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Abstract: By applying the weighted relaxation technique to the gradient-based iterative (GI) algorithm
and taking proper weighted combinations of the solutions, this paper proposes the weighted, relaxed
gradient-based iterative (WRGI) algorithm to solve the generalized coupled conjugate and transpose
Sylvester matrix equations. With the real representation of a complex matrix as a tool, the necessary
and sufficient conditions for the convergence of the WRGI algorithm are determined. Also, some
sufficient convergence conditions of the WRGI algorithm are presented. Moreover, the optimal step
size and the corresponding optimal convergence factor of the WRGI algorithm are given. Lastly,
some numerical examples are provided to demonstrate the effectiveness, feasibility and superiority
of the proposed algorithm.

Keywords: generalized coupled conjugate and transpose Sylvester matrix equations; weighted
relaxed gradient-based iterative algorithm; real representation; relaxation parameter; convergence
condition; optimal convergence factor
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1. Introduction

Matrix equations are often used in mathematics and engineering applications, such
as control theory, signal processing and computational mathematics [1-4]. For example,
the forward and backward periodic Sylvester matrix equations (PSMEs) with the follow-
ing forms

Ain'Bl‘ + CiXiJrlDi = Fi,i =12, ,w

and
AiXiBi+CXDi=F,i=12,--+,w,

are an indispensable part of pole assignment and the design of state observers for linear dis-
crete periodic systems [5]. Thus, studying the computational methods of matrix equations
has become an important subject in the field of computational mathematics and control. For
matrix equations, computing their exact solutions is very meaningful for many practical
problems. However, in many applications, such as stability analysis of control systems,
it is usually not necessary to calculate the exact solution, as the approximate solution is
sufficient. Therefore, the research of iterative solutions to matrix equations has attracted
many researchers [6-12].

One of the important ways to study the approximate solutions of matrix equations
is to establish iterative methods. In recent years, many researchers have proposed a great

Axioms 2023, 12, 1062. https:/ /doi.org/10.3390/axioms12111062

https:/ /www.mdpi.com/journal/axioms


https://doi.org/10.3390/axioms12111062
https://doi.org/10.3390/axioms12111062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms12111062
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12111062?type=check_update&version=3

Axioms 2023, 12, 1062

2 of 28

deal of iterative methods to solve different kinds of Sylvester matrix equations. For the
generalized coupled Sylvester matrix equations

q
Y AiiXjBjj=F,i=12,---,p, 1)
j=1

where Aij € R, Bi]' € R"*%, F; € R"*% and X] eR"*M,i=1,2,--- ,p,j =12---,q
Ding and Chen [13] applied the hierarchical identification principle and introduced the
block matrix inner product to propose the GI algorithm. Based on the idea of the GI
algorithm, some researchers established many improved versions of the GI algorithm and
investigated their convergence properties [14,15]. To improve the convergence rate of the
Gl algorithm, Zhang [16] proposed the residual norm steepest descent (RNSD), conjugate
gradient normal equation (CGNE) and biconjugate gradient stabilized (Bi-CGSTAB) al-
gorithms to solve the matrix in Equation (1). Subsequently, Zhang [17] constructed the
full-column rank, full-row rank and reduced-rank gradient-based algorithms, with the
main idea of them being to construct an objective function and use the gradient search.
Afterward, Zhang and Yin [18] developed the conjugate gradient least squares (CGLS)
algorithm for Equation (1), which can be convergent within the finite iteration steps in the
absence of round off errors.

The generalized coupled Sylvester-conjugate matrix equations have the following form:

q

Z (Al]X]Bl] + CZJX]D,]) = Fi,i =12, P, (2)

j=1
where A;;,C;j € C"*i,B;;,D;; € C*", F; € C">*" and X; € C1*,i = 1,2,---,p,
j=12,---,q9. The matrix in Equation (2) can be regarded as the generalization of
Equation (1) in the complex field. For the matrix in Equation (2), Wu et al. [19] extended
the GI algorithm to solve it and derived the sufficient condition for the convergence of the
GI algorithm. Due to the fact that the sufficient condition in [19] is somewhat conservative,
Huang and Ma [20] established the sufficient and necessary conditions for convergence
of the GI algorithm based on the properties of the real representation of a complex matrix
and the vec operator. Also, they made use of different definitions of the real representation
to derive another sufficient and necessary condition for the convergence of the GI algo-
rithm. In [21], Huang and Ma introduced ! relaxation factors into the GI algorithm and
proposed two relaxed gradient-based iterative (RGI) algorithms. They proved that the RGI
algorithms are convergent under suitable restrictions in light of the real representation
of a complex matrix and the vec operator. Quite recently, Wang et al. [22] developed a
cyclic gradient-based iterative (CGI) algorithm by introducing a modular operator, which
is different from previous iterative methods. The most remarkable advantage of the CGI al-
gorithm is that less information is used in each iteration update, which helps save memory
and improve efficiency.

In addition, the generalized, coupled Sylvester-transpose matrix equations

I
Y (Ain]-Bij + Cin]-TDij) =F,i=12---,s ®)
=1

where A;; € R"*"i,C;; € R"*!,B;; € R'*™,Dy;; € R, F; € R">" and X; € R"i™,
i=12,---,5,j=12,---,1 are related to fault detection, observer design and so forth.
Due to the important role of the generalized, coupled Sylvester-transpose matrix equations
in several applied problems, numerous methods have been developed to solve them. For
example, Song et al. [23] constructed the GI algorithm for the matrix in Equation (3) by using
the principle of hierarchical identification. According to the rank of the related matrices
of the matrix in Equation (3), Huang and Ma [24] developed three relaxed gradient-based
iterative (RGI) algorithms recently by minimizing the objective functions.



Axioms 2023, 12, 1062

30f28

In [25], Beik et al. considered the following matrix equations:

14 51 S2 53 - Sy
TU(X) = Z < Avintiiy + Z CviniTDviy+ Z MviniNvm + Z Hvi;tXiHGvi}t> =F, (4)
i=1 \pu=1 u=1 u=1 u=1

where Aviy, Boiy, Coipis Doips Moips Noips Hoiy, Goiy and Fy, v = 1,2,- -+, N are the known
matrices with suitable dimensions in a complex number field, X = (Xq, Xy, -+, Xp) is
a group of unknown matrices and X]H represents the conjugate transpose of the matrix
X;. The matrix in Equation (4) is quite general and includes several kinds of Sylvester
matrix equations, and it can be viewed as a general form of the aforementioned matrices in
Equations (1)—(3). By using the hierarchical identification principle, the authors in [25] put
forward the GI algorithm over a group of reflexive (anti-reflexive) matrices.

Inspired by the above work, this paper focuses on solving the iterative solution of the
generalized coupled conjugate and transpose Sylvester matrix equations:

l

-21 (AinjB,»j +CyX;Dyi + EyXT Fj + Gy X! Hl-j) =M, i=12-,s ®)

=
where Aijr Cij € Cmixrf,Bi]', Dl']' € (Csfxni,Ei]', Gi]' S Cmixsj,Fij, Hij € C'7*" and M; € C™ix1i,
i=12--,s,j=1,2,---,1 are the known matrices and X; € Cli*siforj=1,2,---,1
are the unknown matrices that need to be determined. When I = 1, Wang et al. [26]
presented the relaxed gradient iterative (RGI) algorithm for Equation (5), which has four
system parameters. Note that the matrices in Equations (1)—(3) are special cases of the
matrix in Equation (5), and thus the results obtained in this work contain the existing ones
in [20,23,24,27]. Owing to the fact that the convergence speed of the GI algorithm is slow
in many cases, it is quite meaningful to further improve the numerical performance of
the GI algorithm for the matrix in Equation (5). According to [21,24,26,28,29], it can be
seen that the relaxation technique can ameliorate the numerical behaviors of the existing
Gl-like algorithms. Then, this motivated us to apply the weighted relaxation technique
to the Gl algorithm. By using different step size factors and the weighted technique, we
construct the weighted, relaxed gradient-based iterative (WRGI) algorithm for solving
the matrix in Equation (5). The WRGI algorithm contains s relaxation factors. When all
relaxation factors are equal, the WRGI algorithm will reduce to the GI one proposed in [25].
In [25], the optimal convergence factor of the GI algorithm was not derived. Compared
with the GI algorithm in [25], the WRGI algorithm proposed in this paper can own a higher
computational efficiency, and its convergence properties are analyzed in detail, including
the convergence conditions, optimal parameters and corresponding optimal convergence
factor. The proposed WRGI algorithm has a faster convergence rate than the GI one by
adjusting the values of the relaxation factors so it is more conducive to solving matrix
equations in control theory, signal processing and computational mathematics, among
other applications. The main contributions of this paper are given below:

* By using a series of step size factors and the weighted relaxation technique, we
establish the weighted, relaxed gradient-based iterative (WRGI) algorithm for solving
the matrix in Equation (5), which generalizes and improves the existing GI one in [25].
Aside from that, the proposed WRGI algorithm contains the RGI ones in [21,24].

¢ We analytically provide the necessary and sufficient condition for the convergence of
the proposed WRGI algorithm. Also, the expressions of the optimal step size and the
corresponding optimal convergence factor of the WRGI algorithm are derived.

The rest of this paper is organized as follows. In Section 2, some definitions and
previous results are given, and the GI algorithm that has been proposed before is reviewed.
In Section 3, we first design a new algorithm referred to as the WRGI algorithm to solve
the matrix in Equation (5). Then, we prove that the WRGI algorithm is convergent for
any started matrices under proper conditions, and we explicitly give the optimal step
factor such that the convergence rate of the WRGI algorithm is maximized. Section 4 gives
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two numerical examples to demonstrate the effectiveness and advantages of the proposed
WRGI algorithm. Finally, we give some concluding remarks to end this paper in Section 5.

2. Preliminaries

In this section, as a matter of convenience to discuss the main results of this paper, we
describe the following notations which will be used throughout this paper. Let C"*" be the
set of all n X n complex matrices. For a given matrix A € C"*"", some related notations are
the following:

e A denotes the conjugate of the matrix 4;

e AT stands for the transpose of the matrix A;

e AH represents the conjugate transpose of the matrix A;

e A~1denotes the inverse of the matrix A;

e ||A]| denotes the Frobenius norm of the matrix A;

e  ||A]|, denotes the spectrum norm of the matrix A;

*  0Omax(A) indicates the maximum singular value of the matrix A;
®  Omin(A) indicates the minimum singular value of the matrix A;
*  p(A) stands for the spectral radius of the matrix A;

e A(A) stands for the spectrum of the matrix A;

e rank(A) stands for the rank of the matrix A.

Moreover, some useful definitions and lemmas are given below:

Definition 1 ([30]). For two matrices E € C"™*" and F € C**!, the Kronecker product of the
matrices E and F is defined as follows:

611F 612F s 61nF
621F 622F et €2 F

EoF=| . 7| = leyFlmxn € CO ©)
emiF eypF -+ eunF

Definition 2 ([27]). Let e;,, be the n-dimensional column vector whose ith element of e;, is one,
and other elements are zero. Then, the vec permutation matrix P(m,n) can be defined as follows:

Im®e£1
Iy ®el
Pimn)y=| @)

Im ® 6171;1

Definition 3 ([30]). Let A = [aq,ap,- -+ ,an] € C™ ", with a; being the ith column of A. The
vector-stretching function of A is defined as follows:

vec(A) = [alT,a2T,~ .- ,aZ]T e Ccmn, (8)

Lemma 1 ([20]). Let CYD = G be a matrix equation, with the matrices C and D being full-column
rank and full-row rank, respectively. Then, the iterative solution Y (1) produced by the GI iteration
process

Y(I+1)=Y(l)+tCH(G - CY(l)D)D" )

converges to the exact solution Y* of CYD = G for any initial matrix Y (0) if and only if

2
0<t< . 10
Umax(c)zamax(D)z (19

In addition, the optimal step size Ty is
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2
* Amax(CHC) Amax (DDH) + Apmin (CHC)Amin(DDH)

0

Lemma 2 ([30]). Let A € C"*", B € C**! and X € C"*5. Then, we have the following:
(i) vec(AXB) = (BT ® A)vec(X);
(ii) vec(XT) = P(n,s)vec(X).

Lemma 3 ([19]). Let A,B € C"*". Iftr(A) 4+ tr(B) € R, then
tr(A) +tr(B) = tr(A) + tr(B) = tr(A) + tr(B).

Next, we introduce two definitions of the real representation of a complex matrix. For
A € C™*", A can be uniquely expressed as A = A +iA,; € C"*", where A;, A; € R™*",

We define the operators (-)" and (-)7 as follows:

Ay —Az}Av_[Az Ay ] (11)

v _
AT = Ay A A —A

It can be seen from Equation (11) that the sizes of AV and AY are two times that of A.
Then, by combining Equation (11) with the definition of the Frobenius norm, we can obtain

1AY]? = 2] A% (12)

Aside from that, for the identity matrix I, with the matrix order n, we define the
following matrices:

Qn: 0 I /Pnzg iy ,In .
I, O 2 I, il

The properties of the real representation of several complex matrices are given by the

following lemma:

Lemma 4 ([21]). Let A € C"*" and B € C"*". Then, the following statements hold:
(1)
(AB)V — AVBV, (AT)V — Qn(Av)TQm/

(AMY = (AT, (A)Y = QuAYQu, AY = QuAY.

(2) If A € C™" is nonsingular, then (A~1)V = (AV)~L
) |[BY ||z = IBY |2 = ||B]2.

(4) If n = r, then it holds that p(B) = p(BY) and p(BY) = \/p(BB).

The lemma below gives the norm relationship between the block matrices and its
submatrices:

Lemma 5 ([31]). Let B be a block-partitioned matrix with

Bi1 B -+ By
By Bx -+ By

B=| . ) . (13)
Bml BmZ e an

and B;; be a matrix with a proper size. Then, it holds that
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R
Baill 1Bzl -+ ||Bon m.n )
Bl = 0max(B) < |[B]| = || . : : = XX IByl™
: : : i=1i=1
Butll B2l -+ [|Bunll

Ifrank(B) = 1, or if B is a vector, then we have
IBll2 = [IB]l = omax(B)-

The following result gives the norm inequality for the p norms of the block matrix and
its submatrices, which is essential for analyzing the convergence of the WRGI algorithm:

Lemma 6 ([21]). Let B = [Bjj]mxnu be a partitioned matrix with the form in Equation (13), and let
the orders of the matrices Bjj (i =1,--- ,m,j = 1,--- ,n) be compatible. Then, for any deduced q
norm, we have

[Bull; B2l -+ [[Binlly
IBaally  I1B22ll; -+ |Baall
q q q
Bl <], |
”Bml”q HBmZHq ||anHq

q

3. The Weighted, Relaxed Gradient-Based Iterative (WRGI) Algorithm and Its
Convergence Analysis

In this section, we first propose the weighted, relaxed gradient-based iterative (WRGI)
algorithm to solve the matrix in Equation (5) based on the hierarchical identification
principle. Then, we discuss the convergence properties of the WRGI algorithm, which
include the convergence conditions, optimal step size and the corresponding optimal
convergence factor of the WRGI algorithm.

First, we define the following intermediate matrices fori =1,--- ,s,p =1,---,l by
applying the hierarchical identification principle:

!
I, = M; — ; (44jX;Bij + CyXiDyj + EgX] Fy+ GyX["Hyj) + Aip X, By, (14)

I
Yip = Mi— Y. (A X;Bjj + CyX;Dyj + Ey X7 Fyj + G,-jx]HHij) +CipX,Dip, (15)
j=1

M; —
I T
( Z AijX;Bij + CijX;Dij + Ei X[ Fyj + Gy Xj! )+ElﬁXPF ) . (16)

H
1
Qip:<Mi—Z{(A X;Bij + C;jX;Dij + Ejj ]FZJ+GIJXJHH)+GIP ! ) . 1Y)
]:

For the sake of the following discussions, we define
Tij = AijX;Bij + CijX;Djj + E;j X[ Fyj + G X[ Hy,

Tij(k) = AjX;j(k)Bjj + CijX;(k)Dyj + EiiX[ (k) Fyj + Gy X! (k) Hyj.

Then, Equations (14)—(17) can be written as



Axioms 2023, 12, 1062 7 of 28

[
Hip =M, - Z l-‘ij + AipoBipr (18)
j=1
l —
Yip = Mi = ) Tij + CipXpDip, (19)
j=1
T
Pjy = <M 2 Ty + Eip X, Fiy ) , (20)
=
H
Qip <M 2r,,+czp , ) : (21)
j=1
Therefore, the matrix in Equation (5) can be decomposed into the following matrix
equations
I, = AjpXpBip, (22)
Tip = CipXpDip, (23)
®;, = F, XPEZ;,, (24)
0, = HEX,Gh, (25)

fori=1,---,s,p=1,---,1. By applying Lemma 1 to Equations (22)—-(25), we can construct
the recursive forms as follows

Xy (k+1) = X} (k) + pAf [T, — Ay X5 () By | B, (26)
X3 (k+1) = X} (k) + uCl, | 73y — G X3 (k) Dy, | D, @)
X3 (k+ 1) = X3 (k) + iy [0y, — FLX3 (0 EL | By, (28)
Xpi(k+1) = Xy (k) + pHiy [ Osp — HEXY (K)GH Gy, @9

fori=1,---,s,p=1,---,1, where y is a step size factor.
For convenience, we define the following notations:

y y y AT H
F;jl(k) = Ain;Z(k)Bi]’ + Cin;l(k)Dij + Ein;l(k) Fi]' + Gin;l(k) H,],V =1,2,3,4.

' Substituting Equations (18)—(21) into Equations (26)—(29), respectively, and then using
Xy'(k), Xy (k), X' (k) and X' (k) to replace X, fori =1--- ,5,p =1,--- I gives

Xy (k+1) = X' (k) + pAf) Z ri/' (k) |BE,

X5 (k+1) = X5 (k) + uCJ | M; — Z I (k) | D,

, . _ N

X0 (k+1) = X3/ (k) + pFp | M; — Y F?]fl(k) Eip,
=1

H
, ) ! ,
X' (k+1) = X' (k) + pHj lMi - r4fl(k)] Gip-
1
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By taking the average of X;'i(k+ l),X}%’i(k + 1),X2’i(k +1) and Xé’i(k +1) in the
above equations, one can obtain the following iterative algorithm:

xWk+1) = x,§1>(k)+f4‘{A{; Ml—zlil”lj(k) B +cf, Ml—iirlj(k) D,
I T ] I H]
+Fi, | My —]§F1j(k)] E1p+Hyp | My _]grlj(k)‘| Glp},
X1 = xPw+Lal Ms—ifsj(k) Bl + T, Ms—zl%rsj(k) ol
I T ] I H]
+Fyp Ms—]; Tsf(k)l Eop+Hgp Ms—]; Tsj(k) | Gep

Then, we construct the calculation forms of X, (k+1) (p =1, ---,I) by introducing
the suitable relaxation parameters and using the balanced strategies

Xp(k+1) = e X (k+1) + X (k+1) + - - + as X5 (k+ 1),
witha; >0 (i =1,---,s) being the weighted relaxation factors.

Remark 1. We apply Lemma 1 to Equations (22)—(25) and then use the same step size factor y
to establish the iterative sequences in Equations (26)—(29), which is conducive to deducing the
convergence conditions of the proposed algorithm. It is noteworthy that we also can use different step
size factors in Equations (26)—(29) and design a new algorithm, but it may be difficult to derive the
convergence conditions of the new algorithm this way. Using different step size factors to construct
iterative sequences and proposing a new algorithm will be the direction and focus in our future work.

Based on the above discussions, we obtain the following weighted, relaxed gradient-
based iterative (WRGI) algorithm (Algorithm 1) to solve the generalized coupled conjugate
and transpose Sylvester matrix equations.

Algorithm 1: The weighted, relaxed gradient-based iterative (WRGI) algorithm
Step 1: Given the matrices Aij/ Cij € CmixTi, Bij/ Dl']' e Csi i, Ei]'/ G,‘j e Cmixs, Fij/
Hjj € C'i*" and M; € C"*",i=1,2,---,5,j =1,2,--- 1, two constants ¢ >0
and y > 0 and the relaxation parameters «; > 0,i = 1,2, - - ,s, choose the initial
matrices X,(,i> 0)(i=12---,5,p=1,2,---,1),and setk = 0;

2

!
M;— ¥ Tji(k)
j=1

s
\/,Z 12
i=1

s
i=1

Step 2: If & = < ¢, then stop; otherwise, go to Step 3;
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Algorithm 1: Cont.
Step 3: Compute X, (k + 1) using

X+ = X+ 54 all

I
P My — Z{rlj(k)] Dj,
]:

l
M-y Flj(k)] Bf, +Cf,
j=1

H
!
M-y le(k)] Gip
=1

+F1p M; — Zrlj(k) Elp +H1p
j=1

1 1
X;]S) (k+1) = X;:) (k) +% Al | M er](k)] Bl +Cly | Ms — Z%rsj(k)] D,
= =
! T 1 "
+Fp | Ms — Y Tyi(k)| Esp+Hsp | Ms— Y Fs]-(k)] Gsp
=1 j=1

Xp(k+1) =y XS (k+1) + a XD (k+1) + -+ X (k+1),p=1,--- L.
Step 4: Set k = k + 1 and return to Step 2.

In the following, we will discuss the convergence properties of the WRGI algorithm by
applying the properties of the real representation of a complex matrix and the Kronecker
product of the matrices. For convenience, we introduce the following notations. Let

V=Vi+V (30)
and
R:Rl -I—Rz, (31)
where
T T T T -
BY® (4%) +QuDY ©Qn (CY)] -+ BY @ (4Y) +QuDY® 0n (CY)]
v, = BE ® (Alvz) + QSZDE ® Qrz (CE) BsY?. ® (Asvz) + QszDgz &® Qrz (CZ?.)
' T T : T T
Blvl ® (AE) +Q51D1VI®Q71 (Clvl) stl® (AsY) +Q51D5 ®Q71 (Csvl) -
T T T T -
(B)! A% + (DF) 0 ©C]Q, - (B)) @AY + (D))! 0y wCFQ,
e | B @AY+ (D5) 0y ecke, o (B)) @AY+ (DY) Qo 0,
‘ T T ' T T
(stl) ®ASV1+(DX) Q51®Cslef1 (stl) ®Asvl+(stl) Q51®C5VIQVZ -
Qu (EN) " © @ EY + (GY) T @ HY ) P@my,2n1) -+ (Qs (EX)" @ QuEY + (GY)" @ HY ) P(2ms, 2n5)
T T T T
v Qs (EY)” ® QnEY + (G3) @ HY ) P(2my,2m) -+ (Qs,(EY)” ® QnEy + (GY)" ® HY ) P(2ms,2n5)
2 — . . 7

(Qu(EY) @ QuEY + (GY)" @ HY ) Py, 2m) -+ (Qy(EY)" © QEY + (GY)" @ HY ) P(2m,, 2n,)
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(FY) Q@ ENQs, + (HY) @Gy )P@2r,251) - ((FY)'Q ®EYQy + (HY) ©GY )P(2r,25)

. () Q. ® EY,Qs, + (HY)" @ GY] ) P(2r1,251) (EY)"Q, ® EJQ, + (HY)" ® GY | P(2r,,25))
2 f—

((EY)7Qn @ EYQ + (HY) @ GY ) P(2r,251) -+ ((EY)'Qy @ EYQq + (HY)" @ GY ) P(2r,25))

!
Theorem 1. The matrix in Equation (5) has a unique solution if and only if rank(R) = Y 4s,7,
p=1

(that is, R is of a full-column rank) and rank(R) = rank((R, f)). The unique solution is given by

-1
X = (RTR) RTY, (32)
and the corresponding homogeneous matrix equations
l —_
Z (Al]X]BZ] + C,]X]Dl] + Ei]‘X]TF,'j + Gl]X]HHl]) =0,i=12,---,s
j=1

have a unique solution X* = (X;,X3,---,Xf) = (0,0,---,0), where

vec(XY) vec(MY)

vec(Xy) vec(My')
x = . Sf= .

vec(X)) vec(MY)

and R is defined by Equation (31).

Proof. Applying the real representation of the complex matrix to Equation (5) leads to

Y2}

T T
AXTES +€50,%70,DF + £, (x7) 0,15 + 65 (x7) ] - MF.i =12,

1

l
j=1
By using the Kronecker products of the matrices and the vector-stretching operator in
the above equations, we have

» {(Bi)T @AY + (DY) "0, 00, + <(F17) "0, EYQ, + (HUV)T ® G,]V> P(er,zsj)} vec(XY) = vec(MY),
f=

where i =1,2,---,s, which can be equivalently transformed into the following linear
system:

Rx = f. (33)

Therefore, Equation (33) has a unique solution if and only if R has a full-column rank
and rank(R) = rank((R, f)). In this case, the unique solution in Equation (32) for the
matrix in Equation (5) can be obtained. The conclusions follow immediately. [

Based on the properties of the matrix norms and Algorithm 1, we establish the suf-
ficient condition for the convergence of the proposed WRGI algorithm in the follow-
ing theorem:
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Xp(k+1)

Theorem 2. Suppose that the matrix in Equation (5) has a unique solution X* = (X3, X3, , X}").
Then, the iterative sequences {X,(k)} (p = 1,-- - ,1) generated by Algorithm 1 converge to X* for
any initial matrices X,(0) (p =1,---, 1) if p satisfies

0<u< mn ——.
P28 v

Proof. Define the error matrices

and

Tii(k) = Ay X;(k)Bjj + C;jX; (k) Dy + EyXT (k) Fj + G X[ (k) Hyj,

1
2i(k) = ¥ (45 %00 By + CyX;(K) Dy + Ey KT (K + Gy X[ () Hy ), (34)

It follows from Algorithm 1 that

XV (k+1)
Xy (k+1) - X}

, ! !
— X}(;)(k) — X5+ i { AlIM; — ;rij(k) Bl +Cl | M; — ;rij(k) D/,
I T I H
+ﬁp M; 2 rz; (k)] Ezp + Hzp M; — Z rij(k) Gip} (35)
j=1 j=1

H
G}

= XD - ¥ [AHZ (k)Bf + C Z:(k) D}, + Fp 2] (k)Esp + HipZ! (k)cl-p],

and
Xp(k +1) - X;

X (k+1) + XD (k+1) + - + asXS) (k+1) - X;

p

ZaX (k+1) (36)

H>\‘§

S -_
Ly [AH Zi(k)B + CLZ:(k)D}, + FpzT (k)Egy + Hyp 2P (k)Gip}
=1

Il
_

S P -
Y a; [AHZ )BE + CLZi(k)D}, + Fp 2T (k) Egy + HipZH (k) Gi,,} :
i=1

HM‘:

Taking the Frobenius norm in Equation (36) and using the properties of the norm
leads to
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1% (k+1)|* = tr [ K} (k+ 1)K (k+1)]
— 1%, ()| - ftr Za XH (k )<Agzi(k)B{; +Cj,Zi(k)Df, + Fip Z! (k) By + Hzpzﬁ(k)cip)]
S [R— ~
_ gtr [Z; a; (Bl,,le (k)Aip + DipZl (K)Cip + EL Zi(k)EL + G{gzi(k)Hfg) X, (k)
i=
P H H T T LT 7T (T H ’
+ 5l i (AR Zi(0)Bf + CLZiR)D], + Fy 2] (0 E;, + Hyp 2 (K) Gy ) (37)
i=1
S
= || (0> - Ler sz BEXH (k)AL Zi(k)| — ZtrlZa DLXH (k)L Zi(k) | — Ztr[2 &y X (k) Ep 2] (k)
=
S S
—Ztr[ZalGipXH(k)H ZH®) | = Ler| Y wizH (k) Ay X, (0)By, | — Lt | Y- 02T ()G, X, (K) D,
i=1 i=1 i=1
S S
- Ztrlzalzi(k)F;xp(k)ET] — B | Y wizi(k)H X, (k) G
i=1 i=1
P H H T7 DT T ’
+ 52 Y- ai(AlZi(0) B + CLZ(R)D], + Fp 2] () Eyy + HipZI () Gip)
i=1

It is not difficult to verify that

S
+tr| Y a;Z] (k)Cjp X, (k) D

tr [sz D} X} (k) CE,Zi(k)
i=1

p

and

S
tr [Z a;Ep X[ (K)FyZ] (k) | + tr

i=1

s —_— ~
Yy aizi(k)P};X,,(k)EiTp]
i=1

are real. Then, under Lemma 3, it holds that

tr [2 ;D] X[ (k) CF,Zi (k) | + tr Z a;Z] (k)Cip X, (k) Dy
i=1
=tr 2 a;DE X, (K)CHZi(k) | + tr 2 (k)Dip- . (38)
and -
tr [2 0 Eip X)) p ( (K)FpZf (k) | +tr i“fzi(k)Fi;Xp(k)E;-
=tr lz a;Eip X () Fip ZF (k) | + tr 2 w;Z k)EH (39)

With the relations in Equations (38) and (39), it follows from Equation (37) that
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~ 2 S ~ ~ ~ . ~
=%, (0)|" - %tr [Z% o (B{;X{j(k)A,?; + DXy (k)Ch + E X, (k) Ef + H};X,,(k)cg)zi(k)]
1=

(40)

S ~ < ~ ~
; a; ZH (k) (Aipo(k)Bip + CipXp (k) Dy + Eip X (K)Eyp + Gip X (k) Hy )

2
S R —_
Y- ai(ARZi(k)BY + CLZi(R)D], + By z! (0)Ejy + Hiy Zf (k)G )

By making use of the relation in Equation (12), as well as Lemmas 2 and 4, we have

2
S P -
Y (A{;Zi(k)pr’ +ChZ:(K)D}, + Bzl (K)Esy + HypZf! (k)G,p)

2
v

1 1 s _ __
> Y |Lw (Af;z,-(k)B{; +ChZ;(k)D}, + Fy ! (K)Ep + HipZ!! (k)cip)

s 2
=3 5 B[ 2w )+ (e)" () (0) "+ " (21 0) ) g (220)

[(43) 27w (85) + Q1 (€F) Q@ 27 Q10 (DF) Qs

2

T T
Ty EY Q0@ (27 () Qu Qi ES Qs + HY (27 1) GE] (41)

2

7Y (k) (B,-Z)T +Q,(c}) "73 (k) (D,-Z)TQSV +Q, EY (27 (1) "EYQ,, + HY (Z,—V(k))TGin}

2

L s e (45) + Q0 0, (5) + [ (F5) " 0@y + (G5)' & HE | Pams2m fvec[wrztt)”]

=
I
—_

2
(o5 2
{

(AD)" + QDY ©Quy (CY)" +[Qu (EY)" © QuEY + (GY)" ® HY | P(2m; 2n) prec(wiZ;(k))¥ |

v
By

Lol

(49)" +0QuDF ©Qn (CY)" + [Qu (EY)" © QuEY + (GY)" ® HY | P(2m;,2m) vee| (w:Z;(k))" ]

{BY @ (AF)" +QyDY ©Qy ()" + [Qy (EY)" @ QuEY + (GY)" @ HY | P(2m;, 2m:) pvec (2i;(k))” |

It

1 2
= EHVb”zr

where V is defined by Equation (30) and

T 7T

b= [[Vec((ocl&(k))v)r, [Vec((azzz(k))v)] Lo {vec((ocsZs(k))v)]

By applying the properties of the 2-norms of the matrices and vectors, we obtain that

2
1 2 1 21112
= 5lIVellz < S VI[Pl (42)

MN
-M‘"

I
—_

lpz lpz

o (Agzi(k)B{; +ChZ;(k)DY, + Fpz] (k) Eyp + Hyp ZH (k)G,-p)

<
Il
—

That aside, in light of the relation in Equation (12), we deduce that
2_ v VIP oy 2 2
613 = Y- [[(zin) ¥ | =2 - el zit (43)
i=1 i=1

Substituting Equation (43) into Equation (42) leads to
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2
S
<|IVIE Y aZllZi(k) |1 (44)
i=1

S

Y (4208 + CLZID], + Fy2] (0Es, + HipZ (KGip)

»

i=1

By combining Equations (40) and (44) and changing the order of addition, we derive

< le 1%, (0|~ Ler [Ea ([l; (BEXS (k)AL + DERT(R)CH + FE R, ()L + HHx,,(k)c};)> Zi(k)}
i=1

# 2% 2 2
+ VIR Y a1 Zi(k) |
16 i=1

s s 2 s
= L I% 0] - % Y[ Z]! (k)zl(k)} - E Y[zl (0zi(o)] + L VIE X o 1Zi(k))1? (45)
i=1 i=1

1 s
= L 1%l - % _Dci(l - gmuvui) 1) 2
=

Il
—

<Y Rk DIP 2 Y (1 B vIE) (1Za0I? + 126k~ 1))

p=1 i=1

] s k
< LI%OI -5 Lai(1- gulviz) L 1z

i=1

If the parameter y is chosen to satisfy

O0<yu< min-——-;,
SN P TE

then

i=1

s 00 !
0<E Yy ai(1-EalviR) ¥ 1z < ¥ [1%,0)]
w=0 p:l

and therefore -
Z ||Zl(w)||2 < +OO, i = 1121. t /S/

According to the convergence theorem of series, we have 1_1>r5r1 Zi(w)=0(i=1,2---,s).
w 0

Having in mind that the matrix in Equation (5) has a unique solution, then it follows from
the definition of Z;(k) in Equation (34) that

lim X;(k) :Xf,j:1,2,~~~,l.

k—+00
The proof is completed. [

In the sequel, by applying the properties of the real representation of a complex matrix
and the vector-stretching operator, we study the necessary and sufficient condition for the
convergence of the WRGI algorithm. This result can be stated as in Theorem 3:



Axioms 2023, 12, 1062 15 of 28

Theorem 3. Suppose that the matrix in Equation (5) has a unique solution X* = (X3, X3, -+ , X}").
Then, the iterative sequences {X,(k)} (p = 1,-- - ,1) generated by Algorithm 1 converge to X* for
any initial matrices X,(0) (p = 1,---,1) if and only if

8
|72x|
2
Proof. For convenience, we define

(%)Y =XV (k),p=1,2,--- 1.

From Equation (36) and the definition in Equation (34) for Z;(k) in Theorem 2, it can
be obtained that

s l
:Xp(k)—Zszl{ LZ( iiX; (k) Bij + CyjX; (k) Dij + E X[ (k) Fyj + Gy ](k)H])lBH

!
Z (A (k)Bz] + C1] ](k)Dij + Ein]T(k) i+ Gl] j (k)Hij)
j=1

T

I T
+ ip L; Aij j(k)Bz] +Cz]X](k)D1] +EZ]XJT(k) i+ Gl] i (k)Hij>‘| Ez‘p

H
G}

Z (A X (k)Bl] + Cl]X (k)Di]‘ + Einf(k)Fij + Gi]‘X]H(k)Hij)] BH

X (K)Bj; + CyiX;(k) Dy + EyXT (k)F; + Gy X! (k)Hi]-)

tp

DE,“, (47)

/i ip

BEXT (k) AT + DI (k)T + FI%; (k) EE + HIX; (k)GT)

G}

!
- T
= Rp(k) = & Y Y wi[AF A% ()ByBl) + AL Cy X (K) DBl + AN EG K] (K)FyBli + AL Gy X[ (k) HyBL)

+ Cj, Ay X;(k)BD}, + C},CX; (k) Dy D}, + CE; X[ (k) FyDj, + Cj, Gy X[ (k)Hy D},
+F, B X! (k)ALE;, + Fp, DX (K)CLE;, + F‘pF,»]TXj(k)E Eip + FpHj X; (k)G Eyyy
HH H HT H H H < H

Then, by combining the real representation with Equation (47) and applying Lemma 4, we
obtain
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| (45) ATET w85 (85) "+ (4F) e @, %7 090,05 (55)"

+ (AZV)TEiYQSj (%7 (& )) QnEY (BV) + (Aivp)TGiY (X]V(k))THl.]V (BZVP)T
Q@AY Qr QXY (K)Q5 Q5 BY 1, (DY) Qs

+0y,(cy)
7)) QuQnCY QXY (K)Q DY Qs (D) Q,
7)

b
(c

+Qrp(

+0, () QnmEYQ, (XY 1)) @y FY Qn0n (DY) Qs

+0,,(CF) Qn@u Gy 0 (X7 () 2,0, HY 210 (D) 2,

£, EY Q@ (BY) Q24 (X)) 2,2, (45) QuQuEYQs,

+ QB Q0 (DF) 0y (X7 1) Q1 (€F) QmQuET Qs

£ QY QuQn (B ) QXY (0905 (EY ) QuQuESQ,

+QnEYQuQn (HY) 2,0, &Y (10505 (6F) QuQnEYQ:, 49)

+HZVP(BV) (% V(k)) (AV) Gy, + Hy, (DY) Qsj(XjV(k))Ter(ci]V)TGin

+HV(PV) Qr, XY (k)Q, (EV) GY + Hy (Hi]V)TX].V(k)(Gi]V)TGiVP

Lo (45) AT W85 (85)" + (47) cF @, X7 ®105DF (87)

iR

*+ (4F) B0, (%70) @FT (37) -+ (47) (57 0) 7 (55)
7).
) E

fXV

+0Qy,(CY) AYXY (k)BY (DV) Qs +Q,,(CF) 'Y, XY (k) DY (oY) ‘a,
+Q, (c3) ETQ, (X7 ) o, Fv@v) Q. +Qr, (CV>TGi]V(XjV(k)>THi]V' (Divp)TQsp
+Qn, Y (

BV) (% (k)) (a¥ ) Qs+ QY (DY) Qsj(XjV(k)>Ter(C§)TEinQrp
+Q,,,FV(FV) Q V(k)Qsj(Eij) Qs +Qn, Fy (HY) X ~]V(k)(Gi7)TEiZQSP
(%7 )" (47) "G5+ H5(0F) " (R ) 04 (cF) 65
XY

XY (k)Qs, (EiY)TGiZ+H§ (Hi]V)TXjV(k)(Gi]V)TG; .

v
X
+HY (By ) k)

+Hy, (P,.]V) "o ],

By taking the vector-stretching operator on both sides of Equation (48) and using
Lemma 2, we have

vec [va(k+ 1)]
= vec[ X7 (k }%;4 @ (A7) +0,Df @ Q, (cF)" + P(2s).21)) (Q,},Fg@Qs},(E;)HH;@(GYP)TH (49)
g (BV) @AV (D ) Qs; @cVQ +<( i}V)TQ,}_@EiYQSj"'(HiY)T@Gy)P(z”/'/zsj)]vec[xjv(k)]’

-
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forp=1,2,---,1 This gives the following result:
vec|XV(k+1)| = wvec|XV (k)| — ERTTRvec|XV (k)
| ] RIS XV
- (1 - %RTTR)vec [Xv(k)] (50)

= (1-ERTTHTIR)vee[ XV (K],

where
vec {Xv(k)} = Hvec(f(lv(k))}T, [VQC( ~zv(k))} T, e {Vec:(f(lv(k))r] T,
1 lymn, O 0
0 0(214,112”2 0
T —
0 0 s sl

and R is defined by Equation (31).

Equation (50) implies that the sufficient and necessary condition for the convergent of
Algorithm 1 (the WRGI algorithm) is

o(1- %RTT%T%R) <1.

Since RTT2T2Risa symmetric matrix, it holds that
A(1-ERTTITIR) {1-50(RTTITIR) g =12, )

- {1—% ;(T%R),qzl,z,---,q}, (1)

where 7 = rank(RTR) = rank(R) = rank(T%R>. Then, p(l— %RTT%T%R) < 1lis
equivalent to
_E2(T} ’ 1,2,
’1 G (T*R)| <19=12 1. (52)
It follows from Equation (52) that
— _E2(r3 -1,2,---
1<1 4ffq(T2R)<l,q 1,2, 1.

After simple computations, we derive

O<u< ’
7]

2 7
2
which completes the proof. [

Remark 2. When the relaxation parameters w; of the WRGI algorithm are a; = %,i =12,---,s,
then the condition in Equation (46) reduces to the following condition:

8s

O<pu<—7.
IR]l2

Based on Theorem 3, we will study the optimal step size # and the corresponding
optimal convergence factor of the WRGI algorithm in the following theorem:
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Theorem 4. Assume that the conditions of Theorem 2 are valid. Then, it holds that
1x(0) = X*|| < ot (1 - ERTTITIR) | X(0) — X7, (53)
where
X(k) = (Xy(k), Xa(k), - -+, X (k)).
In addition, the optimal convergence factor pop; is

8

Oax (T2R) + 02, (TIR) oY

Hopt =

Under this situation, the convergence rate is maximized, and we have

condz(T%R) 1\F
[X(k) — X*|| < ( Y ) [X(0) — X*|. (55)
cond (Tz R) +1

Proof. Due to the fact that ] — ARTT2T2R is symmetric, it follows that
HI — %RTT%T%RHZ - p(I - %RTT%T%R). (56)
In light of Equations (50) and (56), one has
|X7(k+1)| = ||vec[£T R+ D] || = Hvec[xv<k+1>m2
— H (1 — %RTT%T%R>VeC {}?V(k)} Hz (57)
< fr- GRTTETER]|Jvec| XV a0 ]

7

- o= i oy

where

XY (k) = [XY (k) X5 (k), -+, XF (k).
Combining the relations in Equations (12) and (57) results in

|Xk+1)| < p(1-LRTTITIR)|X(K)

, (58)
where
X(k) = (K1 (K), oK), -, K (K).

Having in mind that X, (k) = X,(k) — X; (p = 1,2,---,1), then it follows from
Equation (58) that

Ix() = X" < p(1-ERTTITIR) |X(k—1) - X*|
2

IN

IN

p?(1- LRITITIR) | X(k—2) - X'|
(

ok (1 - %RTT%T%R) 1X(0) — X*||. (59)
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It can be seen from Equation (59) that the smaller the p (I — %RTT% T% R) , the faster the
convergence rate of the WRGI algorithm. Direct calculations give that p (I - %RTT% T: R)
is minimized if and only if
1 Ep2 (T%R) - %afmx(T%R) 1, (60)
from which one can deduce that

8
o-rznax (T%R) + Urznin (T%R) .

Hopt =

If = popt, then we have

2
Umax

2 ;
- 0 (T2R) + 02, (T2R) o7 (TR) }
s
0 (TAR) + 02, (TER)
O (TR) = 02, (TR)
O (TER) + 2., (TR)

cond? (T%R> -1

- 2 -
i mﬁx{l_ (T%R)+a§1m(T%R)Ai(RTT%T%R>}

(61)

cond? (T% R) +1
Substituting Equation (61) into Equation (59) yields Equation (55). The proof is completed. [

Although the convergence conditions of the WRGI algorithm are given in Theorems 2
and 3, the Kronecker product and the real representations of the system matrices are

involved in computing || V||, and H T: RHZ. This may bring about a high dimensionality

problem and lead to high computing consumption. To overcome this drawback, we will
give a sufficient condition for the convergence of the proposed WRGI algorithm below.

Corollary 1. Suppose that the matrix in Equation (5) has a unique solution X* = (X7, X3,- -+, X}).
Then, the iterative sequences {X,(k)} (p = 1,-- - ,1) generated by Algorithm 1 converge to X* for
the arbitrary initial matrices X,(0) (p =1,---,1) if

2

O<u< ;

It

2 2 2 2 2 2 2 2
i (11Byll3 1| A3l + D3 I1511C315 + 1B 1511E5 13 + 131511 Gil3)

1

=1

Proof. According to Lemmas 4-6 and the fact that ||[E ® F||, = || E|,||F||,, we have
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1

2
T2R
2

2

\/Ei{(By) ®A§+(D§)TQS,®C§Q,]+\/E,[(( )Ter®E,~7Qsj+(Hi]V)T@JGIY)P(er,Zsj)} 2

IN
-
MN

s T 2
<y a,(‘(BZY) ®AV+(D.) Q. ®C§Qr H( Ey Q, ©EYQs + (H,]V) ®G§)P(2r,,2sj) >
i=1j=1 2
s 1 T T 2
< 222%‘(‘(33) w4y + (DY) Qs @cyQ, +H<(F,-Y) Q; ®EY Qs+ (HY) ®G5>P(2rjr25f) >
i=1j=1 2
s 1 [ T T 2
< Lr|(](s) e a5 +|(oF) @ 0 cTo] )
i—1j=1 |

T
<Fi]V) Qri 2 EiYQs;) 27’//25]

H( Hv ®G§>P(2r,-,2sj)

)

2

IA
7
_[\EN

| H (55) @ a5

+H( ) Q, ©CYQr

2

T
((H]V) er®EiYQsj> (2rj,2s/)

H < HV "® Gg)P(zrj,ZSj)

2

' Bv ®AV

H ocfer [+ e 0s8

etk

s 1
= 1 Y4Bl Aq 3 + D131 Call3 + s 21 Eslly + 1 EE G 13).

+H(H,.7.)T®c§

)’

)

CVQr

2
v
ZHEU Qs

i

Substituting Equation (62) into the relation in Equation (46) gives the conclusion of this
corollary. O

4. Numerical Experiments

In this section, two numerical examples are provided to verify the effectiveness and
advantage of the proposed WRGI algorithm for solving the matrix in Equation (5) in
terms of the number of iterations (IT) and the computing times in seconds (CPU). All the
computations were performed in MATLAB R2018b on a personal computer with an AMD
Ryzen 7 5800H, where the CPU was 3.20 GHz and the memory was 16.0 GB.

Example 1 ([32]). Consider the generalized coupled conjugate and transpose Sylvester matrix
equations

A11X1B11 + E1p X3 Fip + C13X3D13 + Gua X4 Hyg = My,

AnXoBo + Eps X2 Fos + CoaXaDoy + G XHHyy = My,

A33X3B33 + E3aX] F3g + C31X1 D31 + Gap X3 Hzp = M,

A4sX4Bas + Eqy XTFyy + CapXoDap + Gus XE Hyz = My,

with the following coefficient matrices:

—12-7i 10—11i —9+10i [ —17—7i —8—25i 13+ 1i
Ap=| 2-32 27-3i 1-3i |,Bjy=| 7+4 -2-9 0+6i |,
104+11 3-7i —14—4i | 711 —4-2i 7+6i

11-9i —8-7i —18-2i [ —4+13i 7-—14i —10+2i
Ap=|33-25 -3+6i 5-23i |,Bp=| 1245 —4+3i 8—16i |,
7-7i —3+11i —12—15i | 1-5i 1947 7-7i
7+6i —5+11i 4+8i 4-9i —20+15i —23+20i
A= | —24—1i 11-3i 0+22 |,Byy=| —25+4i —4-2i 11+1 |,
0-7i —-2-9 0—6i —14—4i —4+8  10-1i
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—124+12i —-2+5i 1-9i -1-5 249 -3+4i
Ay = 2—2i 10 — 6i —26+3i |,By = 16 —7i 1+ 4i -9-51 |,
—19+13i —-3+4+15 —-7-17i —8—6i —6+4i 1
546 1147 —1244i 643 —2249 10—4i
Cis=| —15+2i —5+7i 0-14i |,Diz=|16+17i 6+2 0+2i |,
11+4 —-9-17i 2421 14+3i —-12—-2i —-7-2i
-16+1 0-3i —7-—10i ] [ —6—14i —7420i 4
Cyy = -3 —446i —947i |,Dy = 0—19i —6—8 —5+48 |,
—-9—-2i 19-9i 6 —3i | —12 —6i 0 -7 —17i
—13—-2i 15+16i 12—23i —6+ 6i 9461 —-20-—19i
Cy1=1| —10—4i —-10—-3i —-15+12i |,D3z = 9+ 14i 14 21i —8—12i
~3-9i 5+20i —5-+5i | 12-12i 17-4 348
—14+5i 54251 —2-—4i -5 0+1i 10+ 16i
Co=| 19-11i —2-6i —249 |, Dp=| 2-1 —24+2i —6+1i |,
—-10+2i —-5-9i 134 10i —-1—-12i —6+14i 4-—13i
—14 4 2i 24 5i 4—3i —-13+1 -21+6i —11-3i
Ep = 94+5i —-3+10i 846 ,Fip = 2+7i -104+4i —-10+10¢ |,
—8—1i 549 —21—1i 3451 9—11i —13+13i
8—2i —8+42i 0—5i —-16—-27i —26+4+2i —12—10i
Erz = 3+ 6i 8 —2i —3—-1i |,F3= 6 —8i 2+ 33i 1-9i ,
10—-3i —13+3i —14+47i —5—12i 12-18i 294 7i
14421i —9+48 4—14i 0+8 16—12i —8+417i
Ess— | 747 19-2i 0450 |, Fay—= | —5+18 4+12i 10+9 |,
74100 —5+8i 7-—18i 10—-1i 12—14i 17 -—5i
3+8i —18+4+10i -9+ 14i -5-1i 16+43i —-5-13i
Em=| —17+6i 3+6i 1447 | Fg=| —19+6i -12 -9-3i |,
5 —5—17i —6+5i —12+4i 6-—12i 6+ 3i
2—-291 —6-—3i 8+ 8i [ 8—8 —10—2i —-5-+6i
Gyu=| —-343i —-6-3i 1—-14i |,Hy= 1 —-34+6i 16+6i |,
1 311 1419 | 948 9 32
15+15i 54191 —16—4i ]| [ —4+4+15i —18+3i 6—10i
Gn=| —-7—14i 5+4+12i —-11—-16i |,Hy = 6—1i 4—3i 9—-16i |,
—145i 5—-3i —-1-3i 1042 —-17+12i —2-8i
14—4i 25—-3i 5-2i 10451 8-+1i 12 —9i
Gz = 4—-5 2—16i 3—-2i |,Hp=|12-3i 6-7i —-3+13i |,
7—22i 2450 7-—18i 4-3i —-7—4i —-6-—10i
5+21i 14200 —4+12i —13—-18; 3—-26i —-3-—8i
Gyz = -7 —8i 6 — 61 —2+15i |,Hys = —2+16i 9—-4i 11-5i |,
—13+5 —-22+44i —-2+45i 9+4+7i 54+4i 2-—14i
—2418 4 3322i 10353 — 966i 5238 + 1933i
My = | —11927 —7210i —7206 —12568; 4614+ 7638i |,
1619 — 9753i 16692 +11938i —3798 — 2865i
—4750 + 14828i 10137 — 3634i —18315 + 2472i
My = | —11651 + 15269 —11063 —9783i —16515+ 18210: |,
—2388 + 17370i 2934 — 1222i —3823 4 2947i

7
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7263 + 46341 4142 + 7164 6578 + 26838

22162 — 7358i 22122 —18790i —3570 — 2827i
M3 - 7
12844 — 6822i —11828 —13695i 9789 — 20700i

9215 +5146: 8946 — 8825; 14012 — 7731i

—5068 —9357i 6306 — 13376i —3738 — 6683i
My =
—2927 — 1660i —5342+4327i 6279 — 2721i

It can be verified that the unique solution of this matrix equation is

[ —94+8 —12—-5i 9+7i 134+6i —-19+6i —11—11i
Xi‘ = 6+7i —-10—4i 14+ 2i ,X; = 16 — 15 16 — 16i 9+ 11i ,

| 6—10i 10+ 11: -1 -7 —10i 5+6i —5—-2i

[ —13+7i 1443i 2+1i —2—14i 9+11i -9-17i
X5 = —-3+9 843 —1+6i [, X;=| -9-13i 2+13i 94 8i

| —15—-1i —6—-4i 544 10—-13;i —-2-—6i 7—14i

We take the initial iterative matrices
X5(0) = 1076 x I, X,(0) = 1076 x I,i € [1,4],p € [1,4]

and set

RES — \/M1(k)+M2(k)+M3(k)+M4(k) .

M;(0) + M2(0) + M3(0) + M4(0)

to be the termination condition with a constant ¢ > 0, where
M; (k) = || My — A11 X3 (k) By — EnpX5 (k) Fia — C13X3(k) D13 — Gra Xy (k) Hal|
My (k) = |[My — ApXo(k)Bx — Ex3X3 (k) Fos — CoaXa(k) Doy — Gy X{¥ (k) Har || ,

Ms (k) = || M3 — As3X3(k)Bss — Esa X} (k)Fss — C31X1 (k) D31 — Gz X5' (k)Haa||

My (k) = || My — AgsXy(k)Bag — Exn X{ (k)Fy1 — Cap X (k) Dap — Gz X& (k) Has ||,

Here, the prescribed maximum iterative number is ky = 20,000, and
Xp(k) (p = 1,2,3,4) represents the kth iteration solution.

It follows from Remark 2 that the WRGI algorithm reduces to the GI one [25] as
a1 = ap = a3 = a4 = 0.25. In this case, according to Theorem 4, the optimal convergence
factor is popr = 4.5603 x 10~°. However, the optimal convergence factor ji,p; calculated by
Theorem 4 may not minimize the IT of the GI algorithm, and the reason for this is that there
are errors in the calculation process. Thus, the parameter i adopted in the GI algorithm
is the experimentally found optimal one, which minimizes the IT of the GI algorithm.
After experimental debugging, the experimental optimal parameters of the GI algorithm
are jgr = 42 x 1078, gy = 4.53 x 107, ugz = 4.556 x 107° and g4 = 4.558 x 10°
when ¢ = 0.1, = 0.01,¢ = 0.001 and ¢ = 0.0001, respectively. Aside from that, we
can obtain that the optimal parameter of the WRGI algorithm is 4 = 4.6493 x 107 in
terms of Theorem 4. Owing to the existence of computation errors, the parameter y in the
WRGI algorithm is adopted to be the experimentally found one as demonstrated above.
Through experimental debugging, the experimental optimal parameters of the WRGI
algorithm are yuwrgn = 4.2 x 107, uwrgre = 4.61 x 107, uwrgz = 4.645 x 107¢ and
UWRGIa = 4.647 X 107% when ¢ = 0.1, £ = 0.01, & = 0.001 and ¢ = 0.0001, respectively.
Under these circumstances, the relaxation factors are taken to be oy = 0.26,a, = 0.26,
a3 = 0.24 and oy = 0.24.

Table 1 lists the numerical results of the GI and the WRGI algorithms. As observed
earlier in the comparisons of the GI and the WRGI algorithms in Table 1, the two tested
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algorithms were convergent for all cases, and the IT of them increased gradually with the
decreases in the value of {. Additionally, it can be seen from Table 1 that the proposed
WRGI algorithm performed better than the GI one with respect to the IT and CPU times.
This implies that by applying the weighted relaxation technique, the WRGI algorithm can
own better numerical behaviors than the GI one.

To better validate the advantage of the WRGI algorithm, Figures 1-4 describe the
convergence curves of the GI and WRGI algorithms for four different values of ¢. These
curves reflect that the WRGI algorithm is convergent and its convergence speed is faster
than the GI one, except for the case of ¢ = 0.1. Additionally, the advantage of the WRGI
algorithm becomes more pronounced as the value of ¢ decreases. This is consistent with
the results in Table 1.

Table 1. Numerical results of the tested algorithms for Example 1 with different values of ¢.

Algorithm ¢
0.1 0.01 0.001 0.0001
GI T 17 496 5312 12347
CPU 0.0450 0.1784 1.9372 3.6098
RES 9.93 x 1072 1.00 x 102 9.9993 x 107%  9.9969 x 10>
WRGI IT 17 492 5228 12128
CPU 0.0381 0.1270 1.7313 3.1916
RES 9.9 x 1072 1.00 x 1072 9.9998 x 10~4 9.9999 x 107>
=0.1
055 T T T é T T T T
3 —+— Gl(u=4.2¢-06)
05F WRGI(p=4.2¢-06) |
045 .
04F N i
5035+ i
b= +
2 03} ]
o +
nd = il
0.25 N
+
02F N i
4
0.15F ¥ 4 i
01f J
005 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
IT

Figure 1. Convergence curves of the tested algorithms for Example 1 with ¢ = 0.1.
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=0.01
06 § T T

——+— Gl(u=4.53¢-06)
T —+— WRGI(u=4.61e-06)

05

Gl B B O O

~ | | | |
0 100 200 300 400 00 485 490 495 500

IT

Figure 2. Convergence curves of the tested algorithms for Example 1 with ¢ = 0.01.

=0.001
06 ¢ T

——— Gl(u=4.556e-06)
~—f— WRGI(.=4.645¢-06)

0 000 2000 3000 oo o0 s *4

T 4500 5000 5500

Figure 3. Convergence curves of the tested algorithms for Example 1 with ¢ = 0.001.

€=0.0001

—+— Gl(y=4.558¢-06)
——+— WRGI(u=4.647¢-06)

06

_ |

0 2000 4000 6000 . 8000 10000 12000 14000 1 1000 12000 13000

Figure 4. Convergence curves of the tested algorithms for Example 1 with ¢ = 0.0001.



Axioms 2023, 12, 1062

25 of 28

Example 2. We consider the generalized coupled conjugate and transpose Sylvester matrix equations

{ AnXiBi1 + CiiXiDyy + EpX] Fip + G X3 Hip = My,
AnX1Bo1 + CnX1Dyy + En X1 Fop 4+ G X Hyp = My,

with the coefficient matrices

(12 5 3 ~11 23 30 8+1i 1+21i 7
Ap=1]19 8 2 |,Bu=| 4 -9 3 |,Cchu=]|-1+8 1 26
| -9 -3 21 1 —35 20 1i 8 4l
1 -1 1 1 1 1 116
Dy=|1 1 1|,Ep=|2 1 0]|F=|10 0],
2 11 0 1 1 01 1
1 0 -1 1 0 -1 1 0 5i
Go=| 1 4 1 |,Hp=| 0 1 0 |,Ay=135 -1 45 |,
2 0 -2 -1 0 1 1 -1 1
[ —1+4i 28 1 i 0 1 1 —1i 3
By = 1 42 1 |[,Cy=|-11 =2 |,Dy=|1 1 1],
1 3 -3 0 2 1 i 1 1
1 -1 1 18 2 1 0 -1
Ep=| 1 3 4-2i |,Fp=|10 0 |[,Gun=] 1 2 1
-1 2 1 01 -3 -2 0 -2
1 0 -1 —136—344 1780 — 688i 5777 + 2083i
Hp=| -1 -1 1 |,My=| —1508—670i 1819 —1450i 8360+ 3079 |,
-1 2 1 199 — 1526i 4844 + 28461 —4882 + 2714i
—19 — 76i —~1004 —949i 3+ 166i
My = | —1222+1753i —31239 +8414i 2088 + 432i
—28 + 10 —1133 — 147i 69 + 5i

The unique solution for these matrix equations is

124+2i 23-2i 1 1+2i 2-3i 344
Xi=1|1 -8 100 |,X5=|2—4i —6+3i —3+2i
246i 242i —6 141 242 —-1-2;

In this example, we chose
X3(0) = 1076 x 5, X,(0) = 106 x Ly,i € [1,2],p € [1,2],
as the initial matrices and took

M (k) + M (k)

RES =\ 3,(0) + Ma(0)

<¢
as the termination condition with a positive number ¢, where
2
M; (k) = HMl — A1 X1 (k)Bi1 — Ci Xy (k) Dy — En2X5 (k) Fip — G12X51(k)H12H

and
2

7

My (k) = HMZ — A1 X1(k)Byy — Con X1 (k) Doy — EnpX; (k) Fag — G X3 (k) Haz

|
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and the prescribed maximum iterative number was kyuqx = 20,000, while X, (k) (p =1, 2)
denotes the kth iteration solution.

When a7 = ap = 0.5, the WRGI algorithm degenerates into the GI one, and the
optimal convergence factor calculated by Theorem 4 is # = 1.3151 x 10~%. When a; = 0.6
or ap = 0.4, the optimal parameter of the WRGI algorithm is # = 1.6269 x 10° in light of
Theorem 4. Due to the existence of computation errors, as in Example 1, the parameters
used in the GI and WRGI algorithms for Example 2 are the experimentally found optimal
ones which minimize the IT of the tested algorithms. Through experimental debugging,
the experimental optimal parameters of the GI algorithm were pg;; = 1.21 x 107 and
g2 = 1.299 x 1076 for ¢ = 0.1and & = 0.01, respectively. And when a; = 0.6and ay = 0.4,
the experimental optimal parameters of the WRGI algorithm were pwrgn = 1.43 X 1070
and piwrgr2 = 1.625 x 107 for ¢ = 0.1 and & = 0.01, respectively.

In Table 2, we compare the numerical results of the GI and WRGI algorithms to solve
the generalized coupled conjugate and transpose Sylvester matrix equations in Example 2
with respect to two different values of . Since the IT of the algorithms exceeded the
maximum number of iterations when ¢ = 0.001 and { = 0.0001, we did not list the
corresponding numerical results here. From the numerical results listed in Table 2, we can
conclude that when the value of ¢ decreases, the IT and CPU times of the tested algorithms
increase. The changing scope of the IT of the proposed WRGI algorithm was smaller than
that for the GI one. In addition, the WRGI algorithm outperformed the GI one from the
point of view of computing efficiency, and the advantage of the WRGI algorithm became
more pronounced as ¢ became small.

Figure 5 describes the convergence curves of the GI and WRGI algorithms for Exam-
ple 2 with ¢ = 0.1 and ¢ = 0.01, respectively. It follows from Figure 5 that the error curves
of the WRGI algorithm decreased faster than those for the GI one, which means that the
proposed WRGI algorithm is superior to the GI one in terms of IT.

Table 2. Numerical results of the tested algorithms for Example 2 with different values of ¢.

RES(log10)
o I o o e o
w > (9] o ~ [s<]
T

o
N}

o
=

o
o

IT

Figure 5. Convergence curves of the tested algorithms for Example 2 with { = 0.1 (left) and

¢ = 0.01 (right).
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CPU 0.0482 0.4058
RES 9.82 x 1072 1.00 x 102
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£=0.1 ‘ ; _&=001 ‘
+
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5. Concluding Remarks

In this work, by applying the weighted technique and introducing several relaxation
factors into the GI algorithm, the weighted, relaxed gradient-based iterative (WRGI) al-
gorithm was constructed for the generalized coupled conjugate and transpose Sylvester
matrix equations. By using the real representation of a complex matrix and the vector-
stretching operator, the necessary and sufficient conditions for the convergence of the
WRGI algorithm were given, and its optimal convergence factor was settled theoretically.
Finally, two numerical examples were offered to show the effectiveness and superiority of
the proposed WRGI algorithm.

Note that only one step size factor y is used in the WRGI algorithm. We will consider
to adopt different step size factors in the WRGI algorithm and investigate its algebraic
properties. Aside from that, establishing different versions of the WRGI algorithm and
their convergent conditions when the system matrix is of a full-row rank, full-column rank
or reduced rank deserve to be studied in our future work.
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