) Adjusted variant.

Using the 3σ rule in the adjusted variant, one can obtain the following definition.

Definition 1. The zone function is given with the equation

zone(x) =


1; µ− σ ≤ x < µ + σ

1.96; µ− 1.96σ ≤ x < µ− σ ∨ µ + σ < x ≤ µ + 1.96σ
2.58;
2.81;

µ− 2.58σ ≤ x < µ− 1.96σ ∨ µ + 1.96σ < x ≤ µ + 2.58σ
x < µ− 2.58σ ∨ x > µ + 2.58σ

, x ∈ R.

The zone function is graphically illustrated in Figure 2.
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Remark 1. The choice of the value 2.81 is explained by the expressions

F−1

 F(2.58) + lim
x→+∞

F(x)

2

 = 2.81

and

F−1

 lim
x→−∞

F(x) + F(−2.58)

2

 = −2.81
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where F is the CDF of the normal distribution with mean 0 and variance 1. Though any other value
can be taken as well, this way, the analogy with the 3σ rule in the standard form is ensured.

In Figure 2, one can see that the idea of the zone function definition has been developed
by modification of Shewhart’s approach to quality control via X-chart. The idea is to apply
the zone function on all sample elements, and to quantify the discrepancy of each sample
element from the central line x = µ.

Using the zone function, we obtain the sample

zone(X1), zone(X2), . . . , zone(Xn) (1)

(see Figure 2). The adjusted variant of the 3σ rule implies the following proposition.

Proposition 1. The distribution of the variable zone
(
Xj
)
; j = 1, . . . , n (rounded to two decimal

places) is given by

zone
(
Xj
)

:
(

1 1.96
0.68 0.27

2.58 2.81
0.04 0.01

)
.

Note that the following equations hold.

(µ− σ ≤ X ≤ µ + σ) = 0.6826;

P(µ− 1.96σ ≤ X < µ− σ) + P(µ + σ < X ≤ µ + 1.96σ) = 0.2673;

P(µ− 58σ ≤ X < µ− 1.96σ) + P(µ + 1.96σ < X ≤ µ + 2.58σ) = 0.0401;

P(X > µ + 2.58) + P(X < µ− 2.58) = 0.0099.

Definition 2. The discrete random variable defined as

A =
1
n

n

∑
i=1

zone(Xi) (2)

has the Zone distribution with n degrees of freedom, which will be denoted by A ∼ zonen.

Theorem 1. Let

C(n1, n1.96, n2.58, n2.81) =

1, 1, . . . , 1︸ ︷︷ ︸
n1

, 1.96, 1.96, . . . 1.96︸ ︷︷ ︸
n1.96

, 2.58, 2.58, . . . , 2.58︸ ︷︷ ︸
n2.58

, 2.81, 2.81, . . . , 2.81︸ ︷︷ ︸
n2.81

,

∑ C
(

n{k}1 , n{k}1.96, n{k}2.58, n{k}2.81

)
be the sum of elements in this set and number k be the order of

∑ C
(

n{k}1 , n{k}1.96, n{k}2.58, n{k}2.81

)
when all such sums are sorted in ascending order.

The probability mass function (PMF) of statistic A (Zone distribution) is given with

P
(

A =
1
n ∑ C

(
n{k}1 , n{k}1.96, n{k}2.58, n{k}2.81

))
=

n!

n{k}1 !·n{k}1.96!·n{k}2.58!·n{k}2.81!
·0.68n{k}1 ·0.27n{k}1.96 ·0.04n{k}2.58 ·0.01n{k}2.81 ,

k = 1, . . . ,
(

n + 3
n

)
.

Proof of Theorem 1. Appendix A. �
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Remark 2. Though the standard variant of the 3σ rule would not make the essential difference in
the distribution, some modalities, such as ai and ak (i 6= k), would be equal due to 1 + 3 = 2 + 2.
The adjusted variant of the 3σ rule overcomes this issue.

Corollary 1. The CDF of variable A is

F(x) = P(A ≤ x)

=



0; x < a1
k
∑

i=1

n!

n{k}1 !·n{k}1.96!·n{k}2.58!·n{k}2.81!
·0.68n{k}1 ·0.27n{k}1.96 ·0.04n{k}2.58 ·0.01n{k}2.81 , ak ≤ x < ak+1, k = 1, . . . ,

(
n + 3

n

)
− 1

1; x ≥ a
(
n + 3

n
)

.
(3)

where aj =
1
n ∑ C

(
n{j}

1 , n{j}
1.96, n{j}

2.58, n{j}
2.81

)
, j = 1, . . . ,

(
n + 3

n

)
.

Calculating F(x); x ∈ R or F−1(p); p ∈ [0, 1] is rather complicated, even to program.
To overcome this issue, we obtain its quantiles in the table of distribution. The zonen
distribution is a discrete one; hence, F−1(p) does not exist for every p ∈ [0, 1]. Additionally,
for higher n, the number of modalities of the random variable A also becomes higher;
hence, it is impossible to make the distribution table by calculating F(x) using (3). That
is why a Monte Carlo simulation study with 100,000 simulations for each n is conducted;
thus, Table 1 is obtained. The simulation study has been conducted using MATLAB.

Table 1. F(x) = P(A ≤ x); A ∼ zonem.

n
p

0.01 0.025 0.05 0.1 0.15 0.2 0.5 0.8 0.85 0.9 0.95 0.975 0.99

5 * * * * 1.0011 1.0339 1.3840 1.5540 1.5651 1.6382 1.7421 1.8198 1.9201
10 * 1.0038 1.0315 1.0870 1.1840 1.1897 1.3393 1.4749 1.5080 1.5420 1.6270 1.6890 1.7518
20 1.0925 1.1391 1.1440 1.1914 1.2199 1.2385 1.3334 1.4303 1.4612 1.4940 1.5365 1.5730 1.6206
30 1.1280 1.1600 1.1918 1.2220 1.2447 1.2557 1.3370 1.4148 1.4359 1.4573 1.4970 1.5290 1.5647
50 1.1728 1.2016 1.2233 1.2428 1.2620 1.2744 1.3366 1.3990 1.4134 1.4325 1.4596 1.4846 1.5149

100 1.2228 1.2394 1.2552 1.2716 1.2840 1.2936 1.3366 1.3811 1.3912 1.4038 1.4235 1.4405 1.4602
200 1.2552 1.2680 1.2789 1.2916 1.3004 1.3072 1.3376 1.3684 1.3756 1.3849 1.3984 1.4108 1.4249
300 1.2703 1.2806 1.2897 1.2999 1.3070 1.3127 1.3375 1.3627 1.3686 1.3759 1.3872 1.3968 1.4084
500 1.2853 1.2933 1.3003 1.3084 1.3140 1.3184 1.3378 1.3572 1.3671 1.3675 1.3760 1.3835 1.3925

1000 1.3002 1.3061 1.3111 1.3170 1.3210 1.3241 1.3378 1.3515 1.3547 1.3588 1.3647 1.3699 1.3762
1500 1.3077 1.3121 1.3162 1.3209 1.3242 1.3267 1.3379 1.3490 1.3516 1.3548 1.3597 1.3641 1.3690
2000 1.3112 1.3154 1.3190 1.3231 1.3259 1.3281 1.3378 1.3476 1.3499 1.3527 1.3569 1.3605 1.3650

When the distribution parameters are unknown, they can be estimated by the maxi-
mum likelihood method. Since X ∼ N

(
µ, σ2), the maximum likelihood method estimates

of parameters µ and σ2 are Xn =
1
n ∑n

i=1 Xi and S2
n =

1
n ∑n

i=1
(
Xi − Xn

)2, respectively; how-

ever, the estimate for σ2 used in this paper is
∼
S

2

n =
1

n− 1 ∑n
i=1
(
Xi − Xn

)2, because it is an

unbiased estimate for σ2, and S2
n is not.

In this case, the distribution of statistic A given by (2) is determinable only via Monte
Carlo simulations. Another table of the distribution of statistic A (Table 2) obtained via
100,000 Monte Carlo simulations (runs), performed by MATLAB, is given.
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Table 2. F(x) = P(A ≤ x); A ∼ zonem when parameters µ and σ2 are estimated with Xn and
∼
S

2

n, respectively.

n
p

0.01 0.025 0.05 0.1 0.15 0.2 0.5 0.8 0.85 0.9 0.95 0.975 0.99

5 * 1.1920 1.1920 1.1920 1.1920 1.1920 1.1920 1.3840 1.3840 1.3840 1.3840 1.3840 1.3840
10 1.1580 1.1580 1.1580 1.1920 1.1920 1.1920 1.2880 1.3840 1.3840 1.3840 1.4800 1.4800 1.4800
20 1.1865 1.2230 1.2230 1.2400 1.2710 1.2710 1.3190 1.3785 1.3840 1.3840 1.4320 1.4320 1.4630
30 1.2203 1.2410 1.2540 1.2730 1.2843 1.2860 1.3293 1.3727 1.3820 1.3933 1.4047 1.4253 1.4480
50 1.2508 1.2608 1.2722 1.2868 1.2970 1.3050 1.3320 1.3636 1.3704 1.3828 1.3964 1.4088 1.4212

100 1.2750 1.2846 1.2925 1.3021 1.3089 1.3145 1.3366 1.3586 1.3636 1.3704 1.3800 1.3868 1.3987
200 1.2936 1.3008 1.3067 1.3134 1.3180 1.3216 1.3371 1.3530 1.3564 1.3611 1.3676 1.3735 1.3812
300 1.3019 1.3076 1.3125 1.3179 1.3217 1.3247 1.3375 1.3503 1.3533 1.3570 1.3623 1.3674 1.3731
500 1.3100 1.3144 1.3182 1.3225 1.3254 1.3277 1.3377 1.3477 1.3501 1.3528 1.3572 1.3608 1.3651

1000 1.3184 1.3213 1.3240 1.3270 1.3290 1.3307 1.3377 1.3448 1.3464 1.3484 1.3514 1.3541 1.3572
1500 1.3219 1.3244 1.3266 1.3291 1.3307 1.3320 1.3378 1.3436 1.3449 1.3466 1.3491 1.3512 1.3538
2000 1.3241 1.3263 1.3281 1.3302 1.3317 1.3328 1.3378 1.3428 1.3440 1.3455 1.3476 1.3495 1.3516

In the following figures, graphical illustrations of the CDF for the Zone distribution,
for different sample sizes (Figure 3) and histograms of PMFs (Figure 4), are given. This
Figure illustrates data based on which Tables 1 and 2 were formed.
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200 1.2936 1.3008 1.3067 1.3134 1.3180 1.3216 1.3371 1.3530 1.3564 1.3611 1.3676 1.3735 1.3812 
300 1.3019 1.3076 1.3125 1.3179 1.3217 1.3247 1.3375 1.3503 1.3533 1.3570 1.3623 1.3674 1.3731 
500 1.3100 1.3144 1.3182 1.3225 1.3254 1.3277 1.3377 1.3477 1.3501 1.3528 1.3572 1.3608 1.3651 
1000 1.3184 1.3213 1.3240 1.3270 1.3290 1.3307 1.3377 1.3448 1.3464 1.3484 1.3514 1.3541 1.3572 
1500 1.3219 1.3244 1.3266 1.3291 1.3307 1.3320 1.3378 1.3436 1.3449 1.3466 1.3491 1.3512 1.3538 
2000 1.3241 1.3263 1.3281 1.3302 1.3317 1.3328 1.3378 1.3428 1.3440 1.3455 1.3476 1.3495 1.3516 
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Figure 4. The histogram of the PMF P(A = x) = p for each n (approximated values). (a) Known
parameters. (b) Estimated parameters.

As can be seen in Figures 3 and 4, when parameters are unknown and estimated,
the distribution changes significantly; however, for higher n, the departure is lower. Both
Figures 3 and 4 are obtained using Monte Carlo simulations.

A crucial aspect is that the Zone distribution is not constrained by the parameters,
leading to the application of this discrete distribution yielding more precise models.

2.2. Basic Properties and Numerical Characteristics

The following proposition is a direct consequence of Proposition 1.

Proposition 2. Expectation and variance of the variable zone(Xk) are

E(zone(Xk)) = 1.3405

and
Var(zone(Xk)) = 0.2655

for k = 1, . . . , n.

Proposition 3. Expectation and variance of variable A are E(A) = 1.3405 and Var(A) =
0.2655

n
.

Proof of Proposition 3. Appendix A. �

Remark 3. Since
Var(A) = E

(
A2
)
− (E(A))2

we obtain
E
(

A2
)
=

0.2655
n

+ 1.7969. (4)

Theorem 2. Skewness and kurtosis of variable A are

Skew(A) =
35.2148n2 − 0.0015n + 1.0636√

n
and

Kurt(A) =
−0.0071n3 + 375.8936n2 + 543.6709n− 779.4681

n
.
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Proof of Theorem 2. Appendix A. �

3. Zone Distribution in Normality Testing
3.1. The Testing Procedure

Let
X1, X2, . . . , Xn; n ∈ N

be iid variables that are distributed identically as random variable X. In this section, statistic
A given with (2) is used to test the null hypothesis that variable X is normally distributed,
i.e., H0

(
X ∼ N

(
µ, σ2)) against the alternative H1(X is not normally distributed).

The critical region is two-sided interval W = [1, c1] ∪ [c2, 2.81], determined by the
critical condition given with

P(A ≤ c1|H0) = P(A ≥ c2|H0) =
α

2
,

where α is the level of significance.
If the empirical value a of test-statistic A is inside the critical region W, the null

hypothesis H0
(
X ∼ N

(
µ, σ2)) is rejected.

The p-value for this test is calculated as usual by

p = min{P(A ≤ a|H0), P(A ≥ a|H0)}

and then could be compared to the level of significance α. If p ≤ α, the null hypothesis
is rejected.

All of the advantages of the Quantile-Zone test discussed in [4] hold for the Zone
test due to the similar definition of the zone function. For instance, the method used in
constructing the test provides tools for assessing the frequency of sample elements within
a selected interval. On some level, it is even sensitive to outliers, because more of them will
increase the likelihood of hypothesis rejection, and few of them, especially for large-sized
samples, will not affect hypothesis acceptance. That is important since, in theory, normal
variates are not bounded.

An additional advantage is that sample (1) consists of iid random variables, which
make the distribution of the test statistic available in both formal and simulated variants.
That also means that the values of the order statistic do not affect the value of test statistic A,
which is the case for many other test statistics, especially ones based on the EDF; hence, test
statistic A is not sensitive to repetitive values, i.e., it does not result in false negative deci-
sions, which can occur very frequently in the case of such an event. Specifically, theoretical
consideration allows for the existence of repetitive values (given a reasonable number of
repetitions) within our normality hypothesis; however, empirically, these repetitions do not
hinder the overall alignment of the sample structure with the fundamental characteristics of
the normality hypothesis. The presence of such invariance properties proves advantageous
in the context of normality tests

The testing procedure for the Quantile-Zone test is not very complicated to perform
or implement in a technical solution, but the Zone test is even less complicated and gives
the possibility of fast performance and implementation. This is an important observation
because, despite new, more powerful tests being developed [19,26], these tests are not yet
widely accepted as an alternative, probably due to the complexity of their application, or
the fact that they can only produce high power on certain occasions, etc.

3.2. Power Analysis

For power analysis, we use 10,000 runs of statistic A Monte Carlo simulations. Statistic
A samples are modelled for various alternative distributions, divided into symmetric
and asymmetric ones. Monte Carlo simulations, as well as the alternative distribution
modelling, have been performed via MATLAB codes. Some modelling algorithms available
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for MATLAB functions, such as ‘normrnd’, ‘chi2rnd’, and ‘trnd’, etc., are used [30]. For
the alternative distributions with no available MATLAB sampling function, we coded
algorithms using the inverse function (CDF) method [31]. The numbers of simulations,
10,000 and 100,000, have both proven to be satisfactory [32]. Additionally, in our simulation
study, we used both for null distribution, and the results are asymptotically identical.

The null distribution is N(0, 1). We have used the level of significance α = 0.05.
Various sample sizes have been discussed and are available in the following tables. The
selection of parameters for alternative distributions has been done in a way that maximizes
alignment with the null distribution, within reasonable bounds.

The power of the Zone test is calculated by the following algorithm:

1. Modelling the sample x1, x2, . . . , xn of the chosen alternative distribution for the
observed sample size n;

2. Calculating zone(x1), zone(x2), . . . , zone(xn) and the empirical value of the test
statistic

a =
1
n

n

∑
i=1

zone(xi);

3. Repeating the first two steps m = 10, 000 times and thus obtaining the sample
a1, a2, . . . , am;

4. Determining the EDF

F∗m(x) =
1
m

m

∑
i=1

I(ai ≤ x)

of the sample obtained in the third step (I is the event indicator; it equals 1 if the event
had occurred and 0 if it had not);

5. Calculating the power 1− β of the test by

1− β = F∗m(c1) + (1− F∗m(c2))

where c1 and c2 are the critical values of statistic A for α = 0.05.

In several other papers [19–22], power calculations encompass multiple distributions;
however, for many, such analyses might be considered unnecessary, as preliminary methods,
such as a histogram, suffice for normality assessment. Furthermore, this situation inflates
the average power value, concealing alternative distributions where the test exhibits low
power. In essence, the power value is artificially boosted by large but irrelevant data. To
address this, alternative distributions are thoughtfully selected in this study to provide
a more accurate representation of the test’s applicability. The following figure (Figure 5)
presents a comprehensive list of all alternative distributions for which power calculations
are conducted.
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Further on, Tables 3 and 4 of the power values are available.
When examining symmetric alternative distributions, it becomes evident that the Zone

test exhibits excellent performance, especially when the parameters of the null hypothesis
distribution are known. The test achieves the highest performance with the uniform
distribution and the lowest with the Laplace (0, 1) distribution. The test is powerful even
for small sample sizes, though there are some exceptions. For instance, when the alternative
distribution is Laplace (0, 1), it is the best to use the Zone test for n ≈ 150 or higher; when
the alternative distribution is it is the best to use the Zone test for n > 50 (see Table 3).
Observing Figure 5a, we can see that the discrepancy of the chosen symmetric alternative
distributions from the null distribution is not as large as it usually is in the power analysis
studies [19,20]. Given this observation, and noting that the Zone test performs better for
alternative distributions that deviate more from the null hypothesis distribution, we can
confidently regard our test as a suitable choice for normality testing against symmetric
alternative distributions.

Table 3. Empirical power of the Zone test for various sample sizes with the level of significance
α = 0.05 when the parameters are known—symmetric alternative distributions.

Distribution
n

10 20 30 50 100 200

Laplace (0, 1) 0.1441 0.2187 0.2692 0.3818 0.6030 0.8508
t2 0.2679 0.4392 0.5574 0.7541 0.9489 0.9990

Tukey (0.14) 0.3331 0.5776 0.7361 0.9029 0.9943 1
N (0, 1.52) 0.3640 0.6172 0.7734 0.9283 0.9966 1

Logistic (0, 1) 0.5106 0.7924 0.9068 0.9873 1 1
Cauchy (0, 1) 0.5434 0.8027 0.9147 0.9865 1 1

N (0, 0.52) 0.6321 0.9446 0.9980 1 1 1
U (−3.5, 3.5) 0.9216 0.9974 0.9998 1 1 1

Average 0.4646 0.6737 0.7694 0.8676 0.9428 0.9812

Table 4. Empirical power of the Zone test for various sample sizes with the level of significance
α = 0.05 when the parameters are known—asymmetric alternative distributions.

Distribution
n

10 20 30 50 100 200

χ2
1 0.1476 0.1944 0.2139 0.2861 0.4226 0.6630

Gumbel (0, 1) 0.1478 0.2087 0.2636 0.3784 0.6002 0.8517
Burr (3, 1) 0.2574 0.4649 0.6216 0.8290 0.9816 1

Pareto (0.1, 1) 0.3641 0.6064 0.6670 0.8504 0.9882 1
N (1, 1) 0.3850 0.6215 0.7977 0.9378 0.9974 1

Lognormal (0, 1) 0.4822 0.7294 0.8721 0.9701 0.9998 1
Weibull (1, 2) 0.7867 0.9628 0.9932 0.9998 1 1
Gamma (2, 1) 0.9382 0.9976 1 1 1 1
Beta (2, 1.5) 1 1 1 1 1 1

Average 0.5010 0.6429 0.7143 0.8057 0.8878 0.9461

The scenario remains largely consistent in the context of asymmetric alternative dis-
tributions. Specifically, when examining all the alternative distributions presented in
Figure 5b, in this case, the same conclusions as those drawn in the previous paragraph
hold true. There is a slight difference considering the performance of the test for small
sample sizes where the alternative distributions are the χ2

1 distribution and the Gumbel
(0, 1) distribution; however, the difference noted does not have a significant impact on the
final conclusion (see Table 4).
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In the following tables, power analysis for the same levels of significance, sample sizes,
and alternative distributions is given; however, it is the case of the estimated parameters
that is considered here. Now, the distribution of statistic A is given in Table 2.

Zone test performance (and that of any other test) gets better when parameters are

estimated because the empirical mean Xn and standard deviation
∼
Sn, practically, are better

representatives of average value and average deviation than the assumed values µ and

σ. If the sample is truly drawn from the N
(
µ, σ2) distribution, Xn ≈ µ and

∼
S

2

n ≈ σ2 hold;
otherwise, the Zone test will register a larger discrepancy. The performance of the test has
improved for all of the symmetric alternative distributions. The biggest improvement can
be noticed in the Laplace (0, 1) distribution. An interesting observation is that, through
parameter estimation, the Zone test demonstrates improved performance for the Logistic
(0, 1) distribution compared to the Cauchy (0, 1) distribution. This outcome differs from the
one with known parameters.

Figure 6 provides a visual comparison of the Zone test’s performance for symmet-
ric alternative distributions, considering both specified and estimated parameters. This
graphical representation corresponds to the information presented in Tables 3 and 5.

Axioms 2023, 12, x FOR PEER REVIEW 11 of 22 
 

Table 5. Empirical power of the Zone test for various sample sizes with the level of significance 𝛼 =0.05 when the parameters are estimated—symmetric alternative distributions. 

Distribution 
𝒏 

10 20 30 50 100 200 
Laplace (0, 1) 0.4668 0.6013 0.6365 0.7150 0.8739 0.9716 𝒕𝟐 0.6163 0.7812 0.8532 0.9269 0.9921 1 
Tukey (0.14) 0.6971 0.8795 0.9682 0.9827 0.9995 1 𝑵(𝟎, 𝟏. 𝟓𝟐) 0.7232 0.8946 0.9509 0.9905 1 1 
Logistic (0, 1) 0.8171 0.9606 0.9972 1 1 1 
Cauchy (0, 1) 0.8215 0.9522 0.9826 0.9986 1 1 𝑵(𝟎, 𝟎. 𝟓𝟐) 0.9271 0.9973 0.9998 1 1 1 𝑼(−𝟑. 𝟓, 𝟑. 𝟓) 0.9866 0.9997 1 1 1 1 

Average 0.7570 0.8833 0.9236 0.9517 0.9832 0.9965 
 

  
(a) (b) 

Figure 6. Empirical power of the Zone test for various sample sizes with the level of significance 𝛼 = 0.05—symmetric alternative distributions. (a) Known parameters. (b) Estimated parameters. 

Figure 7 provides a visual comparison of the Zone test’s performance for symmetric 
alternative distributions, considering both specified and estimated parameters. This 
graphical representation corresponds to the information presented in Tables 4 and 6. 

Table 6. Empirical power of the Zone test for various sample sizes with the level of significance 𝛼 =0.05 when the parameters are estimated—asymmetric alternative distributions. 

Distribution 
𝒏 

10 20 30 50 100 200 𝝌𝟏𝟐 0.4479 0.5499 0.5524 0.6078 0.7485 0.8865 
Gumbel (0, 1) 0.4548 0.5963 0.6246 0.7169 0.8745 0.9710 

Burr (3, 1) 0.6164 0.8248 0.9044 0.9691 0.9990 1 
Pareto (0.1, 1) 0.6026 0.8190 0.8941 0.9686 0.9991 1 𝑵(𝟏, 𝟏) 0.7305 0.8995 0.9581 0.9939 1 1 

Lognormal (0, 1) 0.7744 0.9312 0.9767 0.9950 1 1 
Weibull (1, 2) 0.9411 0.9967 0.9997 1 1 1 
Gamma (2, 1) 0.9900 0.9999 1 1 1 1 
Beta (2, 1.5) 1 1 1 1 1 1 

Average 0.7286 0.8464 0.8789 0.9168 0.9579 0.9842 
 

Figure 6. Empirical power of the Zone test for various sample sizes with the level of significance
α = 0.05—symmetric alternative distributions. (a) Known parameters. (b) Estimated parameters.

Table 5. Empirical power of the Zone test for various sample sizes with the level of significance
α = 0.05 when the parameters are estimated—symmetric alternative distributions.

Distribution
n

10 20 30 50 100 200

Laplace (0, 1) 0.4668 0.6013 0.6365 0.7150 0.8739 0.9716
t2 0.6163 0.7812 0.8532 0.9269 0.9921 1

Tukey (0.14) 0.6971 0.8795 0.9682 0.9827 0.9995 1
N (0, 1.52) 0.7232 0.8946 0.9509 0.9905 1 1

Logistic (0, 1) 0.8171 0.9606 0.9972 1 1 1
Cauchy (0, 1) 0.8215 0.9522 0.9826 0.9986 1 1

N (0, 0.52) 0.9271 0.9973 0.9998 1 1 1
U (−3.5, 3.5) 0.9866 0.9997 1 1 1 1

Average 0.7570 0.8833 0.9236 0.9517 0.9832 0.9965

Figure 7 provides a visual comparison of the Zone test’s performance for symmet-
ric alternative distributions, considering both specified and estimated parameters. This
graphical representation corresponds to the information presented in Tables 4 and 6.
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Table 6. Empirical power of the Zone test for various sample sizes with the level of significance
α = 0.05 when the parameters are estimated—asymmetric alternative distributions.

Distribution
n

10 20 30 50 100 200

χ2
1 0.4479 0.5499 0.5524 0.6078 0.7485 0.8865

Gumbel (0, 1) 0.4548 0.5963 0.6246 0.7169 0.8745 0.9710
Burr (3, 1) 0.6164 0.8248 0.9044 0.9691 0.9990 1

Pareto (0.1, 1) 0.6026 0.8190 0.8941 0.9686 0.9991 1
N (1, 1) 0.7305 0.8995 0.9581 0.9939 1 1

Lognormal (0, 1) 0.7744 0.9312 0.9767 0.9950 1 1
Weibull (1, 2) 0.9411 0.9967 0.9997 1 1 1
Gamma (2, 1) 0.9900 0.9999 1 1 1 1
Beta (2, 1.5) 1 1 1 1 1 1

Average 0.7286 0.8464 0.8789 0.9168 0.9579 0.9842

This conclusion holds for asymmetric alternative distributions as well. The most
noticeable improvements in the power of the test are identified for the χ2

1 distribution
and Gumbel (0, 1) distribution. When the parameters are specified, the Zone test shows
better performance for Pareto (0.1, 1) compared to the Burr (3, 1) distribution, but for
estimated parameters the opposite conclusion holds. The test performs better for symmetric
alternative distributions; however, it has been shown to be very powerful in both variants.

The following section delves into a more detailed discussion of consistency properties,
addressing both the advantages and disadvantages of the Zone test in comparison to other
commonly employed normality tests.

3.3. Comparative Analysis

Here, the obtained power values are used for calculating the average ones, which
are then compared to the average power values for other well-known and widely used
normality tests. The tests that the Zone test is compared to are the Kolmogorov–Smirnov
test [33] with its variant for estimated parameters (Lilliefors test) [34], Chi-square test [28],
Shapiro–Wilk test [35], and Anderson–Darling test [36]. For most of these tests, the same
data obtained in [4] are used.

Table 7 reveals that, with known parameters, the Zone test outperforms other tests
in the case of symmetric alternative distributions. This conclusion holds even for small
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sample sizes. The power of the Zone test is the largest for all sample sizes. Even for large
sample sizes, such as n ≈ 200, the Zone test is still noticeably more powerful than other
analyzed tests.

Table 7. Average empirical power values of the Zone test and some other normality tests for various
sample sizes with the level of significance α = 0.05—symmetric alternative distributions.

Test
n

10 20 30 50 100 200

Zone (EP 1) 0.7570 0.8833 0.9236 0.9517 0.9832 0.9965
Zone (KP 2) 0.4646 0.6737 0.7694 0.8676 0.9428 0.9812

Shapiro–Wilk 0.2328 0.4548 0.6768 0.7712 0.8469 0.9005
Anderson–Darling 0.2316 0.4522 0.6730 0.7644 0.8368 0.8901

χ2 0.2158 0.4208 0.6257 0.7307 0.8160 0.8672
Lilliefors 0.2177 0.4245 0.6313 0.7222 0.7996 0.8605

Kolmogorov–Smirnov 0.1917 0.3726 0.5534 0.6723 0.7628 0.8175
1 Estimated Parameters. 2 Known Parameters.

In Table 8, results indicate a different outcome; namely, that the Zone test has not per-
formed as well as the competitor tests when the parameters of the normal distribution are
known and in cases involving asymmetric alternative distributions. There is an exception
when n = 200, where this test has a higher power value than the Kolmogorov–Smirnov test.
The power of this test is still very high, and the differences are not an argument against
using the Zone test for known parameters of the normal null distribution.

Table 8. Average empirical power values of the Zone test and some other normality tests for various
sample sizes with the level of significance α = 0.05—asymmetric alternative distributions.

Test
n

10 20 30 50 100 200

Zone (EP 1) 0.7286 0.8464 0.8789 0.9168 0.9579 0.9842
Zone (KP 2) 0.5010 0.6429 0.7143 0.8057 0.8878 0.9461

Shapiro–Wilk 0.6698 0.7714 0.8730 0.9191 0.9552 0.9759
Anderson–Darling 0.6666 0.7649 0.8633 0.9087 0.9465 0.9702

χ2 0.6552 0.7423 0.8293 0.8841 0.9293 0.9615
Lilliefors 0.6587 0.7493 0.8398 0.8859 0.9285 0.9586

Kolmogorov–Smirnov 0.6467 0.7253 0.8038 0.8543 0.9040 0.9308
1 Estimated Parameters. 2 Known Parameters.

When the parameters of the null distribution are estimated, the results show that the
Zone test is more powerful than all considered competitor tests. This result holds for all
of the sample sizes observed. The variant of the test for estimated parameters is more
powerful because a better fit with the Zone distribution in Table 2 is obtained.

The following figure (Figure 8) provides a graphical interpretation of the previous
results, offering a comparative analysis of power function graphs for both symmetric and
asymmetric alternative distributions.

The results highlight the Zone test as a good choice for normality testing. In the cases
of both the known and estimated parameters of the null hypothesis distribution, the Zone
test exhibits similar or even better performance compared to the tests included in this
comparative analysis. The alternative distributions utilized are likely among the most rep-
resentative of commonly used distributions [19,21,22]. Furthermore, upon reviewing power
analysis results for tests not covered in this comparative analysis, an additional advantage
of the Zone test becomes apparent. These observations can therefore be generalized when
comparing the Zone test to the majority of well-known normality tests [19–26].
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Finally, Zone test and Quantile-Zone test performances are compared since, in the
authors’ previous paper, it was shown that, in a similar analysis, the Quantile-Zone test
yielded the best results.

Table 9 illustrates that, for symmetric alternative distributions, the Quantile-Zone test
demonstrates significantly better performance in the case of known parameters; however,
in the case of estimated parameters, the Zone test is the one with better performance. For
large sample sizes, the differences are of no significance.

Table 9. Average empirical power values of the Zone test and Quantile-Zone test for various sample
sizes with the level of significance α = 0.05—symmetric alternative distributions.

Test
n

10 20 30 50 100 200

Zone (EP 1) 0.7570 0.8833 0.9236 0.9517 0.9832 0.9965
Quantile-Zone (EP) 0.7309 0.8365 0.8945 0.9466 0.9855 0.9962

Zone (KP 2) 0.4646 0.6737 0.7694 0.8676 0.9428 0.9812
Quantile-Zone (KP) 0.4921 0.7294 0.8462 0.9295 0.9832 0.9962

1 Estimated Parameters. 2 Known Parameters.

Table 10 indicates that, for asymmetric alternative distributions, the Quantile-Zone
test outperforms the Zone test, establishing it as the most powerful normality test based on
our results. In Figure 9, the results of this comparison are graphically illustrated.

Table 10. Average empirical power values of the Zone test and Quantile-Zone test for various sample
sizes with the level of significance α = 0.05—asymmetric alternative distributions.

Test
n

10 20 30 50 100 200

Zone (EP 1) 0.7286 0.8464 0.8789 0.9168 0.9579 0.9842
Quantile-Zone (EP) 0.8984 0.9294 0.9470 0.9664 0.9881 0.9978

Zone (KP 2) 0.5010 0.6429 0.7143 0.8057 0.8878 0.9461
Quantile-Zone (KP) 0.5673 0.9066 0.9367 0.9623 0.9878 0.9977

1 Estimated Parameters. 2 Known Parameters.
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Despite the best performance of the Quantile-Zone test, there are advantages to the
Zone test that might make it a better choice, on some occasions, for the following reasons:

• It is still more powerful than the other normality tests usually used;
• It is very simple to apply and program;
• It performs faster than the Quantile-Zone test, which is significant for big data;
• The elements of the sample zone

(
Xj
)
; j = 1, . . . , n are not mutually dependent, which is

not the case for zones in Quantile-Zone distribution. That makes the Zone distribution
and many of its characteristics determinable theoretically (3);

• The invariance for outliers, to some extent, is the same as with the Quantile-Zone test, etc.

4. Examples

The following examples will illustrate how to apply the Zone distribution in normality
testing; in other words, the data in the example will be tested for normality via the Zone
test. This example also indicates the connection this discrete distribution makes between
quality control and normality testing.

To control the quantity of protein in milk, 48 packages with 100 g of milk are taken
from the production line. Measurements have yielded the following results (in %): 3.04,
3.12, 3.12, 3.22, 3.09, 3.13, 3.21, 3.18, 3.10, 3.18, 3.21, 3.18, 3.04, 3.11, 3.17, 3.06, 3.13, 3.12, 3.11,
3.07, 3.15, 3.05, 3.14, 3.18, 3.11, 3.21, 3.22, 3.13, 3.06, 3.07, 3.17, 3.22, 3.05, 3.19, 3.18, 3.20, 3.08,
3.20, 3.21, 3.09, 3.05, 3.14, 3.22, 3.08, 3.19, 3.18, 3.21, 3.06. The concentration of protein in
milk is usually between three and four percent. Two examples are being considered.

4.1. Known Parameters Case

Assume that the milk packages meet the standard if the protein concentration is
distributed by the normal N

(
3.15, 0.082) distribution. This is tested using the Zone test.

The empirical value of test statistic a = 1.16 is inside the critical region W = [1, 1.1974] ∪
[1.5846, 2.81]. That indicates that the distribution of the protein intake in the milk pack-
ages is not normally distributed with the distribution N

(
3.15, 0.082). The significance is

p ≈ 0.01 < 0.05.
In this example, as depicted in Figure 10, despite the sample elements being within

the band [µ− σ, µ + σ], the test statistic detects an excessive concentration within this
range, resulting in a smaller realized value of A. Additionally, it is illustrated that several
repetitions of some sample elements did not cause extreme variations in the A value.
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4.2. Estimated Parameters Case

Assume that the milk packages meet the standard if the protein concentration is

distributed by the normal N
(

xn,
∼
s

2
n

)
∼ N

(
3.14, 0.062) distribution. This is tested using

the Zone test. The empirical value of test statistic a = 1.42 is inside the critical region
W = [1, 1.2588] ∪ [1.4105, 2.81]. That indicates that the distribution of the protein intake
in the milk packages is not normally distributed with the distribution N

(
3.14, 0.062). The

significance is p ≈ 0.035 < 0.05.
Figure 11 illustrates that estimating the parameters has positioned the zone lines in a

more adequate way in terms of normality; however, the structure of the sample elements
still appears to deviate from the normal one due to too many of the sample elements being
detected in the zones between one and two standard deviations from the mean.
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5. Conclusions

This paper accomplishes the following:

• Development of a novel discrete distribution named the Zone distribution, associated
with normal distributions, including the presentation of functional characteristics,
PMF, CDF, and corresponding graphical illustrations;
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• Provision of quantile tables for the Zone distribution in the cases of both known and
estimated parameters of related normal distributions;

• Computation of key numerical characteristics for the Zone distribution;
• Illustration of the application of the Zone distribution in normality testing, along with

an exploration of its advantages and properties;
• Calculation of empirical power for the new Zone test, conducted separately for sym-

metric and asymmetric alternative distributions, providing power analysis results for
both known and estimated parameters;

• Presentation of a highly illustrative graphical interpretation of the power analysis;
• Comparative power analysis of both variants of the Zone test (specified and estimated

parameters) against other commonly used normality tests, accompanied by detailed
results and graphical representations.

Future work will involve further exploration of the Zone and Quantile-Zone ap-
proaches in defining discrete distributions and their application in goodness-of-fit testing.
Additionally, there are plans to investigate new possibilities for applying these discrete
models, conduct additional power and efficiency analyses, extend these approaches to
multivariate normality testing, explore adjustments to the continuous variant, and pursue
other possibilities for enhancing the methodology.
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Appendix A

Proof of Theorem 1. To adequately describe the zonen distribution, combinations with
repetitions of the set {1, 1.96, 2.58, 2.81} are used. Namely, in (2), calculating A requires the
sample given in (1). The order of the sample elements does not affect the value of A; hence,
the modalities of A are equivalent to the class n combination of numbers 1, 1.96, 2.58, 2.81
with repetition. That means that A has(

4 + n− 1
n

)
=

(
n + 3

n

)
=

(n + 3)!
n!·3!

modalities, where n! = n·(n− 1) · · · 2·1.
The above-mentioned combinations are

C(n1, n1.96, n2.58, n2.81) =

1, 1, . . . , 1︸ ︷︷ ︸
n1

, 1.96, 1.96, . . . 1.96︸ ︷︷ ︸
n1.96

, 2.58, 2.58, . . . , 2.58︸ ︷︷ ︸
n2.58

, 2.81, 2.81, . . . , 2.81︸ ︷︷ ︸
n2.81

,

then the modality equivalent to this combination is

ak =
1
n∑ C

(
n{k}1 , n{k}1.96, n{k}2.58, n{k}2.81

)
, k = 1, . . . ,

(
n + 3

n

)
.
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The order of the elements in sample (1) does not affect the value of A, but it does affect
the probability of that value being realized. That is why the number of permutations of
each combination, equivalent to a specific modality, is observed. Since the combinations
are with repetition, the referred set of permutations are with repetition as well. The number
of permutations with repetition of the set C

(
n{k}1 , n{k}1.96, n{k}2.58, n{k}2.81

)
elements is

n!

n{k}1 !·n{k}1.96!·n{k}2.58!·n{k}2.81!
.

For independent random variables X1, X2, . . . , Xn, the equation

P(zone(X1) = s1; zone(X2) = s2; . . . ; zone(Xn) = sn)
= P(zone(X1) = s1)·P(zone(X2) = s2) · · · P(zone(Xn) = sn)

holds for sk ∈ {1, 1.96, 2.58, 2.81}, k = 1, . . . , n, thus
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Proof of Theorem 2. Based on Proposition 2.1, the equality 

𝐸 𝑧𝑜𝑛𝑒(𝑋 ) = 3.6218, 𝑘 = 1, … , 𝑛 

holds. Note that there is 𝑛(𝑛 − 1) of the variations (𝑖, 𝑗), 𝑖, 𝑗 ∈ {1, … , 𝑛}, 𝑖 ≠ 𝑗 and 𝑛3 =!( )! of combinations {𝑖, 𝑗, 𝑘} ⊂ {1, … , 𝑛}. Hence, 

due to Proposition 1. The equation

P
(

nA = ∑ C
(

n{k}1 , n{k}1.96, n{k}2.58, n{k}2.81

))
= P

(
A =

1
n∑ C

(
n{k}1 , n{k}1.96, n{k}2.58, n{k}2.81

))
implies the claim of the theorem. �

Proof of Proposition 3. Using basic properties of expectation and variance, the following
equality sequences hold.

E(A) = E

(
1
n

n

∑
i=1

zone(Xi)

)
=

1
n

n

∑
i=1

E(zone(Xi)) =
1
n
·n·1.3405 = 1.3405 (A1)
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and

Var(A) = Var

(
1
n

n

∑
i=1

zone(Xi)

)
=

1
n2

n

∑
i=1

Var(zone(Xi)) =
1
n2 n0.2655 =

0.2655
n

. (A2)

�

Proof of Theorem 2. Based on Proposition 2.1, the equality

E
(
(zone(Xk))

3
)
= 3.6218, k = 1, . . . , n

holds. Note that there is n(n− 1) of the variations (i, j), i, j ∈ {1, . . . , n}, i 6= j and(
n
3

)
=

n!
6(n− 3)!

of combinations {i, j, k} ⊂ {1, . . . , n}. Hence,

E
(

A3) = E

((
1
n

n
∑

i=1
zone(Xi)

)3
)

=
1
n3 (

n
∑

i=1
E
(
(zone(Xi))

3
)
+ 3

n
∑

i=1

n
∑

j = 1
j 6= i

E
(
(zone(Xi))

2
)

E
(
zone

(
Xj
))

+6 ∑
{i,j,k}⊂{1,...,n}

E(zone(Xi))E
(
zone

(
Xj
))

E(zone(Xk))

)

=
1
n3


n
∑

i=1
3.6218 + 3

n
∑

i=1

n
∑

j = 1
j 6= i

2.0624·1.3405 + 6 ∑
{i,j,k}⊂{1,...,n}

1.34053


=

1
n3

(
3.6218n + 3n(n− 1)2.0624·1.3405 + 6

(
n
3

)
1.34053

)
=

2.4088n2 + 1.0675n + 0.1455
n2 .

(A3)

Substituting (4), (A1), (A2) and (A3) in the following formula, skewness is calculated.

Skew(A) = E

(
A− E(A)√

Var(A)

)3

=
E
(

A3)− E(A)
(

3E
(

A2)− 2(E(A))2
)

(Var(A))

3
2

=

2.4088n2 + 1.0675n + 0.1455
n2 − 1.3405

(
3

0.2655
n

+ 1.7969− 2·1.7969
)

(
0.2655

n

)3
2

=
35.2148n2 − 0.0015n + 1.0636√

n
.

Analogously,
E
(
(zone(Xk))

4
)
= 7.0604, k = 1, . . . , n

and
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E
(

A4) = E

((
1
n

n
∑

i=1
zone(Xi)

)4
)

=
1
n4


n
∑

i=1
E
(
(zone(Xi))

4
)
+ 4

n
∑

i=1

n
∑

j = 1
j 6= i

E
(
(zone(Xi))

3
)

E
(
zone

(
Xj
))

+6 ∑
{i,j}⊂{1,...,n}

E
(
(zone(Xi))

2
)

E
((

zone
(
Xj
))2
)

+12
n
∑

i=1
∑

{j, k} ⊂ {1, . . . , n}
j, k 6= i

(
(zone(Xi))

3
)

E
(
zone

(
Xj
))

E(zone(Xk))

+24 ∑
{i,j,k,l}⊂{1,...,n}

E(zone(Xi))E
(
zone

(
Xj
))

E(zone(Xk))E(zone(Xl))

)
=

1
n4

(
n·7.0604 + 4n(n− 1)3.6218·2.0624 + 6

(
n
2

)
2.06242 + 12n

(
n− 1
2

)
3.6218·1.34052

+24
(

n
4

)
1.34054

)
=

3.2290n3 + 29.3619n2 + 39.1090n− 54.9525
n3

(A4)

are calculated. Finally, substituting (4), (A1)–(A4) in the following formula, kurtosis is
calculated.

Kurt(A) = E

(
A− E(A)√

Var(A)

)4

=
E
(

A4)− 4E
(

A3)E(A) + 6E
(

A2)(E(A))2 − 3(E(A))4

(Var(A))2

=

(
3.2290n3 + 29.3619n2 + 39.1090n− 54.9525

n3

−4
2.4088n2 + 1.0675n + 0.1455

n2 1.3405

+6
(

0.2655
n

+ 1.7969
)

1.34052 − 3·1.34054
)(

n2

0.26552

)
=
−0.0071n3 + 375.8936n2 + 543.6709n− 779.4681

n
.

�

Appendix B

MATLAB codes for the (approximate) CDF of the Zone distribution (with minor
changes to the PMF also programmed), realized value of the Zone test statistic along with
its approximate p-value, and the Monte Carlo simulations we have performed are available
at the following link: https://drive.google.com/drive/folders/1TLi1atLd7LOpnrtD3xB3
FFtY8FdFfomt?usp=sharing (accessed on 21 November 2023).
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