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Abstract: To reduce the economic losses caused by debt evasion amongst lost-link borrowers
(LBs) and improve the efficiency of finding information on LBs, this paper focuses on the cross-
platform information collaborative search optimization problem for LBs. Given the limitations of
platform/system heterogeneity, data type diversity, and the complexity of collaborative control in
cross-platform information search for LBs, a collaborative search model for LBs’ information based
on multi-agent technology is proposed. Additionally, a multi-agent Q-learning algorithm for the
collaborative scheduling of multi-search subtasks is designed. We use the Q-learning algorithm based
on function approximation to update the description model of the LBs. The multi-agent collaborative
search problem is transformed into a reinforcement learning problem by defining search states,
search actions, and reward functions. The results indicate that: (i) this model greatly improves the
comprehensiveness and accuracy of the search for key information of LBs compared with traditional
search engines; (ii) during searching for the information of LBs, the agent is more inclined to search
on platforms and data types with larger environmental rewards, and the multi-agent Q-learning
algorithm has a stronger ability to acquire information value than the transition probability matrix
algorithm and the probability statistical algorithm for the same number of searches; (iii) the optimal
search times of the multi-agent Q-learning algorithm are between 14 and 100. Users can flexibly set
the number of searches within this range. It is significant for improving the efficiency of finding key
information related to LBs.

Keywords: lost-link borrowers; multi-agent; collaborative search; cross-platform; multi-source data

MSC: 68T05; 68T37

1. Introduction

In recent years, incidents of loss of connection and runaways from loan customers
have occurred frequently, which causes great economic losses for the country and investors.
Finding lost-link borrowers (LBs) and recovering overdue loans has become an urgent
problem for credit institutions. The core issue of loan recovery is the focus of LBs. When
a borrower chooses to run away or lose contact, timely access to the information of the
LB becomes the key to finding their whereabouts. However, the information of LBs is
usually distributed on multiple internet platforms/systems, which include social platforms
(e.g., WeChat, Weibo, QQ, and TikTok), E-commerce platforms (e.g., Shopping, car rental,
matchmaking), major bank apps, government apps, peer-to-peer (P2P) lending platforms
and so on. Meanwhile, it comprises numerous data types. Thus, it is an interesting and
important research topic to efficiently obtain valuable information about LBs from complex
data on multiple platforms.
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The key to solving the problem of searching for LB information on multiple platforms
is to achieve cross-platform and multi-source information searching. The method of
collaborative searching is usually used to deal with the problem of cross-platform and
multi-source information searching [1]. In this method, the problem of multi-source data
processing is solved by multi-task unit cooperative control. In detail, the system determines
the search objective according to the user’s needs, formulates the corresponding search
subtasks by considering the environmental states of each platform, and then initiates
distributed searches on multiple platforms simultaneously. Each search result is processed
during the search process, and the descriptive characteristics of the search objective are
updated synchronously. However, the following three difficulties arise in cross-platform
information collaborative searching: (1) The information on LBs is usually scattered on
multiple internet platforms. These platforms are often heterogeneous, meaning that a
single search task cannot run simultaneously among multiple platforms. Formulating
specific search subtasks for each platform according to search requirements is necessary,
and then performing a distributed collaborative search. (2) The information of the LBs
is on multiple internet platforms, and each platform has multiple data types, such as
text, picture, audio, and video. The diversity of platform data types determines the
diversity of data types for LBs. (3) To achieve cross-platform information collaborative
searching, it is necessary to coordinate multiple searching subtasks and data-analyzing
subtasks globally to determine when and what data filtering conditions are used on each
platform. Determining when to process which type of data on which platform in the search
is a complex process, and a multi-task unit coordinated control mechanism needs to be
developed for coordinated control.

Multi-agent technology is an artificial intelligence technology that uses multiple agents
to form an organic whole that cooperate to complete a task together [2,3]. Multi-agent
technology effectively addresses dynamic and complex real-time problems. In recent years,
multi-agent technology has been used to solve the problem of collaborative searching for
multi-task units. For example, a multi-agent collaborative “infotaxis” strategy is presented,
which uses the relative entropy of the system to synthesize a suitable search strategy for
the team [4]. Vasile’s work combines the fundamental heuristics underneath monotonic
basin hopping within the general scheme of multi-agent collaborative searching. The
basic idea is that the local search performed by each agent in a multi-agent collaborative
search can be substituted with an iteration of basin hopping [5]. Kim et al. presented a
collaborative web agent designed to enable across-user collaboration in web searching and
recommendation [6]. In the work of Birukou et al., a multi-agent recommendation system
called “Implicit” has been developed, which supports web searches for groups of people
or communities [7]. Shimoji and Sakama considered a problem wherein multiple agents
search for target objects in a field, and presented an experimental study on collaborative
searching by distributed autonomous agents [8]. To synthesize the spatio-temporal sensing
capabilities of a group of agents and optimize the search time, a collaborative “infotaxis”
strategy has been proposed by extending the single-agent infotaxis to a multi-agent sys-
tem [9]. According to the study by Perez-Crespo et al. [10], a metasearch engine based on
software agents was developed for collaborative contexts. The metasearch engine allows
group members to share a web search process. To address the problem under real-time,
multi-source, and data-rich conditions, a new multi-source information search model based
on multi-agent collaboration is put forward in the study [11]. Vasile et al. present an
overview of multi-agent collaborative searching (MACS) for multi-objective optimization,
and analyzed different heuristic local searches [12]. Koval et al. presented a novel collabo-
rative approach for exploring and covering multi-agent coordination in unknown complex
indoor environments [13].

In multi-agent collaborative searching, multi-agents can make optimal or near-optimal
scheduling decisions using reinforcement learning [14,15]. Scheduling multi-agents using
Q-learning has been studied in some works in the literature. For instance, an ensemble
imitation learning multi-trick multi-agent deep deterministic policy gradient (EILMMA-
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DDPG) has been developed, and the proposed algorithm complies with an ensemble
imitation learning policy [16]. Zhou et al. proposed a novel learning architecture that
consists of several learning modules. Every learning module includes a Q-learning module
and an ASPL (Action Selection Priority Level) module to determine the action selection
priority level [17]. Sethi et al. presented a novel deep reinforcement learning-based IDS
that employs deep Q-network logic in multiple distributed agents and uses attention
mechanisms to detect and classify advanced network attacks efficiently [18]. Asghari and
Sohrabi combined the coral reefs optimization algorithm and multi-agent deep Q-network
to reduce the energy consumption of data centers and cloud resources using the dynamic
voltage and frequency scaling (DVFS) technique [19]. Moreover, a deep Q-learning (DQL)
algorithm has been proposed. It is based on a cooperative learning strategy in which
all agents perceive a common reward, and thus learn cooperatively and distributively
to improve the resource allocation solution through offline training [20]. Messaoud et al.
proposed a deep-federated Q-learning (DFQL) framework. The simulation results show
that the DFQL framework performed more efficiently than traditional approaches [21].
Dou et al. proposed a fast-scene adaptive reinforcement learning (FSACL) algorithm.
Compared with the traditional cooperative Q-learning (CL) and independent Q-learning
(IL) algorithms, the FSACL algorithm can obtain a somewhat larger system capacity with
less power [22]. Chen et al. presented a novel deep reinforcement learning-based algorithm
that combines a graphic convolution neural network with a deep Q-network to form an
innovative graphic convolution Q network that serves as the information fusion module
and decision processor [23]. Tampuu et al. designed an independent deep Q-learning
network (DQN) for each agent in the environment, enabling the agent to learn its strategy
independently and maximize the overall reward through the Q value [24]. Daeichian
and Haghani introduced a multi-agent traffic light adjustment method based on traffic
conditions. Fuzzy Q-learning and game theory are used to develop strategies based on
the previous experience and decisions of neighboring agents [25]. Leng et al. proposed a
multi-agent reward iterative fuzzy Q-learning (RIFQ) method for multi-agent cooperative
tasks. It provides a feasible reward relationship for multi-agents, which makes the training
of multi-agents more stable [26].

This work focuses on the solution for cross-platform and multi-source information
collaborative searching for LBs based on multi-agent technology. To address these issues, a
cross-platform information collaborative search model framework based on multi-agent
technology is proposed, and a multi-agent collaborative search control method based on
the Q-learning algorithm is designed. It provides an effective solution for the multi-source
information collaborative search of LBs in the cross-platform environment.

Our contribution lies in our study of the method of searching for LB information
through the application of multi-agent Q-learning, which expands the application of
multi-agent technology to solve the collaborative problem of multiple search subtasks
for LBs information, and achieves a cross-platform collaborative search of LBs information.
Furthermore, a multi-agent Q-learning algorithm based on function approximation is
developed to update the description model of the LBs in this paper. In the feedback
loop search process, the description model of the LBs is continuously improved, and the
comprehensiveness of the multi-source information acquisition of the LBs is improved.

The rest of the paper is organized as follows. Section 2 describes the research problem.
Section 3 formulates the multi-agent collaborative search model. Section 4 provides the
details of the proposed multi-agent Q-learning algorithm. Section 5 presents the simulation
results. Section 6 concludes the paper. The acronyms appearing in this paper are presented
in Appendix A.

2. Problem Description

The LBs studied in this paper refer to runaway borrowers with incomplete loan
procedures, no guarantees, no tracking and supervision of the project after the loan and a
low default cost of borrowing, and who shut down their communication devices, such as
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mobile phones, in order to avoid repayment [27]. In previous studies, the family mobile
social contact big data network and historical daily consumption transaction network
records are often adopted to analyze tracking information of LBs. For instance, Pang
et al. proposed an information-matching model and multi-angle tracking algorithm for
LBs based on a family mobile social-contact big data network and achieved information
matching for LBs [28]. Based on the daily consumption transaction network of LBs, a
network sorting search rule and algorithm is proposed to track LBs in different address
types [29]. However, the above-mentioned studies regarding tracking the information of
LBs relied on complete household mobile phone records and consumption records, which
had to be historical data from within the last six months; otherwise, the prediction results
would be inaccurate. The household mobile phone records and consumption record data
of LBs are scattered on multiple data platforms, and complete historical record data are
difficult to obtain. Hence, to improve the efficiency and integrity of information searching
for LBs, this paper proposes using multi-agent technology to address the problem of cross-
platform information collaborative searching for LBs. The research involves the following
two brand new concepts:

Definition 1: Cross-platform information collaborative searching means that the system determines
the search objective according to the user’s needs and makes corresponding search subtasks based
on the environmental status of each platform/system. It then launches distributed searches on
multiple platforms/systems simultaneously, and processes each search result during the search
process. Moreover, the description characteristics of the search objective are updated synchronously.

Definition 2: Cross-platform information collaborative searching for LBs refers to the process of
conducting a collaborative search for LBs across multiple platforms. The search process needs to
formulate search subtasks for each platform/system wherein the material data of the LBs are located
according to the search objective. Although each of the search subtasks independently performs
information screening and analysis tasks on their respective platforms, they are closely related.

The user’s search needs to drive the collaborative search process for the LBs across
multiple platforms. The specific search process is shown in Figure 1. The search work steps
are as follows.

Step 1: The user assigns the task of searching for the name, birthplace, age, ethnicity,
telephone number, contact person, contact time, address, and other information of the LBs
as needed.

Step 2: The system formulates search subtasks for each platform/system according
to the total search task. Specifically, the system formulates the search subtasks of contact
information on the telecommunication platform. The system formulates the search subtasks
of social contacts on the social platform. The system develops address information search
subtasks on the e-commerce platform. The system develops basic information search sub-
tasks such as name, birthplace, age, ethnicity, etc., in the government information platform.
The system formulates loan information search subtasks on the P2P platform, and each
platform searches for and collects information according to the assigned search subtasks.

Step 3: Since multiple data types exist on each platform/system, the system formulates
multiple data analysis subtasks according to the data type. According to the data type, these
can be subdivided into text, audio, video, and other data analysis subtasks. A description
model of the LBs with a unified data type is formulated to describe the results of the
data analysis.

Step 4: Storing the result of data analysis—that is, the descriptive information of the
unified data type of LBs—in the storage unit.
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Figure 1. The workflow of the cross-platform collaborative search for LBs’ information.

3. Multi-Agent Collaborative Search Model for LBs Information
3.1. Model Framework

A multi-agent model based on reinforcement learning is proposed to achieve the
collaborative searching of cross-platform information for LBs. This model employs multiple
agents to process information from different platforms and data types, and integrates
multiple results as the final description of the LBs. The multi-agent collaborative search
model structure for LBs is composed of six main modules: collaborative control agent,
data collection agent group, data analysis agent group, descriptive model of LBs, object
knowledge base of LBs, and historical information database of LBs. The specific structure
of the multi-agent collaborative search model is as follows:

(1) Cooperative control agent—This is set according to the information search objec-
tive, description model, and object knowledge base of the LBs determined by the user.
The system formulates the search tasks and dynamically deploys the agents in the data
analysis agent group to complete the search and data analysis subtasks in different plat-
forms/systems;

(2) Data collection agent group—This consists of the multiple data collection agents
responsible for collecting data about LBs from different internet platforms (e.g., telecom-
munications platforms, social platforms, e-commerce platforms, government information
platforms, and P2P platforms);
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(3) Data analysis agent group—Multiple data analysis agents are responsible for
completing data screening and analysis subtasks on different platforms/systems. The
collaborative agent determines each agent’s specific tasks according to the total search task.
These data analysis agents have different functions and can process data types in parallel;

(4) Descriptive model of LBs—When searching for LBs’ information, it is necessary to
determine the characteristics of the search object. Therefore, an object description model
is used to represent the information model. The collection of searched LBs’ information
in this paper can be described as name, hometown, age, ethnicity, phone number, contact
person, contact time, and address. During the information collaborative search process, the
descriptive model of LBs can be gradually updated to include additional information such
as academic qualifications, Weibo account, Weibo content, and more;

(5) Object knowledge base of LBs—This refers to storing knowledge about LBs that is
summarized based on historical data. This knowledge is mainly used as a reference basis to
help the collaborative control agent determine the distribution strategy of search subtasks
in each platform and the filter conditions for each search subtask. The knowledge base
also guides the material data collection agent in collecting relevant data. In the process of
information collaborative searching, as the agent group analyzes the data, new knowledge
is continuously obtained, and the knowledge base of LBs can be continuously updated;

(6) Historical information database of LBs—This is responsible for storing the data
of LBs collected by the material collection agent and provides the historical data in the
database to the agent group for data analysis. The descriptive feature model and object
knowledge base of the LBs are updated according to the analysis of the results.

The process of multi-agent collaborative information search is shown in Figure 2. The
detailed steps are as follows:

Step 1—The user draws up the objective content for searching for the information of
LBs, and assigns the search task to the collaborative control agent;

Step 2—The collaborative control agent initializes the description model of LBs ac-
cording to the content of the search task. For example, if the search task involves finding
the address information of LBs, the collaborative control agent initializes the address
information in the description model of the LBs;

Step 3—The collaborative control agent reaches the data collection agent on each
platform under the filtering conditions of the data of LBs according to the content of
the search task. Using the description model and the characteristics of the LBs in the
knowledge base, the collaborative control agent that formulates and assigns search subtasks
is formulated and assigned to each agent in the data analysis agent group;

Step 4—The material data collection agent of the LBs collects material data on multiple
platforms/systems, and stores the collected material data in the historical material database
of LBs;

Step 5—The data analysis agent searches and analyzes the material data of the LBs
in the historical material database. The data analysis agent mines valuable information
about LBs, completing the data analysis tasks. The information value of LBs is judged by
the cumulative sum of environmental rewards when previous predictions are correct. It
notifies the collaborative control agent, stores the search results in the LBs’ knowledge base,
and updates the object description model of the LBs;

Step 6—The cooperative control agent assesses the completion of the search task. If
all agents meet the conditions for the end of the search task, the search task is concluded.
Otherwise, we go to step 2 until the requirement is met.
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3.2. Model Mathematical Description

Assumptions are made as follows to facilitate the description of the collaborative
search model for LB information.

Assumption 1: The data of LBs are distributed on multiple internet platforms/systems. C =
{c1, c2, · · · , cM} represents the collection of these M platforms, ci represents the ith platform, and
1 ≤ i ≤ M.

Assumption 2: There are N types of data concerning LBs information. D = {d1, d2, · · · , dN}
represents the collection of data types of LBs, dj represents the jth data type, and 1 ≤ j ≤ N.

Assumption 3: Historical records of LB information on various platforms and in different data
types are found, and the collection of historical LB information is G = {g1, g2, · · · , gK}, where
g1, g2, · · · , gK represent the diachronic record of the information of LBs. Each diachronic record gu

contains two attributes, that is, gu =
{

gu
c, gu

d
}

, 1 ≤ u ≤ K, gu
c represents the platform where
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the µth record appears, and gu
d represents the data type of the occurrence of the µth record, where

gu
c ∈ C, gu

d ∈ D.

Assumption 4: The description model of the LBs at time t is the collection Lt = {l1t, l2t, · · · , lWt},
where l1t, l2t, · · · , lWt is the attribute of the LBs at time t (e.g., name, hometown, age, nationality,
phone number, contact person, contact time, address). The knowledge base is represented by It.

Rule 1: Since the data information of the LBs is distributed on M internet platforms, M data
collection agents are required to collect data in each platform. We assume that the data collection
agent set is A = {y1, y2, · · · , yM}, and the task is scheduled for the agent yi to perform data
collection in the platform ci, where 1 ≤ i ≤ M. Then, the corresponding relationship between the
agent and the platform is y1 → c1 , · · · , yM → cM .

Rule 2: Since the LBs’ information has n data types, n data analysis agents must collect data in
each platform. We assume that the data analysis agent set is B = {z1, z2, · · · , zN}, and the task
is arranged for the agent zj to analyze data type dj, where 1 ≤ j ≤ N. Then the corresponding
relationship between the agent and the platform is z1 → d1 , z2 → d2 , · · · , zN → dN .

Rule 3: Combining Rule 1 and Rule 2, this paper can use a task chain yi → ci → zj → dj to
represent a data collection agent yi that collects data from the platform ci. Then, the data analysis
agent zj performs data analysis on data type dj. Then, M data collection agents and N data analysis
agents will combine M× N task chains.

To describe the task status of the multi-agent at time t, this paper uses the grid model
for illustration. We assume that six data types on six platforms are used to search for
information on LBs, as shown in Figure 3:
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The blue area in Figure 3 indicates that the multi-agent at time t analyzes the data
type b5 on the platform c4. According to rule 3, the task chain corresponding to the blue
area is y4 → c4 → z5 → d5 . Similarly, the task chains corresponding to the task states of
the multi-agents in the red and green areas are y3 → c3 → z3 → d3 , y5 → c5 → z2 → d2 .

The historical record collection G = {g1, g2, · · · , gK} of the LB information cal(G)
represents the value of the historical information of LBs for each data type in each platform.
cal(G)→

(
ci, dj

)
shows that the information value of the LBs in the platform ci and data

type dj is the highest as regards the calculation result. Then, the search process of the
multi-agent at time t can be expressed as:

IF cal(G)→
(
ci, dj

)
THEN yi → ci → zj → dj update(Lt, It) (1)
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where update(Lt, It) refers to updating the description model and knowledge base of the
LBs at time t. The description model and knowledge base of the LBs at time t + 1 are the
results of the update at time t (Lt+1, It+1) = update(Lt, It). Equation (1) indicates that if
the highest historical information value of LBs is on platform ci and data type dj at time t,
the data collection agent yi will collect data on platform ci. Further, data analysis agent zj
will perform data analysis on data type dj. Finally, according to the analysis results, the
description model and knowledge base of the LBs are updated.

In the multi-agent collaborative search process shown in Figure 3, the task state jumps
from the blue area to the red area, and then from the red area to the green area. The whole
process can be described as:

IF cal(G)→ (c4, d5) THEN y4 → c4 → z5 → d5 update(Lt, It) Next
IF cal(G)→ (c3, d3) THEN y3 → c3 → z3 → d3 update(Lt+1, It+1) Next
IF cal(G)→ (c5, d2) THEN y5 → c5 → z2 → d2 update(Lt+2, It+2) Next
In summary, the key to achieving a multi-agent collaborative search is to judge the

task status of the multi-agent at the next time t + 1 based on the historical information
record and knowledge base of the LBs at time t. The following proposes a multi-agent
Q-learning collaborative search algorithm for this problem.

4. Multi-Agent Q-Learning Collaborative Search Algorithm
4.1. Motivations for Q-Learning Algorithm

As mentioned in Section 1, “Introduction”, Q-learning is widely used to solve the joint
scheduling problem of multiple search subtasks. The following presents the reasons why
Q-learning is chosen as the methodology in this paper.

Firstly, in practice, information on LBs is often scattered across multiple internet
platforms. For the search of LBs information, the multi-agent needs to perform search
subtasks on each platform, and then conduct the collaborative search, while the Q-learning
algorithm is popularly used in multi-agent control and scheduling. By properly defining
the search action, search state, and return function, the multi-agent collaborative search
problem is formulated as a Q-learning problem.

Secondly, in the process of collaborative searching, the multi-agent needs to decide the
next search behavior within a relatively reasonable time, and search for as much valuable
LB information as possible. The Q-learning algorithm can be used to train agents to make
decisions without knowing the environmental model, and to update the description model
of the LBs based on function approximation. It can to some extent solve the decision
problem when the multi-agent processes which platform/system and which type of data
to use.

Thirdly, some researchers who have focused on a similar problem to this paper have
demonstrated that the Q-learning algorithm offer potential advantages in solving finite
Markov decision processes (MDP). The Q-learning algorithm can ensure convergence to
an optimal strategy. For instance, Gulzar et al. [3] and Matignon et al. [30] indicated an
outstanding solution could be obtained by applying a Q-learning algorithm to multi-agent
collaborative search and control. In this context, this paper leverages and extends their
insights to design the Q-learning algorithm discussed here.

4.2. Algorithm Designing

The multi-agent Q-learning algorithm is a reinforcement learning method whereby
the agent interacts with the environment to obtain rewards, influencing its future actions.
The collaborative search process using multi-agent Q-learning is modeled as a Markov
decision process [31,32]. The agent aims to maximize future rewards by making decisions
based on the current internal state, external state, and fixed state transition probability of
the environment, thereby obtaining immediate rewards. In detail, at each time step t, the
controller observes the agent’s current search state, denoted as st, the action taken by the
agent, denoted as at, and the information value of the LBs obtained from the search R(st, at),
and makes the system transition to the next search state st+1; the transition probability is
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P(st, at). For the convenience of calculation, assuming that the occurrence probability of
the LBs’ data in each platform/system and data type conforms to the normal distribution,
then P(st, at) obeys the normal distribution.

According to the Bellman Equation [33,34], given a search strategy π, we define Q
as the search state st, and search action at and the expectation of the reward discount
sum of the subsequent time steps in strategy π. The implementation of the Q-learning
method is as follows: At each time step t, we observe the current search state st, and
select and execute the search action at. After observing the subsequent search status st+1,
the value of the LBs information obtained is R(st, at). According to the algorithmic rules
proposed by Watkins [35], in the collaborative search process, the maximum expectation of
the cumulative discount of the information value of the LBs that the agent can obtain in the
next search action is expressed as Equation (2):

Qt+1(st, at) = (1− α)Qt(st, at) + α[R(st, at) + γmaxP(st, at)Qt(st+1, at+1)] (2)

where α represents the learning rate of the agent’s search action, α ∈ [0, 1]. γ represents the
discount factor, γ ∈ [0, 1], which describes the impact of the search time on the value of the
information of the LBs. Qπ(st, at) represents the expectation that the agent performs the
search action at and the subsequent strategy π when searching for the state st to obtain the
cumulative discount of the information value of the LBs.

Q-learning aims to estimate the Q value under the optimal strategy when the probabil-
ity and the reward obtained are unknown. Therefore, to facilitate the calculation, let Q∗(s, a)
be the maximum expectation of the agent obtaining the discount of the information value
of the LBs under the optimal search strategy. The value of the accumulated information of
the LB is denoted as Vπ(s) = Qπ(s, a). According to the mapping of the search strategy
and the state action, the optimal search strategy is found; that is π : s→ a . We then select
the search action when changing the search state of the agent in turn to maximize the sum
of the rewards obtained, and the optimal search strategy can be obtained as follows:

V∗(s) = Q∗(s, a) = maxQ(s, a) (3)

The Q value will gradually approach the optimal strategy Q∗(s, a) by iteratively
updating the Q value that repeatedly performs actions.

The three elements of state, behavior, and reward function are the core of constructing
a multi-agent Q-learning process. In this paper, the system state refers to the current
agent search state, action refers to the search action of each agent, and the reward function
represents the value of the agent searching to obtain the information of the LBs. The
following will explain the agent’s search state, search actions, and environmental reward.

4.2.1. Search State

The search state refers to the state the current agent’s searches for the LBs’ information
in each type of data and platform/system. The division of the search state space is the
basis for the agent to select collaborative search actions reasonably. In this paper, the search
state S of the system characterizes the situation in which the agent searches for information
about LBs. Because the data of LBs are distributed in M platforms and N types of data,
the search state of the system can be directly represented by the data source and data type
s(ci, dj) of the LBs discovered by the agent, i ∈ [1, M], j ∈ [1, N]. The agent has M× N
search states, and each state can jump to each other. The search state collection of the
system is expressed by Equation (4):

S =
{

s(ci, dj)
∣∣i = 1, 2, 3, · · · , M; j = 1, 2, 3, · · · , N;

}
(4)

where s(ci, di) means that the agent searched for valuable information about the LBs in the
dj data type in the platform ci; assuming M = 6 and N = 6, the system has 36 search states.
As shown in Figure 4, each small square represents the possible search status of the system.
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If the current search state of the system is a small blue square s(c2, d3), it represents that the
agent has searched for the information of the LBs in the data type d3 in the platform c2.
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Figure 4. Multi-agent collaborative search state and action.

4.2.2. Search Action

The search action refers to the action of the agent jumping from the current search
state to the next search state. a(ci, di) represents that the agent executes data of type dj
in platform ci. Since this paper assumes that any search state can be arbitrarily jumped
to during the collaborative information search process and there are M× N states in the
search state space, the system executes action a(ci, di), and there are M× N kinds of search
actions. Then, the search action set of the system is expressed as Equation (5):

A =
{

a(ci, dj)
∣∣i = 1, 2, 3, · · · , M; j = 1, 2, 3, · · · , N;

}
(5)

Assuming M = 6 and N = 6, the system has 36 search actions in total. The small blue
square in Figure 4 can perform 36 search actions. When the agent executes the search action
a(c2, d3), it represents the agent executing the information search task of LBs in the data
type d2 and the platform c2. According to rule 3, the search action a(c2, d3) corresponds to
the task chain y2 → c2 → z3 → d3 . That is, the data collection agent y2 collects data in the
platform c2. Then, the data analysis agent z3 performs data analysis on the data type d3.

4.2.3. Environmental Reward

The environmental reward R(st, at) represents the value of the agent’s search action at
in the search state st, and the value of the LB’s information obtained by searching in the
corresponding platform/system and data type. The larger the environmental reward, the
greater the value of the information of the LBs found by the agent.

The setting of the environmental reward can be obtained by evaluating the importance
of the data source and data type based on the historical record of the LBs information. For
example, the LB is a person who often posts various comments on Weibo, so it is easier for
the agent to obtain the valuable information of LBs when processing the text data from the
Weibo platform. In other words, when the agent processes the text data from the Weibo
platform, it obtains a higher environmental reward. Meanwhile, it can also determine the
number of object information items obtained in the data source and data type per unit
of time. In this paper, the latter is chosen as the basis for formulating the environmental
reward. In detail, according to the historical record of LBs G = {g1, g2, · · · , gK}, 1 ≤ u ≤ K.
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g(ci, dj) represents the number of historical records of LBs in platform ci and data type dj,
then ∑ g(ci, dj) = K. The environmental reward function is expressed as Equation (6):

R(st, at) =


1
2
3

0 ≤ g(ci, dj) ≤ K/(M× N)
K/(M× N) < g(ci, dj) ≤ K/M

K/M < g(ci, dj) ≤ K
(6)

where g(ci, dj) represents the number of historical records of LBs in the platform ci data
type dj. When g(ci, dj) ≤ K/(M× N), the information value of LBs obtained by the agent
in the data type dj and the platform ci is 1. Similarly, when K/(M× N) < g(ci, dj) ≤ K/M,
the information value of LBs obtained by the agent in the data type dj and the platform ci
is 2. When K/M < g(ci, dj) ≤ K, the information value of LBs obtained by the agent in the
data type dj and the platform ci is 3. Figure 5 is an example of the environmental reward
that the agent executes for the dj type of data in the platform ci in the search state st with
M = 6 and N = 6.
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4.3. Algorithm Steps

In the process of multi-agent collaborative searching, the next search state of the agent
is only determined by its current search state, which conforms to the characteristics of the
Markov process. The algorithm steps are designed according to the characteristics of the
object conforming to the Markov process. Moreover, a two-dimensional table Q is adopted
to store the Q value [30,36]. The detailed steps of the algorithm are shown in Figure 6.

The detailed steps of the multi-agent Q-learning collaborative search algorithm are
as follows:

Step 1—Initialize the search state of the multi-agent in the system, and let the search
state of the agent be

(
s−, s0, s+

)
, where s0 represents the state in which the agent recently

discovered the information of the LBs. s− represents the previous search state s0. s+

represents the next search state s0. At the initial moment when multi-agents conduct a
collaborative search, the search action at0 from the action set is selected to search;

Step 2—Initialize the Q table, Q(i, j, k) = 0, (1 ≤ i, j, k ≤ M× N). Initialize learning
rate α and discount rate γ. Initialize the environmental reward function. In order to facilitate
the simulation, it is assumed that the historical record of LBs manually sets the environ-
mental reward function. In practice, it can be obtained according to actual data statistics.
Initial transition probability P(st, at) and P(st, at) conform to the normal distribution;

Step 3—When the LBs with new information appear in the record g =
{

gs, gd
}

,

update s+ = s
(

gc, gd
)

, and meanwhile, update the Q table. According to Equation (5),

the next step update formula is Q
(
s−, s0, s+

)
= (1− α)Q

(
s−, s0, s+

)
+ α[r(s+)+

γmaxQ
(
s−, s0, s+

)
P(st, at)];
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Step 4—Search states within the system are updated, where
{

s− = s0

s0 = s+
;

Step 5—Predict the next search action at of the agent through the Markov decision

process. Then, s+ = max
1≤i≤M×N

(
∑

1≤j≤M×N
Q
(

j, s0, i
))

;

Step 6: The system agent performs the next search action, and processes the data {c, d}
corresponding to the state s+. The corresponding equation is:

c =

{
s+
M −

⌊ s+
M
⌋
×M s+

M −
⌊ s+

M
⌋
×M 6= 0

M s+
M −

⌊ s+
M
⌋
×M = 0

d =
⌊ s+

M
⌋ (7)

where bc represents rounding down, waiting for a new record of LBs information;
Step 7—Repeat steps 3 to 6 until the Q matrix value converges.
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Figure 6. Flowchart for multi-agent Q-learning collaborative search algorithm.

The pseudo-code of the multi-agent Q-learning algorithm is briefly introduced in
Figure 7.
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4.4. Algorithm Complexity Analysis

When analyzing the algorithm steps, it can be seen that the calculation burden of the
algorithm is mainly concentrated in step 5. The maximum value of the Q matrix is found
when predicting the next action through the Markov decision process. Since the agent
has M× N search states and M× N search actions, the complexity of Markov decision is
T(n) = (M× N)× (M× N) = O

(
M2N2). Therefore, the total complexity of the algorithm

is O
(

M2N2), and it can be seen that the complexity of the algorithm is at the polynomial
level, which can meet the needs of real-time processing.

5. Simulation Analysis

In order to verify the performance of the multi-agent collaborative search algorithm,
this paper simulates the algorithm. All simulations were implemented using Matlab 2014
on a Windows PC (AMD A10-9600P RADEON R5, 10 COMPUTE CORES 4C + 6G 2.40 GHz;
RAM: 4.00 GB DDR; OS: Windows 10). The algorithm verification process is shown in
Figure 8. The record generation module generates Markov object appearance records. The
information value and information acquisition rate statistics module calculate the value
and information acquisition efficiency of LBs information obtained by different algorithms
according to the environmental reward function. To evaluate the algorithm’s performance,
two performance indicators are defined: information value and information acquisition rate.
(i) Information value refers to the cumulative sum of environmental rewards when previous
predictions are correct. (ii) Information search rate refers to the ratio of the information
value obtained by the algorithm to the number of searches. This paper compares the
collaborative search performances of the Q-learning algorithm, the transition probability
matrix algorithm, and the probability statistical algorithm. The transition probability
matrix algorithm uses object appearance records to count the transition probability matrix
of the object between states and determine the next action according to the maximum
transition probability value of the current state. The probabilistic statistical algorithm uses
the historical appearance record of the object in each state to determine the probability of
the object appearing in that state. The next action is to dispatch a data processing agent
to the data platform and data type corresponding to the state with the highest probability
of occurrence.
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The parameters for the following experiment are: M = 6, N = 6, K = 95, α = 0.1,
γ = 0.8. Initial Q matrix value EQ = 0, the occurrence probability of LBs information in
each platform and data type conforms to the normal distribution. The detailed parameter
settings are shown in Table 1, and then the position where the information of the LBs
appears is generated and a step action is predicted.

Table 1. The initial value of each parameter.

Parameter The Initial Value of Each Parameter

Data sources of LBs
M = 6, N = 6, K = 36, initial Q matrix value EQ = 0, the occurrence
probability of the LBs information in each data source and data type
conforms to the normal distribution.

The historical record of the information of the LBs in
each platform and data type

g(c1,d1) = 17, g(c1,d2) = 3, g(c1,d3) = 0, g(c1,d4) = 0, g(c1,d5) = 1, g(c1,d6) = 1,
g(c2,d1) = 2, g(c2,d2) = 4, g(c2,d3) = 4, g(c2,d4) = 1, g(c2,d5) = 1, g(c2,d6) = 0,
g(c3,d1) = 1, g(c3,d2) = 10, g(c3,d3) = 0, g(c3,d4) = 3, g(c3,d5) = 3, g(c3,d6) = 2,
g(c4,d1) = 6, g(c4,d2) = 1, g(c4,d3) = 1, g(c4,d4) = 0, g(c4,d5) = 3, g(c4,d6) = 0,
g(c5,d1) = 0, g(c5,d2) = 1, g(c5,d3) = 2, g(c5,d4) = 0, g(c5,d5) = 18, g(c5,d6) = 0,
g(c6,d1) = 0, g(c6,d2) = 4, g(c6,d3) = 2, g(c6,d4) = 0, g(c6,d5) = 1, g(c6,d6) = 3

Other parameters α = 0.1, γ = 0.8

According to Table 1, the amount of information appearing on various platforms and
data types of LBs is counted. According to Equation (6), the environmental reward of
multi-agent collaborative searching is calculated as shown in Figure 9a. To illustrate the
impact of the environmental reward, the environmental rewards in Figure 9b are all set to
1, as the experimental reference group.
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5.1. The Impact of Environmental Reward Function on Search Trajectory

In order to explore the impact of the environmental reward on the search trajectory
of multi-agents, two sets of experiments are set up according to the two environmental
rewards given in Figure 9, and the number of searches is set to 10. The calculated multi-
agent search trajectory is shown in Figure 10. Figure 10a is a multi-agent search trajectory
drawn using the environmental reward of Figure 9a. Figure 10b is a multi-agent search
trajectory drawn using the environmental reward of Figure 9b.
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Figure 10. Multi-agent collaborative search trajectory. (a) is a multi-agent search trajectory drawn
using the environmental reward of Figure 9a, (b) is a multi-agent search trajectory drawn using the
environmental reward of Figure 9b.

It can be seen from Figure 10a that the multi-agent randomly selects some areas
to search at the beginning. With subsequent Q-list learning, the agent concentrates on
searching in certain areas. The agent searches more in the platform c1 data type d1 and the
platform c5 data type d5, accounting for 60% of the total search times. Moreover, the final
search area of the multi-agent converges to platform c5 and data type d5. The corresponding
task chain is y5 → c5 → z5 → d5 . Figure 10b shows that the multi-agent has been searching
randomly selected areas and has not concentrated on a certain area to search. Compared
with Figure 9a, it can be seen that the environmental reward in the platform c1 data type d1
and the platform c5 data type d5 are both at the maximum value of 3. The environmental
rewards of all regions in Figure 9b are the same, so the environmental reward has a greater
impact on the selection of the multi-agent search area. In the search process, multi-agents
tend to search on platforms and data types with larger environmental reward functions.

5.2. The Impact of Environmental Reward on Algorithm Performance

The environmental reward is one of the main differences between the Q-learning
algorithm and the transition probability algorithm in this paper. To illustrate the impact of
the environmental rewards, experiments are carried out according to the two environmental
reward function settings given in Figure 9. Figure 11a is the information value calculated
through the environmental reward function of Figure 9a. Figure 11b is the information
value calculated through the environmental reward function of Figure 9b. Each method
generates and predicts 1000 times and obtains statistics of the information value of LBs.
Each experiment gives 10 experimental results. The specific statistical results are shown in
Figure 11.

In Figure 11a, in the case of the same number of searches, the ability of the Q-learning
algorithm in this paper to obtain the information value of the LBs is stronger than those of
the transition probability matrix algorithm and the probability statistics algorithm. This
is because this paper divides the Q-learning algorithm’s environmental reward function
into three levels to emphasize its advantages, leading to a 60% to 70% improvement in the
overall performance of the transition probability matrix algorithm. This demonstrates the
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significant impact of the environmental reward function in this paper on the algorithm’s
performance. In Figure 11b, the experimental results show that the performances of the Q-
learning search algorithm and the transition probability matrix algorithm are the same, but
both are significantly better than the probability statistics algorithm. This is because when
all environmental reward function values are set to 1, the Q-learning algorithm in this paper
degenerates into a transition probability matrix algorithm. Essentially, both algorithms
make predictions for the next action based on the probability transition matrix of the
Markov model. The slight difference in the individual experimental results in Figure 11b is
caused by the difference in the amount of data required for the first training of the two. The
Q-learning algorithm needs three records to generate the first Q value, while the transition
probability matrix algorithm only needs two records.
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(a) is the information value calculated through the environmental reward function of Figure 9a, and
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5.3. Algorithm Performance Analysis

Figures 12a and 12b, respectively, show the convergence trend of the three algorithms’
information value and information acquisition rate. Figure 12a is a real-time statistic of the
of information acquisition value by three algorithms for LBs. One experiment is carried
out, and the number of searches is 1000. Figure 12b shows the real-time statistics of the
three algorithms in terms of the information acquisition rate of LBs. One experiment was
carried out, and the number of searches was 1000. The small graph in Figure 12a is a trend
graph of the information acquisition rate of the first 100 searches.
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It can be seen from Figure 12a that as the number of searches increases, the capacity of
the three algorithms to obtain information about LBs gradually increases and finally shows
a trend of convergence. The Q-learning algorithm achieves the highest value in terms of
obtaining information about missing borrowers, and its convergence speed is faster than
those of the transition probability matrix algorithm and the probability statistics algorithm.
When the number of searches is about 50, the value of algorithmic information acquisition
reaches about 90, and it continues to grow after that. When the number of searches is
about 100, the growth rate slows down and stabilizes. In addition, the performances
of the two algorithms after convergence decrease in the order of transition probability
matrix algorithm and probability statistical algorithm. It can be seen from Figure 12b
that the information acquisition rates of the three algorithms all increase stepwise first,
then gradually decrease, and finally show a trend of convergence. When the number
of searches is less than 14, the information acquisition rate of the algorithm fluctuates
sharply as the number of searches increases. When the number of searches is greater
than 14, the information acquisition rate of the algorithm continues to decrease. After
the number of searches reaches about 100, the rate of decline gradually slows down and
finally shows a trend of convergence. This change occurs because, at the beginning of
the search, the information value of the LBs obtained by the unit of search times is more
valuable. However, as the number of searches increases, the value of the information
obtained by the number of searches per unit of LBs gradually decreases and eventually
converges to 0, but it is always greater than 0. The other two algorithms have the same
inflection point. The information acquisition rate of the two algorithms decreases in the
order of transition probability matrix algorithm and probability statistical algorithm after
convergence. Therefore, when the number of searches is greater than 15, the performance
of the Q-learning algorithm in this paper is better than those of the other two algorithms.

This article also compares the trends of the average running times of the three algo-
rithms. It can be seen from Figure 13 that the times taken by the Q-learning algorithm,
transition matrix algorithm, and probability statistics algorithm in this paper are not much
different with the same number of searches, and the running time gradually increases with
the increase in the number of searches.
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This paper also compares the running times of three algorithms across 1000 searches
(See Table 2). We performed 10 sets of experiments for each algorithm, set the number
of searches for each set to 1000, and counted the average running times of the 10 sets
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of experiments. The statistical results show that the average running time of the three
algorithms is about 2.6 s, which shows that the search speeds of the three algorithms are
almost the same. However, in the same running time, the Q-learning algorithm’s value
and LBs information acquisition rate are significantly higher than those of the transition
probability matrix algorithm and the probability statistical algorithm. This shows that
the algorithm in this paper has a better performance advantage in terms of controlling
multi-agent information collaborative searches.

Table 2. Running time statistics of each algorithm (1000 search times).

Algorithm Type 1 2 3 4 5 6 7 8 9 10 Average
Time/s

Q-learning algorithm 2.787 2.685 2.759 2.563 2.558 2.640 2.601 2.708 2.701 2.654 2.6656
Transition probability

matrix algorithm 2.984 2.518 2.563 2.541 2.820 2.756 2.679 2.569 2.702 2.584 2.6716

Probability statistical
algorithm 2.630 2.675 2.530 2.615 2.561 2.637 2.644 2.609 2.635 2.656 2.6192

Through the above-mentioned experimental verification, it has been found that the
characteristics of the multi-agent Q-learning algorithm are as follows: (1) When searching
for the information of LBs, the multi-agent Q-learning algorithm has a stronger ability to
acquire information than the transition probability matrix algorithm and the probability
statistical algorithm for the same number of searches. (2) The information value acquisition
rate of the multi-agent Q-learning algorithm fluctuates sharply with the increase in the
number of searches, and then shows a marginal decreasing trend. When the number of
searches is greater than 14, the algorithm’s information acquisition rate begins to decline.
After the number of searches reaches about 100 (100 is also the inflection point of the conver-
gence of the value of the algorithm in obtaining information), the rate of decline gradually
slows down, and finally converges. Therefore, users can set the optimal number of searches
to between 14 and 100 according to their needs when searching for LBs information.

6. Conclusions and Future Research

This paper proposes a collaborative search model for LBs information based on multi-
agent Q-learning to address cross-platform collaborative searches in a multi-source and
diverse data environment. A multi-agent Q-learning collaborative search algorithm has
been designed to coordinate multiple search subtasks. The Q-learning algorithm, based on
function approximation, was used to update the descriptive model of LBs. By reasonably
defining search actions, search states, and reward functions, the problem of the collaborative
control of multiple search subtasks was here transformed into a problem of Q-learning,
achieving a cross-platform multi-source information collaborative search. The conclusions
are as follows:

(1) Compared with traditional search engines, this model focuses on LBs. In the
feedback loop search process, the descriptive model of the LBs can be continuously im-
proved, and the information of the LBs can be obtained from multi-source data. This
greatly improves the comprehensiveness and accuracy of the search for key information
regarding LBs;

(2) In the search process, multi-agents are more inclined to search on platforms and
data types with larger environmental rewards. In other words, multi-agents are more
inclined to perform search tasks on platforms and data types that have greater information
value for LBs;

(3) The multi-agent Q-learning algorithm that designs the environmental reward can
significantly improve the efficiency of information searching for LBs. Furthermore, it can
acquire information value more easily than the transition probability matrix and probability
statistical algorithms;
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(4) The simulation results show that the optimal search times of the multi-agent Q-
learning algorithm are between 14 and 100. Users can flexibly set the number of searches to
within this range when searching for LBs information. This is significant for improving the
efficiency when searching for key information about LBs.

The limitations and valuable topics are discussed as follows. Firstly, although the
multi-agent collaborative information search model can improve the intelligence, compre-
hensiveness, and flexibility of the LBs’ information search, there is a lack of timeliness due
to the method used for the online collection of elements and offline cycle analysis. Besides
this, the model does not analyze the difference in the processing power of the agent group
in detail. In particular, the multi-agent Q-learning collaborative search algorithm proposed
in this study regards the learning process of the agent as a Markov decision process. In
other words, the decision of the agent depends only on the current state of the environment,
so if there is a temporal correlation between the states, then the learning effect is not good.
It might be useful to consider the epsilon-greedy technique as a part of the Q-learning
strategy, which could be studied in the future. Additionally, other mechanisms (e.g., how to
improve social awareness by adding some entities like the Twitter API, etc.) portrayed by
Kumar et al. [37] and principles of machine learning [38] are also suggested to extend the
current studies. The possible future directions for research in this area include exploring
a multi-agent collaborative information search model considering the improvement of
the environmental reward function and the action value function, and the joint schedul-
ing of multiple search subtasks based on deep Q-learning, multi-stage Q-learning, and
fuzzy Q-learning.
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Appendix A. A List of Acronyms

The acronyms appearing in this paper are listed in Table A1.

Table A1. A list of acronyms that appear in the paper.

Acronym Full Name

LBs lost-link borrowers
MSC mathematics subject classification
P2P peer-to-peer

EILMMA-DDPG ensemble imitation learning multi-trick multi-agent deep deterministic policy gradient
ASPL action selection priority level
IDS intrusion detection system

DVFS dynamic voltage and frequency scaling
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Table A1. Cont.

Acronym Full Name

DQL deep Q-learning
DFQL deep-federated Q-learning
FSACL fast-scene adaptive reinforcement learning

CL cooperative Q-learning
IL independent Q-learning

DQN deep Q-learning network
RIFQ reward iterative fuzzy Q-learning

PC personal computer
MDP Markov decision processes
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