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Abstract: We discuss the optimal control formulation for enhancement and denoising of satellite
multiband images and propose to take it in the form of an L1 control problem for a quasi-linear
parabolic equation with a nonlocal p[u] Laplacian and with a cost functional of a tracking type.
The main characteristic features of the considered parabolic problem is that the variable exponent
p(t, x) and the diffusion anisotropic tensor D(t, x) are not predefined well a priori; instead, these
characteristics nonlocally depend on the form of the solution of this problem (i.e., pu = p(t, x, u) and
Du = D(t, x, u)). We prove the existence of optimal pairs with sparse L1 controls used for the indirect
approach and a special family of approximation problems.

Keywords: parabolic equation; optimal control; variable order of nonlinearity; noncoercive problem;
existence issues
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1. Introduction and Some Preliminaries

The main goal of any image denoising problem is to restore the noise-free gray-scale
image u : Ω → R from the observed one f : Ω → R. In this paper, we start from the
assumption that the observed image can be represented as

f = u + v + n,

where n is the white Gaussian noise following the Gaussian distributionN (0, σ2) and v stands
for the noise with a probably strong impulsive nature, which the Gaussian model fails
to describe. We assume that both noises occur simultaneously and independently in the
entire domain.

To eliminate both the Gaussian noise n and impulse noise v, we propose the following
optimal control problem:

(R) Minimize J(v, u) = ‖v‖2
L2(0,T;L1(Ω)) +

1
2

∫
Ω
|u(T)− f0|2 dx (1)

subject to the constraints

∂u
∂t

= div
(
|Du(t, x)∇u|pu(t,x)−2Du(t, x)∇u

)
+ κ( f − u− v)

in QT = (0, T)×Ω,
(2)

∂νu = 0 on (0, T)× ∂Ω, (3)

u(0, ·) = f0(·) in Ω, (4)

va(x) ≤ v(t, x) ≤ vb(x), a.e. in QT . (5)
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Here, Ω ⊂ R2 is a bounded, open, simply connected set, its boundary ∂Ω is assumed
to be sufficiently smooth, T > 0 is a positive value, κ ∈ R is a given positive param-
eter, f ∈ L2(Ω) is the original noise-corrupted image, f0 ∈ L2(Ω) is the pre-denoised
image when applying a median filter to f , va, vb ∈ L2(Ω), va(x) ≤ vb(x) a.e. in Ω are
given distributions, and

‖v‖2
L2(0,T;L1(Ω)) =

∫ T

0

(∫
Ω
|v| dx

)2
dx (6)

is the so-called directional sparsity term which, in fact, measures the L1-norm in the space
of the L2-norm in time. Additionally, Du = D(t, x, u) is the matrix of anisotropy, and as for
the variable exponent pu : QT → R, we define it with the rule

pu(t, x) := 1 + g
(

1
h

∫ t

t−h
|(∇Gσ ∗ ũ(τ, ·))(x)| dτ

)
, ∀ (t, x) ∈ QT , (7)

where

g(s) = δ +
a2(1− δ)

a2 + s2 , ∀ s ∈ [0,+∞), (8)

Gσ(x) =
1(√

2πσ
)2 exp

(
−|x|

2

2σ2

)
, σ > 0, (9)

(Gσ ∗ ũ(t, ·))(x) =
∫
R2

Gσ(x− y)ũ(t, y) dy, (10)

Here, ũ stands for the zero extension of u to the entire space R×R2, and h > 0 and
0 < δ� 1 are given small positive values. As for the parameters λ > 0 and a > 0, they act
as regularization and smoothing parameters.

It is clear now that, for each function u ∈ L2(0, T; W1,1(Ω)), the inclusion pu(t, x) ∈
[p−, p+] ⊂ (1, 2] holds almost everywhere in QT with p− = 1 + δ and p+ = 2.

The study of optimal control problems for PDEs with variable nonlinearity is mo-
tivated by various applications in the image enhancement, where some special cases of
Equations (2)–(5) appear as the natural generalization of the classical Perona–Malik model [1–4].
We also refer to [5], where the authors dealt with a special case of the model in Equations (2)–(5)
and show the given class of optimal control problems is well posed.

The main benefit of the proposed model in Equations (2)–(5) is the manner in which
this model accommodates the local image information. It is easy to see that if the gradient of
the noisy image f is sufficiently large (i.e., likely edges) at some places, then only total vari-
ation (or shortly TV-based) diffusion will be used there. However, if at some points the gra-
dient is sufficiently close to zero (i.e., it is a homogeneous region), then the model becomes
isotropic. At the rest of the locations, the diffusion is somewhere between Gaussian and
TV-based. However, as immediately follows from Equation (7) and definition of the matrix
Du, the type of anisotropy is not completely predefined by the structure of the original noisy
image f . Moreover, the image u after denoising may have other shapes of homogeneous
regions and other structures with other locations for the edges.

In spite of the fact that there are many other different variants for the choice of
the diffusivity term in Equation (2) using, for instance, the so-called directional total
variation [6] and flexible space-variant anisotropic regularization [7], to the best of our
knowledge, the effective choice of this operator for general image denoising problem with
different noise distributions remains an open problem.

In recent years, many different techniques have been proposed for the reconstruction of
noise-affected digital images. In particular, the following nonlinear hybrid diffusion model,
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which is a symbiosis of the mean curvature diffusion with the Gaussian heat diffusion, has
been proposed for image denoising (see [8]):

∂u
∂t

= div

(
∇u

(|∇u|2 + 1)(2−p(|∇u|2))/2

)
, in (0, T)×Ω, (11)

u(0, x) = f , in Ω, (12)
∂u
∂ν

= 0, on (0, T)× ∂Ω, (13)

where
p(|∇u|2) = 1 +

1
1 + k|∇u|2 , (14)

Here, f is an input image, k > 0 and T > 0 are fixed constants, Ω is a bounded open
domain of R2 with a sufficiently smooth boundary, and ν is the unit outwardly normal to
the boundary ∂Ω.

The important characteristic of this model is the fact that it has a hybrid diffusion
type which combines the mean curvature diffusion with the heat diffusion such that inside
those regions, where the gradient of u is small enough, the new model acts like a heat
equation and results in isotropic smoothing, whereas near the region’s contours where
the magnitude of the gradient is large, this model acts like a mean curvature equation.
From this point of view, the model in Equations (11)–(13) can be interpreted as some
generalization of the well-known ones (in particular, the Perona–Malik model [9] or the
models with the p(x)-Laplacian operator that was proposed in [4]). However, in general, it
would be erroneously to assert that all the above-mentioned models can be obtained as a
particular case of Equations (11)–(13).

It is worth emphasizing that because of the variable character of exponent p in Equa-
tion (2), we have a gap between the coercivity and monotonicity conditions. In light of this,
the problem in Equations (1)–(4) can be specified as an optimal control problem for the
quasi-linear parabolic equations with variable growth conditions, and it can be interpreted
as a generalization of the parabolic version of the p(t, x)-Laplacian equation

∂u
∂t

= div
(
|∇u|p(t,x)−2∇u

)
(15)

with a variable exponent that depends only on t and x. We can indicate extensive research
which is devoted to Equation (15). A rather complete insight to the theory of parabolic
p(t, x)-Laplacian equations can be found in [10–15].

However, to the best of our knowledge, the above-mentioned results for the solvability
issues for evolutional equations of the type in Equation (2) mainly concern the parabolic
IBVPs with exponents depending on (t, x) only, whereas hardly any attention has been
paid to the IBVP of the form in Equation (2) with Du and the exponent pu given by the
rule in Equation (7). Moreover, in contrast to most of the existing results, in this paper,
we do not predefine pu and Du a priori. Instead, we associate these characteristics with
a particular solution for the IBVPs (Equations (2)–(5)). Therefore, the unknown solution
u can affect the rate of nonlinearity of p and the tensor D. It is also worth mentioning
that in contrast to most existing publications (see, for instance, [10,16]), we do not assume
that the dependency of pu and Du on u is local. We show that all weak solutions to this
problem live in the corresponding ‘personal’ functional spaces, and, in light of the special
assumptions for the structure of Du and pu, the problem in Equations (2)–(5) can have the
weak solutions that do not possess the standard variational properties of solutions to the
parabolic equations. In particular, it is unknown whether a weak solution to the above
problem satisfies the standard energy equality and is unique.

In spite of the fact that a number of different regularizations have been suggested
in the literature for optimal control problems related to the degenerate elliptic equations



Axioms 2023, 12, 1073 4 of 22

(see, for instance, [17–19]), the question about solvability of the proposed optimal control
problem is still open, to the best of our knowledge.

In light of this, our primary goal is to study the solvability issues for the OCP
(Equations (1)–(5)). In particular, a couple of characteristic features of the proposed problem
can be emphasized here. The first one is that the tensor of anisotropy Du and the exponent
pu depend not only on (t, x) but also on u(t, x). The second feature is that the optimal
control problem is formulated with L1(Ω; L2(0, T)) as the control cost (together with addi-
tional pointwise control constraints). As a result, the optimal control may have directional
sparsity (i.e., its support is constant in time, whereas the control v can be identically zero
on some parts of the domain Ω).

This paper is structured as follows. The main assumptions for the structure of the
anisotropic diffusion tensor Du(t, x) and variable exponent pu(t, x) and some preliminaries
are given in Section 2. We also discuss in this section the basic auxiliary results concerning
the Sobolev–Orlicz spaces with a variable exponent. In Section 3, we focus mainly on the
solvability issues for the IBVPs (Equations (2)–(5)). To this end, we follow the indirect
approach using a special technique of passing to the limit in the sequences of variational
problems. Precise statement of the optimal control problems for a quasi-linear elliptic
equation with the sparse control is discussed in Section 4. We also discuss in this section the
main topological properties of feasible solutions to the given OCP, and as a consequence, we
derive the conditions where the set of optimal solutions is nonempty. As for the optimality
conditions, their substantiation, and the results of numerical simulations, these issues are the
subject of a forthcoming paper. With that in mind, we will realize the principle of variational
convergence of constrained minimization problems and utilize some key ideas from [20–23].

2. Main Assumptions and Preliminaries

Let Ω ⊂ R2 be a bounded, open, simply connected set and its boundary ∂Ω be
sufficiently smooth. For simplicity, we assume that the unit’s outward normal ν = ν(x)
is well defined for a.e., x ∈ ∂Ω. Let T > 0 be a given value. We also set QT = (0, T)×Ω.
For any measurable subset D ⊂ Ω, we denote by |D| its two-dimensional Lebesgue
measure L2(D). Let D be its closure and ∂D stand for the boundary of D. We also make
use of the following notation: diam Ω = supx,y∈Ω |x− y|.

For two vectors ξ ∈ R2 and η ∈ R2, the notation (ξ, η) = ξtη stands for the standard
vector inner product in R2, where t stands for the transpose operator. As for the norm |ξ|,
we take this as the Euclidean norm given by the rule |ξ| =

√
(ξ, ξ).

2.1. Functional Spaces

Let Y be a real Banach space endowed with the norm ‖ · ‖Y, and let Y′ be its dual.
With ⇀ and ∗

⇀, we denote the weak and weak ∗ convergence in the spaces Y and Y′,
respectively. Let 〈·, ·〉Y′ ;Y be the duality form on Y′ ×Y.

For a given exponent 1 ≤ p ≤ +∞, the Lebesgue space Lp(Ω;R2) is defined by the
standard rule

Lp(Ω;R2) =
{

g : Ω→ R2 : ‖g‖Lp(Ω;R2) < +∞
}

.

Here, ‖g‖Lp(Ω;R2) =
(∫

Ω|g(x)|p dx
)1/p for 1 ≤ p < +∞. The inner product of two

functions g and f in Lp(Ω;R2) with p ∈ [1, ∞) is given by

(g, f )Lp(Ω;R2) =
∫

Ω
(g(x), f (x)) dx =

∫
Ω

2

∑
k=1

gk(x) fk(x) dx.
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Let C∞
c (R2) be the locally convex space of all infinitely differentiable functions with

compact support in R2. We also define the Banach space W1,p−(Ω) with p− > 1 as the
closure of C∞

c (R2) with respect to the norm

‖y‖W1,p− (Ω)
=

(∫
Ω

(
|y|p− + |∇y|p−

)
dx
)1/p−

.

We denote by
(

W1,p−(Ω)
)′

the dual space of W1,p−(Ω). Let us remark that in this

case, the embedding L2(Ω) ↪→
(

W1,p−(Ω)
)′

is continuous.
Given a real separable Banach space Y, we denote by C([0, T]; Y) the space of all

continuous functions from [0, T] into Y.
We recall that a function u : [0, T] → Y is said to be Lebesgue-measurable if there

exists a sequence of step functions {uk}k∈N (i.e., uk = ∑nk
j=1 ak

j χAk
j

for a finite number nk of

Borel subsets Ak
j ⊂ [0, T] and with ak

j ∈ X) such that this sequence converges to u almost
everywhere with respect to the Lebesgue measure in [0, T]. Then, Lp(0, T; Y), for 1 ≤ p < ∞,
is the space of all measurable functions u : [0, T]→ Y such that

‖u‖Lp(0,T;Y) =

(∫ T

0
‖u(t)‖p

Y dt
) 1

p
< ∞.

As for L∞(0, T; X), it is the space of measurable functions such that

‖u‖L∞(0,T;X) = sup
t∈[0,T]

‖u(t)‖X < ∞.

This choice makes Lp(0, T; X) a Banach space and guarantees that its dual can be
identified with Lp′(0, T; X′), where p′ = p/(p− 1) and X′ is the dual space to X. In par-
ticular, for functions f ∈ L2(0, T; L1(Ω)), the continuous Minkowski inequality yields
f ∈ L1(0, T; L2(Ω)) and moreover

‖ f ‖L2(0,T;L1(Ω)) :=

(∫ T

0

(∫
Ω
| f | dx

)2
dx

)1/2

≤
∫

Ω

(∫ T

0
| f |2 dt

)1/2

dx =: ‖ f ‖L1(0,T;L2(Ω)).

Hence, we have L2(0, T; L1(Ω)) ↪→ L1(0, T; L2(Ω)). The full presentation of this topic
can be found in [24].

2.2. Variable Exponent

Let v ∈ L1(0, T; L1(Ω)) ∩ L∞(0, T; L2(Ω)) be a given function. Let pv : QT → R be the
exponent that can be associated with v : QT 7→ R using the rule in Equation (7).

Since Gσ ∈ C∞(R2), it follows from Equation (7) and from the absolute continuity of
the Lebesgue integral that 1 < pv(t, x) ≤ 2 in QT and pv ∈ C1([0, T]; C∞(R2)), even if v
is just an absolutely integrable function in QT . Then, we observe that for each t ∈ [0, T],
pv(t, x) ≈ 2 if v(t, x) contains homogeneous features or is smooth enough, and pv(t, x) ≈ 1
in those places of Ω where some discontinuities are present in v(t, x). Thus, the sparse
texture of the function v can be characterized by the exponent pv(t, x).

For our further analysis, we make use of the following result. (For comparison, we
refer to Lemma 2.1 in [25]).
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Lemma 1. Let {vk}k∈N ⊂ L1(0, T; L1(Ω))∩ L∞(0, T; L2(Ω)) be a given sequence of measurable
functions. We assume that all elements of this sequence are extended by zero outside of QT and

sup
k∈N
‖vk‖L∞(0,T;L2(Ω)) < +∞,

vk → v weakly in L1(0, T; L1(Ω)) for some v ∈ L1(0, T; L1(Ω)).
(16)

Let {
pvk = 1 + g

(
1
h

∫ t

t−h
|(∇Gσ ∗ vk(τ, ·))| dτ

)}
k∈N

be the corresponding sequence of exponents. Then, there exists a constant C > 0 depending on G,
Ω, and supk∈N ‖vk‖L1(0,T;L1(Ω)) such that

p− := 1 + δ ≤ pvk (t, x) ≤ p+ := 2, ∀ (t, x) ∈ QT , ∀ k ∈ N, (17)

{
pvk (·)

}
⊂ S =

q ∈ C0,1(QT)

∣∣∣∣∣∣∣∣
|q(t, x)− q(s, y)| ≤ C(|x− y|+ |t− s|),

∀ (t, x), (s, y) ∈ QT ,

1 < p− ≤ q(·, ·) ≤ p+ in QT .

 (18)

pvk → pv = 1 + g
(

1
h

∫ t

t−h
|(∇Gσ ∗ v(τ, ·))(·)| dτ

)
uniformly in QT as k→ ∞.

(19)

Proof. Since the sequence {vk}k∈N is uniformly bounded in L1(0, T; L1(Ω)), and the Gaus-
sian kernel Gσ is smooth, it follows that

1
h

∫ t

t−h

∣∣∣(∇Gσ ∗ ṽk(τ, ·))(x)
∣∣∣ dτ ≤ h−1

∫ t

t−h

(∫
Ω
|∇Gσ(x− y)||ṽk(τ, y)| dy

)
dτ

≤ ‖Gσ‖C1(Ω−Ω)h
−1‖vk‖L1(0,T;L1(Ω)),

2 ≥ pvk (t, x) = 1 + δ +
a2(1− δ)h2

a2h2 +

(∫ t

t−h
|(∇Gσ ∗ ṽk(τ, ·))(x)| dτ

)2

≥ 1 + δ +
a2h2(1− δ)

a2h2 + ‖vk‖2
L1(0,T;L1(Ω))

‖Gσ‖2
C1(Ω−Ω)

,

∀ (t, x) ∈ QT ,

where

‖Gσ‖C1(Ω−Ω) = max
z=x−y

x∈Ω,y∈Ω

[
|∇Gσ(z)|+ |Gσ(z)|

]
=

e−1(√
2πσ

)2

[
1 +

1
σ2 diam Ω

]
. (20)

Then, the L1-boundedness of {vk}k∈N guarantees the existence of a value δ̂ ∈ (0, 1)
such that δ̂ > δ and pvk (t, x) ≥ 1 + δ̂. Hence, the estimate in Equation (17) holds true for
all k ∈ N.

Moreover, as immediately follows from the relations
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∣∣pvk (t, x)− pvk (t, y)
∣∣

≤ a2h2(1− δ)

a4h4

∣∣∣∣∣
(∫ t

t−h
|(∇Gσ ∗ vk(τ, ·))(x)| dτ

)2
−
(∫ t

t−h
|(∇Gσ ∗ vk(τ, ·))(y)| dτ

)2
∣∣∣∣∣

≤ 1− δ

a2h2

∫ T

0
(|(∇Gσ ∗ vk(τ, ·))(x)|+ |(∇Gσ ∗ vk(τ, ·))(y)|) dτ

×
∫ T

0
|(∇Gσ ∗ vk(τ, ·))(x)− (∇Gσ ∗ vk(τ, ·))(y)| dτ

≤
2‖Gσ‖C1(Ω−Ω)(1− δ)‖vk‖L1(0,T;L1(Ω))

a2h2

×
∫ T

0

∫
Ω
|v(τ, z)| dz dτ max

z∈Ω
|∇Gσ(x− z)−∇Gσ(y− z)|

=
2‖Gσ‖C1(Ω−Ω)(1− δ)γ2

1

a2h2 max
z∈Ω
|∇Gσ(x− z)−∇Gσ(y− z)|, ∀ x, y ∈ Ω (21)

with γ2
1 =

(
sup
k∈N
‖vk‖L1(0,T;L1(Ω))

)2

, and from the smoothness of the function∇Gσ(·), there

exists a positive constant CG > 0 such that CG > 0 does not depend on k and, for each
t ∈ [0, T], the following estimate

∣∣pvk (t, x)− pvk (t, y)
∣∣ ≤ 2‖Gσ‖C1(Ω−Ω)(1− δ)γ2

1CG

a2h2 |x− y|, ∀ x, y ∈ Ω

holds true. Arguing in a similar manner, we see that∣∣pvk (s, y)− pvk (t, y)
∣∣

≤ 1− δ

a2h2

∣∣∣∣∣
(∫ t

t−h
|(∇Gσ ∗ vk(τ, ·))(y)| dτ

)2
−
(∫ s

s−h
|(∇Gσ ∗ vk(τ, ·))(y)| dτ

)2
∣∣∣∣∣

≤
2(1− δ)‖Gσ‖C1(Ω−Ω)γ1

a2h2

×
∣∣∣∣∫ t

s
|(∇Gσ ∗ vk(τ, ·))(y)| dτ −

∫ t−h

s−h
|(∇Gσ ∗ vk(τ, ·))(y)| dτ

∣∣∣∣
≤

4(1− δ)‖Gσ‖2
C1(Ω−Ω)

√
|Ω|γ1γ2

a2h2 |s− t|, ∀ t, s ∈ [0, T] (22)

with γ2 = supk∈N ‖vk‖L∞(0,T;L2(Ω)).
Taking into account the estimates in Equation (21)–(22), and by setting

C :=
2‖Gσ‖C1(Ω−Ω)(1− δ)γ1

a2h2

(
γ1CG + 2γ2‖Gσ‖C1(Ω−Ω)

√
|Ω|
)

, (23)

we obtain ∣∣pvk (s, x)− pvk (t, y)
∣∣ ≤ ∣∣pvk (t, x)− pvk (t, y)

∣∣+ ∣∣pvk (t, y)− pvk (s, y)
∣∣

≤ C[|y− x|+ |t− s|],
∀ (t, x), (s, y) ∈ QT := [0, T]×Ω.

(24)

Thus, we see that
{

pvk

}
⊂ S. Since each element of the sequence

{
pvk

}
k∈N has the

same modulus of continuity, and max(t,x)∈QT
|pvk (t, x)| ≤ p+, it follows that this sequence

is equicontinuous and uniformly bounded. Hence, under the Arzelà–Ascoli theorem, the
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sequence
{

pvk

}
k∈N is relatively compact with respect to the norm topology of C(QT). Then,

in light of the estimate in Equation (24), the fact that the set S is closed with respect to the
uniform convergence, and

1
h

∫ t

t−h
|(∇Gσ ∗ vk(τ, ·))(x)| dτ → 1

h

∫ t

t−h
|(∇Gσ ∗ v(τ, ·))(x)| dτ

as k→ ∞, ∀ (t, x) ∈ QT

by definition of the weak convergence in L1(0, T; L1(Ω)), we finally deduce that pvk → pv
uniformly in QT as k→ ∞, where

pv(t, x) = 1 + g
(

1
h

∫ t

t−h
|(∇Gσ ∗ v(τ, ·))(·)| dτ

)
in QT .

2.3. Anisotropic Diffusion Tensor

Let S2 be the set of symmetric quadratic matrices B = [bij]
2
i,j=1, (bij = bji ∈ R). We

endow S2 with the Euclidian scalar product B · A = tr(B A) := ∑2
i,j=1 aijbij and with the

corresponding Euclidian norm ‖B‖S2 = (B · B)1/2 =
√

tr(B2). We also introduce the
spectral norm ‖B‖2 := sup

{
|Bζ| : ξ ∈ R2 with |ζ| = 1

}
of the matrices B ∈ S2. Note

that the following relation ‖B‖2 ≤ ‖B‖S2 ≤
√

2‖B‖2 holds true for all B ∈ S2.
Let v ∈ L1(0, T; L1(Ω)) ∩ L∞(0, T; L2(Ω)) be a given function. Wee suppose that v is

zero-extended outside of QT . With vσ(t, x), we denote its convolution with a Gaussian
kernel Gσ(x) (see Equations (9)–(10)).

By analogy with [26,27], we associate with the function v : QT 7→ R the structure
tensor Jρ(vσ), using for that the following representation:

Jρ(vσ) :=
1
h

∫ t

t−h
Gρ ∗ (∇vσ ⊗∇vσ) dτ =

1
h

∫ t

t−h
Gρ ∗

(
∇vσ(∇vσ)

t
)

dτ, (25)

where Gρ is defined in Equation (9) and

∇vσ(t, x) = (∇Gσ ∗ ṽ(t, ·))(x).

It is easy to check that Jρ(vσ) =

[
j11 j12
j12 j22

]
is the positively semi-definite matrix.

Moreover, this matrix is uniformly bounded in Ω. To check, it is enough to notice that

ζt Jρ(vσ)ζ ≤ 2
1
h

∫ t

t−h

∫
Ω

Gρ(x− z)|∇vσ(s, ·)|2|ζ|2 dzds

≤ 2µe−1h−1(√
2πρ

)2 |Ω|
∫ t

t−h
‖v(s, ·)‖2

L1(Ω) ds|ζ|2,

≤ 2e−1µ(√
2πρ

)2 ‖v‖
2
L∞(0,T;L1(Ω))|Ω||ζ|

2, ∀ (t, x) ∈ QT , (26)

ζt Jρ(uσ)ζ =
1
h

∫ t

t−h

∫
Ω

Gρ(x− z)(∇vσ(s, z), ξ)2
R2 dzds ≥ 0, ∀ (t, x) ∈ QT , (27)

for any ζ ∈ R2, where µ = ‖Gσ‖2
C1(Ω−Ω)

.

Having this in mind, we define the following diffusion tensor Dv(t, x):

Dv := γI + Jρ(vσ), (28)
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where 0 < γ � 1 is a small positive value and I ∈ (R2,R2) stands for the unit matrix.
In fact, Dv can be interpreted as some relaxation of the anisotropic tensor Jρ (we refer
to [1,2] for comparison).

Then, it easily follows from Equations (26), (27), and (28) that for any distribution v ∈
C([0, T]; L1(Ω)), the estimate

d2
1|ζ|2 ≤ ξt[Dv(t, x)]2ζ ≤ d2

2|ζ|2, ∀ ζ ∈ R2, ∀ (t, x) ∈ QT . (29)

holds true with

d1 = γ, d2 = d1 +
2e−1(√
2πρ

)2 ‖v‖
2
L∞(0,T;L1(Ω))|Ω|‖Gσ‖2

C1(Ω−Ω)
.

For simplicity, we suppose that d2 ≥ 1.
Following in many aspects the proof of Lemma 1, it is easy to establish the follow-

ing result:

Lemma 2. Let {uk}k∈N, u ⊂ L1(0, T; L1(Ω)) ∩ L∞(0, T; L2(Ω)) be measurable functions with
the properties in Equation (16). We assume that each of these functions is extended by zero outside
of QT . Let

{
Duk (t, x)

}
k∈N be a collection of the associated diffusion tensors. Then, we have

d2
1|ξ|2 ≤ ξt[Duk (t, y)

]2
ξ ≤ d2

2|ξ|2, ∀ (t, y) ∈ QT , ∀ ξ ∈ R2, ∀ k ∈ N, (30)

Duk (t, y)→ Du(t, y) uniformly in QT as k→ ∞, (31){
Duk

}
⊂ D, (32)

where

d1 = γ, , d2 = d1 +
2e−1(√
2πρ

)2 ‖Gσ‖2
C1(Ω−Ω)

sup
k∈2
‖uk‖2

L∞(0,T;L1(Ω))|Ω|,

D =

B ∈ C0,1(QT ;R2×2)

∣∣∣∣∣∣
‖B(s, x)− B(t, y)‖2 ≤ C(|x− y|+ |t− s|),

∀ (t, x), (s, y) ∈ QT .


2.4. On Orlicz Spaces

Let z ∈ L1(0, T; L1(Ω)) ∩ L∞(0, T; L2(Ω)) be a given distribution. Let pz : QT → R be
the corresponding exponent defined by Equation (7). Then, we have

1 < p− ≤ pz(t, x) ≤ p+ < ∞ a.e. in QT (33)

where p− and p+ are the constants given by Equation (17) (see Lemma 1). Let p′z(t, x) =
pz(t,x)

pz(t,x)−1 be the conjugate exponent. Then, we have

2 =
p+

p+ − 1︸ ︷︷ ︸
(p+)′

≤ p′z(t, x) ≤ p−

p− − 1︸ ︷︷ ︸
(p−)′

=
p−

δ
a.e. in QT . (34)

Let Lpz(·)(QT) be the set of measurable functions f : QT → R such that their modular
is finite; in other words, let

ρpz(t,x)( f ) :=
∫

QT

| f (t, s)|pz(t,s) dsdt < ∞. (35)
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which is equipped with the Luxembourg norm

‖ f ‖Lpz(·)(QT)
= inf

{
λ > 0 :

∫
QT

|λ−1 f (t, x)|pz(t,x) dxdt ≤ 1
}

. (36)

Here, Lpz(·)(QT) becomes a Banach space (see [28,29] for details). The space Lpz(·)(QT)
is a sort of Musielak–Orlicz space. In fact, it can be denoted by a generalized Lebesgue space
because its main properties are inherited from the classical Lebesgue spaces. In particular,
the two-sides of the inequality in Equation (33) implies that Lpz(·)(QT) is reflexive and
separable, and the set C∞

0 (QT) is dense in Lpz(·)(QT). Moreover, under the condition in
Equation (33), L∞(QT) ∩ Lpz(·)(QT) is also dense in Lpz(·)(QT).

Its dual can be identified with Lp′z(·)(QT), and therefore, each continuous functional
F = F( f ) on Lpz(·)(QT) has the following representation (see Lemma 13.2 in [15]):

F( f ) =
∫

QT

f w dxdt, with w ∈ Lp′z(·)(QT).

Since the relation between the modular in Equation (35) and the norm in Equation (36)
is not so direct as in the classical Lebesgue spaces, it can be proven from its definitions in
Equations (35) and (36) that

min
{
‖ f ‖p−

Lpz(·)(QT)
, ‖ f ‖p+

Lpz(·)(QT)

}
≤ ρpz(t,x)( f ) ≤ max

{
‖ f ‖p−

Lpz(·)(QT)
, ‖ f ‖p+

Lpz(·)(QT)

}
,

min

{
ρ

1
p−

pz(t,x)
( f ), ρ

1
p+

pz(t,x)
( f )

}
≤ ‖ f ‖Lpz(·)(QT)

≤ max

{
ρ

1
p−

pz(t,x)
( f ), ρ

1
p+

pz(t,x)
( f )

}
. (37)

The following consequence of Equation (37) is very useful:

‖g‖p−

Lpz(·)(QT)
− 1 ≤

∫
QT

|g(t, s)|pz(t,s) dsdt ≤ ‖g‖p+

Lpz(·)(QT)
+ 1,

∀ g ∈ Lpz(·)(QT),
(38)

‖gk − g‖Lpz(·)(QT)
→ 0 ⇐⇒

∫
QT

|gk(t, s)− g(t, s)|pz(t,s) dsdt→ 0

as k→ ∞.
(39)

Moreover, if g ∈ Lpz(·)(QT), then

‖g‖Lp− (QT)
≤ ‖g‖Lpz(·)(QT)

(1 + T|Ω|)1/p− , (40)

‖g‖Lpz(·)(QT)
≤ ‖g‖Lp+ (QT)

(1 + T|Ω|)1/(p+)′ , (p+)′ =
p+

p+ − 1
, ∀ f ∈ Lp+(QT), (41)

See, for instance, [28–30] for more information.
In generalized Lebesgue spaces, there holds a version of Young’s inequality

| f g| ≤ ε
| f |pz(·)

pz(·)
+ C(ε)

|g|p′w(·)
p′w(·)

,

with some positive constant C(ε) and arbitrary ε > 0.
The next assertion can be interpreted as an analogue of the Hölder inequality in

variable Lebesgue spaces (we refer to [28,29] for the details).

Proposition 1. If f1 ∈ Lpz(·)(QT ;R2) and f2 ∈ Lp′z(·)(QT ;R2), then ( f1, f2) ∈ L1(QT) and∫
QT

( f1, f2) dxdt ≤ 2‖ f1‖Lpz(·)(QT ;R2)‖ f2‖Lp′z(·)(QT ;R2)
. (42)
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As a biproduct of Equation (42), we have that, for a bounded domain QT = (0, T)×Ω
and for pz(·) satisfying Equation (33), the following imbedding

Lpz(·)(QT) ↪→ Lr(·)(QT) whenever pz(t, s) ≥ r(t, s) for a.e. (t, s) ∈ QT (43)

is continuous.
Let δ̂ ∈ (0, 1], and let {qk}k∈N ⊂ C0,δ̂(QT) be a given sequence of exponents. Assume that

q, qk ∈ C0,δ̂(QT) for k = 1, 2, . . . , and
qk(·)→ q(·) uniformly in QT as k→ ∞.

(44)

With these sequences of exponents, we associate another sequence
{

fk ∈ Lqk(·)(QT)
}

k∈N
.

As a result, we see that each element fk lives in the individual Orlicz space Lqk(·)(QT).
In fact, we deal with a sequence in the scale of spaces

{
Lqk(·)(QT)

}
k∈N

. The sequence{
fk ∈ Lqk(·)(QT)

}
k∈N

is bounded if

lim sup
k→∞

∫
QT

| fk(t, x)|qk(t,x) dxdt < +∞. (45)

Definition 1. Let
{

fk ∈ Lqk(·)(QT)
}

k∈N
be a bounded sequence. Then, we say that this sequence

weakly convergences in the variable space Lqk(·)(QT) to a function f ∈ Lq(·)(QT), where q ∈
C0,δ(QT) is the limit of {qk}k∈N ⊂ C0,δ̂(QT) in the norm topology of C(QT), if

lim
k→∞

∫
QT

fk ϕ dxdt =
∫

QT

f ϕ dxdt, ∀ ϕ ∈ C∞
c (R×R2). (46)

In order to proceed further, we recall some results concerning the lower semicontinuity
property of the norm in the variable Lqk(·) space with respect to the weak convergence in
Lqk(·)(QT). (For the detailed proof, we refer to Lemma 3.1 in [31]). For comparison, see also
Lemma 13.3 in [15] and Lemma 2.1 in [25].

Proposition 2. Assume that a sequence of exponents {qk}k∈N satisfies the condition in Equation (33),

qk → q as k→ ∞ a.e.in QT, and
{

gk ∈ Lqk(·)(QT)
}

k∈N
is a sequence that is bounded and weakly

convergent in Lq−(QT) to g. Then, g ∈ Lq(·)(QT), gk ⇀ g in variable Lqk(·)(QT), and

lim inf
k→∞

∫
QT

|gk(t, s)|qk(t,s) dsdt ≥
∫

QT

|g(t, s)|q(t,s) dsdt. (47)

We also recall the inequality which is well known in the theory of p-Laplace equations.
If 1 < p ≤ 2, then for all ξ, ζ ∈ RN , the following estimate holds true:

(p− 1)|ξ − ζ|2 ≤
([
|ξ|p−2ξ − |ζ|p−2ζ

]
, ξ − ζ

)
(|ξ|p + |ζ|p)

2−p
p .

2.5. On a Weighted Sobolev Space with a Variable Exponent

Let z ∈ C([0, T]; L2(Ω)) be a given distribution. Let Dz(t, x) be a diffusion tensor
associated with z by the rule in Equation (28). We define the weighted Sobolev space
Wz(QT) as the set of functions v(t, x) such that

v ∈ L2(QT), v(t, ·) ∈W1,1(Ω) for almost all t ∈ [0, T],∫
QT

|Dz(t, x)∇v|pz(t,x) dxdt < +∞.
(48)
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We define the norm on the space Wz(QT) as follows:

‖v‖Wz(QT)
= ‖v‖L2(QT)

+ ‖Dz∇v‖Lpz(·)(QT ;R2), (49)

where the second term in Equation (49) is the norm of the function Dz(t, x)∇v(t, x)
in Lpz(·)(QT ;R2). Since

d2
1|ζ|2 ≤ ζt[Dz(t, s)]2ζ ≤ d2

2|ζ|2, ∀ ζ ∈ R2, ∀ (t, s) ∈ QT , (50)

it follows that Ww(QT) is a reflexive Banach space. Since pz : QT → R is the Lipschitz
continuous exponent, it follows that the smooth and compactly supported functions are
dense in the weighted Sobolev space Wz(QT) (see [32]). Thus, Wz(QT) can be represented
as the closure of the set

{
ϕ ∈ C∞(QT)

}
with respect to the norm ‖ · ‖Wz(QT)

.

2.6. On Passage to the Limit in Fluxes

A standard situation in the study of many variational problems can be described
as follows. Let, for a given k ∈ N, vk ∈ L2(0, T; W1,p−(Ω)) be a solution in the sense of
distributions of the following parabolic equation of a monotone type:

∂vk
∂t
− div Bk(t, x,∇vk) = f , (t, x) ∈ QT , (51)

with f ∈ L2(Ω). It is assumed that for all ξ ∈ R2, we have the following property:
Bk(·, ·, ξ)→ B(·, ·, ξ) as k→ ∞ pointwise a.e. with respect to the first two arguments. We
also assume that the corresponding flow wk = Bk(·, ·,∇vk) ∈ L(p+)′(QT ;RN) converges
weakly such that

vk ⇀ v in L2(0, T; W1,p−(Ω)), wk ⇀ w in L(p+)′(QT ;RN),

1 < p− < p+, (p+)′ =
p+

p+ − 1
.

The main question is to find out whether a flux converges to a flux (i.e., check whether
the following equality B(t, x,∇v) = w holds true). Since the weak convergence uk ⇀ u
and the nonlinearity of the function B(·, ·, u) with respect to u do not guarantee that the
limit passage Bk(·, ·,∇vk) ⇀ B(·, ·,∇v) is valid, it makes this situation rather difficult and
nontrivial. Therefore, the important problem is to show that w = B(·, ·,∇v). The following
result gives the answer to the above question (for the proof, we refer to a celebrated
paper [33]):

Theorem 1. Let us assume that the following assumptions are satisfied:

(C1) Bk(t, s, ξ) and B(t, s, ξ) are continuous in ξ ∈ RN for a.e. (t, s) ∈ QT and measurable with
respect to (t, s) ∈ QT for each ξ ∈ RN (i.e., they are RN-valued Carathéodory functions);

(C2)
(

Bk(t, s, ξ)− Bk(t, s, ζ), ξ − ζ
)
≥ 0, Bk(t, s, 0) = 0 ∀ ξ, ζ ∈ RN and for a.e. (t, s) ∈ QT ;

(C3) |Bk(t, s, ξ)| ≤ c(|ξ|) < ∞ and lim
k→∞

Bk(t, s, ξ) = B(t, s, ξ) for all ξ ∈ RN and for a.e.

(t, s) ∈ QT ;
(C4) vk ⇀ v in Lp−(0, T; W1,p−(Ω)), p− > 1, and {vk}k∈N are bounded in L∞(0, T; L2(Ω));
(C5) wk = Bk(t, s,∇vk) ⇀ w in L(p+)′(QT ;RN), p+ > 1;
(C6) vk ∈ Lp+(0, T; W1,p+(Ω)) for all k ∈ N, and supk∈N ‖(wk,∇vk)‖L1(QT)

< ∞;
(C7) 1 < p− < p+ < 2p−.

Then, Bk(t, s,∇vk) ⇀ B(t, s,∇v) weakly in the Lebesgue space L(p+)′(QT ;RN) as k→ ∞.

The next results reveal some other properties of the weak convergence in L1(Ω).



Axioms 2023, 12, 1073 13 of 22

Lemma 3 ([30]). Let Ψ be a set of functions F(t, s, ζ) such that each of them is convex with respect
to ζ ∈ RN . These functions are measurable with respect to (t, s) ∈ QT and satisfy the estimate

c1|ζ|p
− ≤ F(t, s, ζ) ≤ c2|ζ|p

+
, 1 < p− ≤ p+ < ∞, c1, c2 > 0.

If Fk and F belong to the set Ψ, and

lim
k→∞

Fk(t, s, ζ) = F(t, s, ζ) for a.e. (t, s) ∈ QT and any ζ ∈ RN ,

then the following lower semicontinuity property is valid:

lim inf
k→∞

∫
QT

Fk(t, s, uk) dxdt ≥
∫

QT

F(t, s, u) dxdt (52)

provided that uk ⇀ u in L1(QT ;RN).

Lemma 4 ([34]). Let Bk(t, s, ζ) and B(t, s, ζ) be RN-valued Carathéodory functions satisfying
properties (C1–C3) such that

uk ⇀ v, wk = Bk(t, s, uk) ⇀ w in L1(QT ;RN) as k→ ∞,

and (w, u) ∈ L1(QT). Then, we have

lim inf
k→∞

∫
QT

(Bk(t, s, uk), uk) dxdt ≥
∫

QT
(w, u) dxdt. (53)

3. Existence Theorem for the Weak Solutions of Parabolic Equations with a Variable
Order of Nonlinearity

In this section, we focus on the solvability issues for the following problem:

∂u
∂t
− div Au(t, x,∇u) + κu = κ( f − v) in QT , (54)

∂νu = 0 on (0, T)× ∂Ω, (55)

u(0, ·) = f0 in Ω. (56)

Here, f ∈ L2(QT) and f0 ∈ L2(Ω) are given distributions, we have

Az(t, x,∇u) := |Dz(t, x)∇u|pz(t,x)−2Dz(t, x)∇u, (57)

the exponent pz : QT → (1, 2] is defined in Equation (7), the matrix Dz(t, x) is given by
Equation (28), ∂ν is the outward normal derivative, and v ∈ Vad stands for the control with
the following class of admissible controls Vad:

Vad =
{

v ∈ L2(QT) : va(x) ≤ v(t, x) ≤ vb(x), a.e. in QT

}
. (58)

As follows from Equations (57) and (28) and Lemma 1, the mapping (t, s, ξ) 7→
Az(t, s, ξ) is a Carathéodory function for each fixed z ∈ C([0, T]; L2(Ω)) (i.e., Az(t, s, ζ)
is measurable with respect to (t, s) for each ζ ∈ R2), and this function is continuous with



Axioms 2023, 12, 1073 14 of 22

respect to the third argument ζ ∈ R2. Moreover, the following conditions (monotonicity,
coerciveness, and boundedness) hold for a.e. (t, s) ∈ QT [15]:(

Az(t, s, ξ)− Az(t, s, ζ), ξ − ζ
)
≥ 0, ∀ ξ, ζ ∈ R2, (59)

(Az(t, s, ξ), ξ) = |Dz(t, s)ξ|pz(t,s)−2
(

Dz(t, s)ξ, D−1
z (t, s)Dz(t, s)ξ

)
by (50)
≥ d−1

2 dpz(t,s)
1 |ξ|pz(t,s) ≥ d−1

2 d2
1|ξ|pz(t,s), ∀ ξ ∈ R2, (60)

|Az(t, s, ξ)|p′z(t,s) ≤ dpz(t,s)
2 |ξ|pz(t,s) ≤ d2

2|ξ|pz(t,s), ∀ ξ ∈ R2. (61)

However, if we have z = u, then−div Au(t, x,∇u)+ κu provides an example of a non-
monotone, strongly nonlinear, and noncoercive operator in divergence form. In contrast
to [35], where there existence of strong solutions to the similar class of the initial boundary
value problems (IBVPs) was proven, we make use of the concept of weak solutions to
the above problem. However, the issue of their uniqueness is, apparently, still open [36]
(Chapter III).

Definition 2. Let f ∈ L2(QT), f0 ∈ L2(Ω), and v ∈ Vad be given distributions. We say that a
function u is a weak solution to the IBVPs in Equations (54)–(56) if u ∈Wu(QT); in other words,
we have

u ∈ L2(QT), u(t, ·) ∈W1,1(Ω) for a.e. t ∈ [0, T],∫
QT

|Du(t, x)∇u|pu(t,x) dxdt < +∞,
(62)

and the integral identity

∫
QT

(
−u

∂ϕ

∂t
+ (Au(t, x,∇u),∇ϕ) + κuϕ

)
dx dt

= κ
∫

QT

( f − v)ϕ dxdt +
∫

Ω
f0 ϕ|t=0 dx (63)

holds for any ϕ ∈ Φ, where Φ =
{

ϕ ∈ C∞(QT) : ϕ|t=T = 0
}

.

To clarify the sense in which the initial value u(0, ·) = f0 is assumed for the weak
solutions, we give the following assertion (for the proof, we refer to Proposition 2.2 in [25]):

Proposition 3. Let f ∈ L2(QT), f0 ∈ L2(Ω) and v ∈ Vad be given distributions. Let u ∈
Wu(QT) be a weak solution to the problem in Equations (54)–(56) in the sense of Definition 2. Then,

for any η ∈ C∞(Ω), the scalar function h(t) =
∫

Ω
u(t, x)η(x) dx belongs to W1,1(0, T), and

h(0) =
∫

Ω
f0(x)η(x) dx.

We next recall some known results that have recently been proven based on the
Schauder fixed-point theorem and using the perturbation technique (see Theorem 3.2
in [25]).

Theorem 2. Given f ∈ L2(QT), f0 ∈ L2(Ω), and v ∈ Vad, the problem in Equations (54)–(56)
admits at least one weak solution u ∈Wu(QT) for which the following energy inequality

1
2

∫
Ω

u2 dx +
∫ t

0

∫
Ω

(
(Au(s, x,∇u),∇u) + κu2

)
dx ds

≤ κ
∫ t

0

∫
Ω
( f + v)u dxds +

∫
Ω

f 2
0 dx (64)

holds for all t ∈ [0, T].
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Using Equation (64), we can derive the following estimates:

‖u‖2
L2(QT)

≤ C2
1 = κT

(
‖ f ‖2

L2(QT)
+ ‖v‖2

L2(QT)

)
+ κ−1‖ f0‖2

L2(Ω), (65)

‖∇u‖Lpu(·)(QT ;R2)

by (38)
≤

(∫
QT

|∇u|pu(t,x) dxdt + 1
)1/p−

by (60)
≤

(
d2

d2
1

(
3
2
‖ f0‖2

L2(Ω) +
2κ + κ2T

2

(
‖ f ‖2

L2(QT)
+ ‖v‖2

L2(QT)

))
+ 1

)1/p−

=: C2, (66)

‖∇u‖Lp− (QT ;R2)
≤ (1 + T|Ω|)1/p−C2, (67)

‖u‖L∞(0,T;L2(Ω)) ≤
√

2
√

κ
(
‖ f ‖2

L2(QT)
+ ‖v‖2

L2(QT)

)
+ ‖ f0‖2

L2(Ω)
. (68)

Since the uniqueness issue for the weak solutions of the initial boundary value problem
in Equations (54)–(56) seems to be an open question, we adopt the following concept:

Definition 3. We say that a weak solution u ∈ Wu(QT) to the problem in Equations (54)–(56)
for given distributions f ∈ L2(QT), f0 ∈ L2(Ω), and v ∈ Vad is W0-attainable if there exists a
sequence {εn}n∈N converging to zero as n→ ∞ such that

un ⇀ u in Lp−(0, T; W1,p−(Ω)),

Aun−1(t, x,∇un) ⇀ Au(t, x,∇u) in L(p+)′(QT ;R2)
as n→ ∞, (69)

where

un ∈W(0, T) =
{

w ∈ L2(0, T; W1,2(Ω)),
dw
dt
∈ L2(0, T;

[
W1,2(Ω)

]′
)

}
, ∀ n ∈ N,

Aw(t, x,∇u) := |Dz(t, x)∇u|pz(t,x)−2Dz(t, x)∇u, (70)

and, for each n ∈ N, un is the weak solutions to the following perturbed problem:

∂u
∂t
− εn∆u− div Aun−1(t, x,∇u) + κu = κ( f − v) in QT , (71)

∂νu = 0 on (0, T)× ∂Ω, (72)

u(0, ·) = f0 in Ω. (73)

Remark 1. It is worth emphasizing that (see the recent results in [25]) can now be specified as
follows. Given f ∈ L2(QT), f0 ∈ L2(Ω), and v ∈ Vad, the initial-boundary value problem in
Equations (54)–(56) admits at least one W0-attainable weak solution u ∈Wu(QT) for which the en-
ergy inequality in Equation (64) holds true for all t ∈ [0, T]. Moreover, as follows from the estimates
in Equations (65)–(68), this solution is bounded in Lp−(0, T; W1,p−(Ω)) ∩ L∞(0, T; L2(Ω)).

4. Setting of the Optimal Control Problem and Existence Result

As was pointed out in the previous sections, the operator −div Au(t, x,∇u) + κu
provides an example of a nonlinear operator in divergence form which is neither monotone
nor coercive. In this case (see Theorem 2), a weak solution to the initial boundary value
problem (Equations (54)–(56)) under some admissible control v ∈ Vad may not be unique.
Moreover, it is unknown whether all weak solutions to Equations (54)–(56) satisfy the
energy inequality in Equation (64), which plays a crucial role in the derivation of a priori
estimates (Equations (65)–(68)).
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Our prime interest in this section is to consider the following optimal control problem
of the tracking type:

Minimize J(v, u) = ‖v‖2
L2(0,T;L1(Ω)) +

µ

2

∫
Ω
|u(T)− f0|2 dx

subject to the constraints (2)–(4), (58),
(74)

where f ∈ L2(Ω) is the original noise-corrupted image, f0 ∈ L2(Ω) is the pre-denoised
image when applying a median filter to f , and va, vb ∈ L2(Ω) and va(x) ≤ vb(x) a.e. in Ω
are given distributions.

We say that (v.u) is a feasible pair to this problem if

v ∈ Vad, u ∈Wu(QT), J(v, u) < +∞,

(v, u) are related by integral identity (63) and inequality (64),

and u is a W0-attainable weak solution to (54)–(56) for the given v.

 (75)

Let Ξ ⊂ L2(QT)×Wu(QT) be the set of feasible solutions to the problem in Equation (74).
Then, Theorem 2 implies that Ξ 6= ∅. Since the main topological properties of the set Ξ are
unknown, in general, we begin with the following observation:

Theorem 3. Given f ∈ L2(QT) and f0 ∈ L2(Ω), the set Ξ is sequentially closed with respect to
the weak topology of L2(QT)× Lp−(0, T; W1,p−(Ω)).

Proof. Let {(vk, uk)}k∈N ⊂ Ξ be a sequence such that

vk ⇀ v in L2(QT), uk ⇀ u in Lp−(0, T; W1,p−(Ω)). (76)

Since the set Vad is convex and closed, it follows from Mazur’s theorem that Vad is
sequentially closed with respect to the weak topology of L2(QT). Therefore, v ∈ Vad. Let
us show that (v, u) ∈ Ξ. We will accomplish this in several steps.

Step 1. Under the initial assumptions, for each k ∈ N, the pair (vk, uk) satisfies the energy
inequality in Equation (64), and uk is a W0-attainable weak solution for Equations (54)–(56).
Hence, in light of Definition 3, we may always suppose that there exists a sequence{

uk,n
}

n∈N ⊂ W(0, T) such that
{

uk,n
}

n∈N are the weak solutions (in the sense of distri-
butions) to Equations (71)–(73) with εn = 1/n and v = vk, and

uk,n ⇀ uk in Lp−(0, T; W1,p−(Ω)), as n→ ∞, (77)

Auk,n−1(t, x,∇uk,n) ⇀ Auk (t, x,∇uk) in L(p+)′(QT ;R2) as n→ ∞, (78)

Moreover, the fact that the energy equality

1
2

∫
Ω

u2
k,n dx +

∫ t

0

∫
Ω

(
1
n
|∇uk,n|2 +

(
Auk,n−1(s, x,∇uk,n),∇uk,n

)
+ κu2

k,n

)
dx ds

= κ
∫ t

0

∫
Ω
( f − vk)uk,n dx ds +

∫
Ω

f 2
0 dx, ∀ t ∈ [0, T] (79)

is valid for all n, k ∈ N implies the boundedness of the sequence
{

uk,k
}

k∈N in the space
Lp−(0, T; W1,p−(Ω)) ∩ L∞(0, T; L2(Ω)). Hence, by combining this fact with Equations (77)
and (76), we deduce that

uk,k ⇀ u in Lp−(0, T; W1,p−(Ω)), as k→ ∞, (80)

uk,k ⇀ u in L2(0, T; L2(Ω)), as k→ ∞. (81)
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Step 2. By utilizing the energy equality in Equation (79) and arguing as we did in
Equations (65)–(68), we can derive the following a priori estimates:

‖uk,k‖2
L2(QT)

≤ κT

(
‖ f ‖2

L2(QT)
+ sup

k∈N
‖vk‖2

L2(QT)

)
+ κ−1‖ f0‖2

L2(Ω) =: S2
1, (82)

‖∇uk,k‖
p−

L
puk,k−1 (·)(QT ;R2)

≤ d2

d2
1

(
3
2
‖ f0‖2

L2(Ω) +
2κ + κ2T

2

(
‖ f ‖2

L2(QT)
+ sup

k∈N
‖vk‖2

L2(QT)

))
+ 1 =: S2, (83)

‖∇uk,k‖Lp− (QT ;R2)
≤ (1 + T|Ω|)1/p−S2, (84)

‖uk,k‖L∞(0,T;L2(Ω)) ≤
√

2

√√√√κ

(
‖ f ‖2

L2(QT)
+ sup

k∈N
‖vk‖2

L2(QT)

)
+ ‖ f0‖2

L2(Ω)
, (85)

‖∇uk,k‖L2(QT ;RN) ≤
√

k
(
‖ f0‖2

L2(Ω) + κ‖ f + vk‖L2(QT)
‖uk,k‖L2(QT)

) by (82)
≤
√

kS3. (86)

for all k ∈ N, where
sup
k∈N
‖vk‖L2(QT)

≤
√

T‖vb‖L2(Ω) < +∞. (87)

Our main intention in this step is to establish the following asymptotic property:

1
k
∇uk,k ⇀ 0 in L2(QT ;R2). (88)

Indeed, for any vector-valued test function ϕ ∈ C∞
0 (QT), we have∣∣∣∣∫QT

(
1
k
∇uk,k, ϕ

)
dxdt

∣∣∣∣ ≤ 1√
k

(∫
QT

1
k
|∇uk,k|2 dxdt

)1/2(∫
QT

|ϕ|2 dxdt
)1/2

.

Hence, the sequence
{

1
k∇uk,k

}
k∈N

is bounded in L2(QT ;R2). As a result, we obtain

∣∣∣∣∫QT

(
1
k
∇uk,k, ϕ

)
dxdt

∣∣∣∣ by (86)
≤ S3

1√
k

(∫
QT

|ϕ|2 dxdt
)1/2

→ 0 as k→ ∞.

Step 3. Let us show that in this case, the flux 1
k∇uk,k + Auk,k−1(t, x,∇uk,k) weakly

converges in L(p+)′(QT ;R2) to the flux Au(t, x,∇u) as k → ∞. To accomplish this, it is
enough to show that all preconditions (C1–C7) of Theorem 1 are fulfilled.

To begin with, we notice that the conclusion, similar to Equation (80), can also be made
with respect to the sequence

{
uk,k−1

}
k∈N. Then, Lemmas 1 and 2 imply that

Duk,k−1(t, x)→ Du(t, x) and puk,k−1(t, x)→ pu(t, x)

uniformly in QT as j→ ∞.
(89)

Moreover, we deduce from Equations (61) and (83) that the sequence{
1
k
∇uk,k + Auk,k−1(t, x,∇uk,k)

}
k∈R

is bounded in L(p+)′(QT ;R2). Hence, there exists an element z ∈ L(p+)′(QT ;R2) such that

1
k
∇uk,k + Auk,k−1(t, x,∇uk,k) ⇀ z weakly in L(p+)′(QT ;R2) as k→ ∞. (90)
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We also make use of the following observation: the sequence{
1
k
|∇uk,k|2 +

(
Auk,k−1(t, x,∇uk,k),∇uk,k

)}
k∈N

(91)

is uniformly bounded in L1(QT). Indeed, this inference is a direct consequence of
the estimates in Equations (86) and (83), and the following one:

|Auk,k−1(t, x,∇uk,k)||∇ϕ| ≤ 1
p′uk,k−1

(t, x)
|Auk,k−1(t, x,∇uk,k)|

p′uk,k−1
(t,x)

+
1

puk,k−1(t, x)
|∇ϕ|puk,k−1 (t,x)

≤
d2

2
2
|∇uk,k|

puk,k−1 (t,x) +
1

p−
|∇ϕ|puk,k−1 (t,x). (92)

Utilizing this fact together with the properties in Equations (89), (90), (59), (80), and

uk,k ∈ Lp+(0, T; W1,p+(Ω)) ∀ k ∈ N by (82) and (86),

and taking into account that 1 < 1+ δ = p− < p+ = 2 < 2p−, we see that all preconditions
of Theorem 1 hold true. Hence, in light of the property in Equation (88), the assertion in
Equation (90) can be rewritten as follows:

1
k
∇uk,k + Auk,k−1(t, x,∇uk,k) ⇀ Au(t, x,∇u) weakly in L(p+)′(QT ;R2) as k→ ∞. (93)

Step 4. At this stage, we show that the limit pair (v, u) is related with the integral
identity in Equation (63). First, we notice that uk,k is a weak solution (in the sense of
distributions) of Equations (71)–(73) with n = k, εn = 1/k, and v = vk. Hence, uk,k satisfies
the integral identity

∫
QT

(
−uk,k

∂ϕ

∂t
+

1
k
(∇uk,k,∇ϕ) +

(
Auk,k−1(t, x,∇uk,k),∇ϕ

)
+ κuk,k ϕ

)
dx dt

= κ
∫

QT

( f − vk)ϕ dxdt +
∫

Ω
f0 ϕ|t=0 dx ∀ ϕ ∈ Φ. (94)

Then, utilizing the properties in Equations (93), (80), and (76) and passing to the
limit in Equation (94) as k → ∞, we immediately arrive at the announced identity in
Equation (63).

Step 5. In order to show that the limit pair (v, u) satisfies the energy inequality in
Equation (64), we have to realize the limit passage as k → ∞ in the following relation
(see [25]):

1
2

∫
Ω

u2
k,k dx +

∫ t

0

∫
Ω

(
1
k
|∇uk,k|2 +

(
Auk,k−1(s, x,∇uk,k),∇uk,k

)
+ κu2

k,k

)
dx ds

= κ
∫ t

0

∫
Ω
( f − vk)uk,k dx ds +

∫
Ω

f 2
0 dx ∀ t ∈ [0, T]. (95)

This can be viewed as the energy equality for the weak solutions to the problem in
Equations (71)–(73) with n = k, εn = 1/k, and v = vk. With that in mind, we notice that
the weak convergence in Equation (80), under the Sobolev embedding theorem, implies
the pointwise convergence

u2
k,k(t, ·)→ u2(t, ·) a.e. in Ω for a.a. t ∈ (0, T).
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Then, in light of the estimate in Equation (85), we have the strong convergence
u2

k,k(t, ·)→ u2(t, ·) in L1(Ω) for a.e. t ∈ (0, T) (under Lebesgue’s dominated convergence
theorem), and therefore

1
2

lim
k→∞

∫
Ω

u2
k,k(t, x) dx =

1
2

∫
Ω

u2(t, x) dx for a.a. t ∈ (0, T). (96)

Moreover, taking into account that the L2(QT) norm is less semi-continuous with
respect to the weak convergence in Equation (81), we see that

lim
k→∞

∫ t

0

∫
Ω

u2
k,k dxdt ≥

∫ t

0

∫
Ω

u2 dxdt. (97)

We also notice that due to the properties in Equations (88), (93), and (80), we have

∇uk,k ⇀ ∇u and Auk,k−1(t, x,∇uk,k) ⇀ Au(t, x,∇u) in L1(QT ;R2) as k→ ∞.

Since (Au(t, x,∇u),∇u) ∈ L1(QT) (see Equation (92)), it follows from Lemma 4 (see
also Proposition 2) that

lim
k→∞

∫ t

0

∫
Ω

[1
k
|∇uk,k|2+

(
Auk,k−1(s, x,∇uk,k),∇uk,k

)]
dxds

≥ lim
k→∞

∫ t

0

∫
Ω

[
1
k
|∇uk,k|2

]
dxds

+ lim inf
k→∞

∫ t

0

∫
Ω

(
Auk,k−1(s, x,∇uk,k),∇uk,k

)
dxds

by (86)
≥

∫ t

0

∫
Ω
(Au(s, x,∇u),∇u) dxds. (98)

Therefore, in order to pass to the limit in Equation (95), the asymptotic behavior of
the term

∫
QT

( f − vk)uk,k dxdt as k→ ∞ remains to be found. We prove this in the next step
using the well-known Aubin–Lions lemma.

Step 6. We recall that the Aubin–Lions lemma states the criteria for when a set of
functions is relatively compact in Lp(0, T; B), where p ∈ [1, ∞), T > 0, and B is a Banach
space. The standard formulation of the Aubin–Lions lemma states that if U is a bounded
set in Lp(0, T; X), and ∂U/∂t = {∂u/∂t : u ∈ U} is bounded in Lr(0, T; Y), r ≥ 1, then U
is relatively compact in Lp(0, T; B) under the conditions that

X ↪→ B compactly, B ↪→ Y continuously.

By setting U =
{

uk,k
}

k∈N, we deduce from Equations (82)–(85) that{
uk,k
}

k∈N is bounded in Lp−(0, T; W1,p−(Ω) ∩ L2(Ω)). (99)

Since, under the Sobolev embedding theorem, W1,p−(Ω) ↪→ Lp−(Ω) compactly, it
follows from Lebesgue’s dominated convergence theorem that the following embeddings
are compact as well:

W1,p−(Ω) ∩ L2(Ω) ↪→ L2(Ω), L2(Ω) ↪→
(

W1,2(Ω)
)′

(by the duality arguments). (100)
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Furthermore, we have in mind the fact that for each k ∈ N, the functions uk,k are the
solutions in W(0, T) for the variational problem〈

∂uk,k(t)
∂t

, ϕ

〉
(W1,2(Ω))

′
;W1,2(Ω)

+
∫

Ω

[
1
k
(∇uk,k(t),∇ϕ)

]
dx

+
∫

Ω

[(
Auk,k−1(t, x,∇uk,k(t)),∇ϕ

)
+ κuk,k(t)ϕ

]
dx (101)

= κ
∫

Ω
( f (t)− vk(t))ϕ dx, ∀ ϕ ∈W1,2(Ω) a.e. in [0, T], (102)

uk,k(0) = f0. (103)

We derive from this the following estimate:

∣∣∣∣〈∂uk,k

∂t
, ϕ

〉∣∣∣∣ ≤ 1√
k
‖∇uk,k‖L2(QT ;R2)‖∇ϕ‖L2(QT ;R2)

+ 2‖Auk,k−1(t, x,∇uk,k)‖
L

p′uk,k−1
(·)
(QT ;R2)

‖∇ϕ‖
L

puk,k−1 (·)(QT ;R2)

+ κ‖uk,k‖L2(QT)
‖ϕ‖L2(QT)

+ κ‖ f − vk‖L2(QT)
‖ϕ‖L2(QT)

≤ (by (82)–(86))

≤
[
S3 + κS1 + κ‖ f ‖L2(QT)

+ κ sup
k∈N
‖vk‖L2(QT)

]
‖ϕ‖L2(0,T;W1,2(Ω))

+

(
1 +

∫
QT

|Auk,k−1(t, x,∇uk,k)|
p′uk,k−1

(t,x) dxdt
)1/2

(1 + T|Ω|)1/2‖ϕ‖L2(QT)

by (83),(61)
≤ const‖ϕ‖L2(0,T;W1,2(Ω)), ∀ v ∈ L2(0, T; W1,2(Ω)).

Hence, we have ∥∥∥∥∂uk,k

∂t

∥∥∥∥
L2(0,T;(W1,2(Ω))

′
)
< +∞. (104)

Utilizing this fact together with Equations (99) and (100), we deduce from the the
Aubin–Lions lemma that the set U =

{
uk,k
}

k∈N is relatively compact in Lp−(0, T; L2(Ω)).
Hence, we can complement properties with the following one: uk,k → u strongly in
Lp−(0, T; L2(Ω)) as k → ∞. Since U is bounded in L∞(0, T; L2(Ω)), it leads to the conclu-
sion that

uk,k → u strongly in L2(0, T; L2(Ω)), as k→ ∞. (105)

Hence, the term
∫

QT
( f − vk)uk,k dxdt is the product of weakly and strongly convergent

sequences in L2(0, T; L2(Ω)). As a result, we have

lim
k→∞

∫
QT

( f − vk)uk,k dxdt =
∫

QT

( f − v)u dxdt. (106)

Thus, in light of the obtained collection of properties (see Equations (96)–(98) and (106)),
the limit passage in Equation (95) as k → ∞ finally leads us to the energy inequality in
Equation (64).

Step 7. To end the proof, it remains to notice that due to the properties in Equation (62),
which were established in the previous steps, we have J(v, u) < +∞ and u ∈ Wu(QT).
Moreover, it has been proven that in this case, the sequence

{
uk,k
}

k∈N satisfies all require-
ments that were mentioned in Definition 3. Hence, u ∈ Wu(QT) is a W0-attainable weak
solution to the problem in Equations (54)–(56). The proof is complete.

Taking this result into account, let us show that the original optimal control problem
(Equation (74)) has a solution. In fact, this issue immediately follows from Theorem 3 and
the facts that the set of feasible solutions Ξ is bounded in L2(QT)× Lp−(0, T; W1,p−(Ω)) (see
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the estimates in Equations (65)–(68) and (87)) and the objective functional J(v, u) is less semi-
continuous with respect to the weak topology of L2(QT)×

(
Lp−(0, T; W1,p−(Ω)) ∩ L∞(0, T;

L2(Ω))
)
. Thus, as a direct consequence, we can finalize this inference as follows:

Corollary 1. Let f ∈ L2(QT), f0 ∈ L2(Ω), and va, vb ∈ L2(Ω), va(x) ≤ vb(x) a.e. in Ω be
given distributions, and let κ > 0, σ > 0, ε > 0, and µ > 0 be some constants. Then, the optimal
control problem (Equation (74)) admits at least one solution (v0, u0) ∈ Ξ.
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