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1. Introduction

The concept of entropy as a measure of the chaos of a dynamical system has been
known for a long time, and this concept is used in numerous applications, starting with
the physics of the universe and continuing with chemical reactions, hacking attacks and
medical measurements.

The concept of entropy for a random variable was introduced by Shannon [1] to char-
acterize the irreducible complexity inherent in a specific form of randomness. Nowadays,
entropy measures have a wide range of potential applications across various fields [2],
including information theory, machine learning, thermodynamics, information security,
biology, finance, environmental sciences, social sciences, psychology and the study of
complex systems. For instance, entropy is used in data compression, decision tree con-
struction [3], statistical mechanics [4], cryptography [5], genetics [6], market analysis [7],
climate analysis [8], social network analysis [9] and psychological studies [10]. Entropy
measures help quantify information, predictability, complexity and other characteristics in
these fields.

The notion of entropy is closely intertwined with the theory of quantum information,
as developed in [11]. Recent advancements in this field can be explored in the work by
Rahman et al. [12]. Entropy plays a pivotal role in practical applications, notably in signal
processing and network traffic analysis. It is employed in the development of algorithms for
detecting DDoS attacks [13]. Furthermore, entropy measurements are applied in medical
and biological studies, where they facilitate the differentiation of pathologies and aging by
quantifying physiological complexity. For instance, these concepts have been utilized to
distinguish different Alzheimer’s disease states [14] and to classify signals from patients
with Parkinson’s disease [15].

From a mathematical point of view, the entropy of a probability distribution is ex-
pressed in terms of its density, given the specified density, and this entropy is not difficult to
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calculate for specific distributions. Note, however, that there are many different approaches
to determining the entropy of a probability distribution, starting with Shannon entropy, and
then this concept was successively complicated and generalized by adding new parameters
(Rényi, generalized Rényi, Tsallis, Sharma–Mittal entropies). The various definitions of
entropy share several basic properties postulated by Alfred Rényi [16].

Rényi entropy [16] generalizes Shannon entropy by introducing an additional param-
eter α that allows for a range of entropy measures. Rényi entropy is used in quantum
information theory and quantum statistical mechanics. It helps to describe the entanglement
of quantum systems, the behavior of quantum phase transitions and the characterization of
quantum states.

Generalized Rényi entropy extends the concept of Rényi entropy by allowing for more
flexibility in the choice of the exponent. It is employed in various applications, such as
describing the statistics of turbulent flows, analyzing the complexity of biological systems
and studying the scaling properties of critical phenomena in condensed matter physics.

Tsallis entropy is another generalization of Shannon entropy, introduced by Con-
stantino Tsallis [17,18]. It introduces a nonextensive parameter to describe systems that do
not obey standard statistical mechanics. Tsallis entropy is relevant in the study of complex
systems, self-organized criticality and in modeling systems with long-range interactions. It
has been applied in various branches of physics, including astrophysics, plasma physics
and high-energy particle physics.

Sharma–Mittal entropy [19,20] is a more recent entropy measure that generalizes
both Shannon and Tsallis entropy. It introduces two parameters (α and β) to control the
balance between order and disorder in a system. While it has not seen as much widespread
adoption as Shannon or Tsallis entropy, it has potential applications in various areas of
physics, including the study of complex systems and information theory.

In summary, these entropy measures provide different tools for quantifying the infor-
mation content, complexity and uncertainty in a wide range of physical systems. Depending
on the characteristics of the system being studied and the specific questions being asked,
one of these entropy measures may be more appropriate and insightful than the others.

All of the indicated entropies can be successfully calculated (and they have already
been calculated, for example, in [21]) in the case of a Gaussian distribution, which is the
subject of this paper. However, in the presence of additional parameters of the entropy
itself (not the distribution), the question immediately arises about the behavior of entropy
as a function of the parameter. It is a well-known fact that the Rényi entropy as a function
of the parameter decreases. However, its convexity is not a universal property and, in
general, depends on the distribution ([22]). Therefore, if we concentrate on Gaussian
distribution, we need to investigate the properties of the introduced entropies in as much
detail as possible.

Section 2 of this paper is devoted to this issue. More precisely, we begin by revisiting
the definitions of various entropies and the corresponding formulas for the entropies of a
centered Gaussian distribution with variance σ2. These entropies typically depend on one
or two positive parameters, excluding the Shannon entropy. Our primary objective is to
analyze the monotonicity and convexity properties exhibited by these entropy measures
as functions of the aforementioned parameters. Additionally, we explore limiting cases
in which the entropies may not be well-defined. This exploration allows us to extend
the definitions of the entropies through continuity. Furthermore, we establish limiting
relationships between various entropy concepts. To substantiate and complement our theo-
retical findings, we provide several graphical illustrations. It is worth noting that certain
theoretical properties, particularly the convexity of the Tsallis entropy, are challenging
to analyze analytically. In such cases, we employ numerical investigations, which offer
insights into theoretical properties.

Since this paper is devoted to the entropies of the Gaussian distribution, the next
logical step to consider Gaussian processes, which is what is carried out in Section 3.
We restrict ourselves to fractional Gaussian processes, as these objects have numerous
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applications in technology, finance, economics, biology and other fields. As a rule, fractional
processes contain an additional parameter, such as the Hurst index for fractional Brownian
motion. Shannon entropy for stationary Gaussian processes, including fractional Gaussian
noise, was considered in detail in [23]. The value of this entropy for a multidimensional
Gaussian vector depends on the determinant of covariance matrix, and it is quite difficult
to analyze this determinant in higher dimensions. For example, the behavior of the entropy
of the vector created from fractional Gaussian noise as the function of the Hurst index
was investigated in [24], where the hypothesis that the Shannon entropy increases when
the Hurst index H increases from 0 to 1/2 and decreases when when the Hurst index H
increases from 1/2 to 1 was substantiated numerically; however, analytic confirmation
of this hypothesis for higher dimensions is still in progress. Taking this into account, in
this paper, we decided to limit ourselves to one-dimensional distributions of fractional
Gaussian processes, instead of expanding the class of processes under consideration.

Namely, we compare the entropies of the one-dimensional distributions of the fol-
lowing fractional processes: fractional Brownian motion, subfractional Brownian motion,
Riemann–Liouville fractional Brownian motion, bifractional Brownian motion and three
types of multifractional Brownian motion (moving-average, Volterra-type and harmoniz-
able), as well as tempered fractional Brownian motions of the first and second kind. We
consider normalized versions of these processes to ensure that their variances at t = 1
are equal to 1. After this normalization, we observe that fractional Brownian motion,
subfractional Brownian motion and Riemann–Liouville fractional Brownian motion share
the same entropies. Similar formulas apply to bifractional Brownian motion; furthermore,
its entropies can be compared to those of fractional Brownian motion depending on the
values of t.

For multifractional Brownian motion, we have established that the moving-average
and harmonizable versions of this process have the same entropies. These entropies can be
compared with the corresponding entropies of Volterra-type multifractional Brownian mo-
tion, depending on the behavior of the Hurst function. Lastly, for two versions of tempered
fractional Brownian motions, we can numerically compare their entropies depending on
the ratio between the multiplicative constants involved in their definitions.

Our reason and goal of this comparison was to consider fractional processes from the
point of view of quantity of information contained in their one-dimensional distributions,
because these processes previously were mostly compared from the point of view of
the behavior of their trajectories that is interesting in financial applications, but entropy
properties are more interesting in physical applications, for example, in the calculation of
the fractal dimension of a solid sample. However, there is also an application to financial
models. Namely, the Hurst index of fractional processes affects the behavior of their
trajectories; its decrease leads to their irregularity and vice versa. But from the point of view
of entropies, the situation showed a dependence on time: near zero, more precisely from
zero to one, the variance, and therefore entropy, increases when the Hurst index decreases,
but when time passes through unity, the situation changes to the opposite. This means that
so-called rough volatility, which corresponds to the instability of the model, plays a crucial
role only on short time intervals.

This paper is organized as follows. In Section 2, we investigate the properties of the
various entropies for the centered Gaussian distribution with respect to the parameters,
mainly paying attention to monotonicity and convexity. Section 3 is devoted to the entropies
of fractional Gaussian processes. Fractional, subfractional and bifractional Brownian
motions are studied in Section 3.1, three types of multifractional processes are considered
in Section 3.2 and tempered fractional Brownian motions of the first and the second kind
are compared in Section 3.3. We supplement our paper with three appendices. Appendix A
contains derivations of formulas for the entropies of Gaussian distributions. Appendix B
includes an auxiliary lemma necessary for studying the convexity of the entropies in
Section 2, while Appendix C provides definitions and properties of special functions
involved in the covariance functions of tempered fractional Brownian motions.
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2. Shannon, Rényi, Generalized Rényi, Tsallis and Sharma–Mittal Entropies for
Normal Distribution: Properties of Entropies as Functions of Their Parameters

Since all types of entropy are considered in detail for the normal distribution, Definition 1
of all entropies considered below is provided for the distribution with density. So, let
f (x), x ∈ R be a density of a probability distribution.

Definition 1.

1. The Shannon entropy is given by

HS = −
∫
R

f (x) log f (x)dx.

2. The Rényi entropy with index α > 0 is given by

HR(α) =
1

1− α
log

∫
R

f α(x)dx.

3. The generalized Rényi entropy in the case α 6= β, α, β > 0 is given by

HGR(α, β) =
1

β− α
log

∫
R f α(x)dx∫
R f β(x)dx

.

The generalized Rényi entropy (in the case α = β > 0) is given by

HGR(α) = −
∫
R f α(x) log f (x)dx∫

R f α(x)dx
.

4. The Tsallis entropy with index α > 0, α 6= 1 is given by

HT(α) =
1

1− α

(∫
R

f α(x)dx− 1
)

.

5. The Sharma–Mittal entropy with positive indices α 6= 1 and β 6= 1 is defined as

HSM(α, β) =
1

1− β

(∫
R

f α(x)dx
) 1−β

1−α

− 1

.

Now, let us consider the density function of normal distribution with zero mean and
variance σ2:

f (x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
.

The next proposition summarizes the formulas for various entropies for this prob-
ability density. These formulas are well known (see, e.g., [21]) and can be obtained by
straightforward calculations. But for the reader’s convenience, we present their proofs in
the Appendix A.

Proposition 1. The following facts hold for the centered normal distribution with variance σ2.

(1) The Shannon entropy equals

HS =
1
2
(1 + log 2π) + log σ. (1)
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(2) The Rényi entropy (α > 0, α 6= 1) equals

HR(α) = log σ +
1
2

log(2π) +
log α

2(α− 1)
. (2)

(3) The generalized Rényi entropy in the case α = β equals

HGR(α) = log δ +
1

2α
= log σ +

1
2

log(2π) +
1

2α
, (3)

where δ := σ
√

2π.
(4) The generalized Rényi entropy in the case α 6= β equals

HGR(α, β) = log σ +
1
2

log(2π) +
log β− log α

2(β− α)
. (4)

(5) The Tsallis entropy (α > 0, α 6= 1) equals

HT(α) =
δ1−αα−1/2 − 1

1− α
=

θα−1α−1/2 − 1
1− α

=
σ1−α(2π)

1−α
2 α−1/2 − 1

1− α
, (5)

where θ = δ−1 = (σ
√

2π)−1.
(6) The Sharma–Mittal entropy for α, β ∈ (0, 1) ∪ (1, ∞) equals

HSM(α, β) =
1

1− β

(
(
√

2πσ)1−β

α
1−β

2(1−α)

− 1

)
=

1
1− β

(
σ1−β(2π)

1−β
2

α
1−β

2(1−α)

− 1

)
. (6)

Now, let us compare the values of HR(α) and HGR(α), and along the way, we will
prove one simple useful inequality, which we use in other proofs.

Lemma 1. For any σ > 0, HR(α) < HGR(α) for α ∈ (0, 1), and HR(α) > HGR(α) for α > 1.

Proof. It follows from (2) and (3) that

HR(α)−HGR(α) =
log α

2(α− 1)
− 1

2α
=

log α− 1 + 1/α

2(α− 1)
.

Therefore, it suffices to prove that the numerator f (α) := log α+ 1/α− 1 is positive for
any α ∈ (0, 1) ∪ (1, ∞). Obviously, f (α) = 0 if α = 1. Moreover, f ′(α) = −1/α2 + 1/α =
α−1
α2 < (>)0 for α < (>)1. This means that for any α > 0, α 6= 1, it holds that f (α) > 0.

Now, we consider, step by step, the properties of the entropies introduced in Definition 1
as the functions of parameters. All entropies in this paper are considered for the centered
normal distribution, but we shall recall this from time to time. Theorems 1–4 are devoted to
the properties of Rényi, generalized Rényi, Tsallis and Sharma–Mittal entropy, respectively,
as the functions of entropy parameters, α and β, if the latter parameter is present. All
derivatives that are considered in the proofs of these theorems are taken in α; therefore, we
omit it in the notations of derivatives. Let us start with the properties of the Rényi entropy
as the function of α.

Remark 1. It follows immediately from the equalities (1)–(6) that all entropies strictly increase in
variance of the respective normal distribution.

Theorem 1. The following facts hold for the centered normal distribution with variance σ2 and
corresponding Rényi entropy:
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(1) As α→ 1, the Rényi entropy converges to the Shannon entropy, and at the point α = 1, the
Rényi entropy can be extended by the Shannon entropy to be continuous.

(2) The Rényi entropy is a decreasing and convex function of α.

Remark 2. The continuity of the Rényi entropy at point α = 1, and the fact that it decreases in
α, is common knowledge, and we provide it here in order to demonstrate how these properties are
realized for the normal distribution. The convexity property is not true for all distributions. This
fact was established, e.g., in [22].

Proof. (1) According to L’Hôpital’s rule, log α
α−1 → 1 and 1

2 log 2π + log σ− log α
2(1−α)

→ 1
2 (1 +

log 2π) + log σ as α→ 1. Therefore, the Rényi entropy converges to the Shannon entropy
as α → 1, and at the point α = 1, the Rényi entropy can be extended by the Shannon
entropy to be continuous.

(2) Let us calculate the derivative of the Rényi entropy in α:

2H′R(α) =
(

log α

α− 1

)′
=

(α− 1)/α− log α

(α− 1)2 =
1− 1/α− log α

(α− 1)2 .

It was established in the proof of Lemma 1 that 1/α − 1 + log α > 0 for all α > 0.

α 6= 1; therefore,
(

log α
α−1

)′
< 0 for such α, and the Rényi entropy is a strictly decreasing

function in α. Note that

1
2

log 2π + log σ− log α

2(1− α)
→ ∞, α→ 0,

and
1
2

log 2π + log σ− log α

2(α− 1)
→ 1

2
log 2π + log σ, α→ ∞.

Therefore, the Rényi entropy decreases from ∞ to 1
2 log 2π + log σ. Furthermore,

2H′′R(α) =
(

log α

α− 1

)′′
=

(
1− 1/α− log α

(α− 1)2

)′
=

(1/α2 − 1/α)(α− 1)2 + 2(α− 1)(1/α + log α− 1)
(α− 1)4

=
(1/α2 − 1/α)(α− 1) + 2(1/α + log α− 1)

(α− 1)3

=
−(α− 1)2 + 2(α + α2 log α− α2)

α2(α− 1)3

=
2α2 log α− 3α2 + 4α− 1

α2(α− 1)3 .

Consider the numerator. Its derivative equals

(2α2 log α− 3α2 + 4α− 1)′ = 4α log α + 2α− 6α + 4

= 4α(1/α− 1 + log α) > 0,

for α > 0, α 6= 1, because 1/α− 1 + log α > 0 for such α, which was established in the
proof of Lemma 1. We obtain that 2α2 log α− 3α2 + 4α− 1 is a strictly increasing function
on (0, 1) and (1,+∞), which is zero if α = 1. This means that 2α2 log α− 3α2 + 4α− 1 < 0
for 0 < α < 1, and 2α2 log α− 3α2 + 4α− 1 > 0 for α > 1. Therefore,

2α2 log α− 3α2 + 4α− 1
α2(α− 1)3 > 0,
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except one point α = 1 when it equals zero. Consequently, H′′R(α) > 0, except one point,
α = 1, when it equals zero, and so the Rényi entropy is a convex function.

Now, we proceed with the properties of the generalized Rényi entropy for the normal
distribution as the function of α and β.

Theorem 2. Consider the centered normal distribution with variance σ2 and corresponding gener-
alized Rényi entropy.

(1) In the case α = β, the generalized Rényi entropy is a decreasing and convex function of α.
(2) In the case α 6= β, the generalized Rényi entropy HGR(α, β) converges to the generalized

Rényi entropy HGR(α) as β→ α, and so at the point α = β , HGR(α, β), considered as the
function of β for fixed α, can be extended by HGR(α) to be continuous.

(3) The generalized Rényi entropy, HGR(α, β), considered as the function of β for fixed α, is a
decreasing and convex function. The behavior in α with β fixed is symmetric.

Proof. (1) By (3), HGR(α) = log δ + 1
2α . This function decreases in α ∈ (0,+∞) from +∞

to log δ and is convex. Note that at point α = 1, it coincides with Shannon entropy.
(2) Obviously,

lim
β→α

HGR(α, β) = log δ + lim
β→α

log β− log α

2(β− α)
= log δ +

1
2α

.

So, HGR(α, β)→ HGR(α) as β→ α, and at the point α = β, HGR(α, β) can be extended
by HGR(α) to be continuous.

(3) Since log x is a concave function, its slope function is decreasing; therefore, function

HGR(α, β) = log δ +
log β− log α

2(β− α)
,

considered as the function of β for fixed α, is a decreasing function. To prove its convexity,
we apply Lemma A1, taking

ψ(x) =
g(x)− g(x0)

x− x0
, with g(x) = log x, x = β, x0 = α.

Since

g′′′(ξ) = (log x)′′′ =
(

1
x

)′′
=

(
− 1

x2

)′
= 2x−3 > 0,

the function
HGR(α, β) = log δ +

log β− log α

2(β− α)
,

considered as the function of β for fixed α, is a convex function. The situation with β fixed
is symmetric.

Now, we proceed with the properties of the Tsallis entropy as the function of α.

Theorem 3. Consider, as before, the centered normal distribution with variance σ2.

(1) As α→ 1, the Tsallis entropy converges to the Shannon entropy, and at the point α = 1, the
Tsallis entropy can be extended by the Shannon entropy to obtain a continuous function.

(2) The Tsallis entropy HT(α) decreases from +∞ to −∞ when α increases from 0 to +∞.
(3) Let, as in Proposition 1, θ = δ−1 = (σ

√
2π)−1, and let x0 be the unique root of the equation

x3 − 3
2 x2 + 9

4 x− 15
8 = 0.

(a) Let θ < 1. Then, HT is a convex function on the whole interval (0,+∞).
(b) Let 1 < θ < ex0 . Then, HT is a convex function on the interval (0, x0

log θ ).

(c) Let θ > ex0 . Then, HT is a concave function on the interval ( x0
log θ ,+∞).



Axioms 2023, 12, 1026 8 of 30

(d) For any θ > 1 (consequently, for any σ < (2π)−1/2), there exist numbers 0 <
α(1, θ) < α(2, θ) < ∞ such that HT is a convex function on the interval (0, α(1, θ)),
and it is a concave function on the interval (α(2, θ), ∞).

Remark 3. The property of decreasing is common for the Tsallis entropy if the conditions supplying
the equality (∫

R
f α(x)dx

)′′
=
∫

R
f α(x) log2 f (x)dx

and the finite values of the last integral for any α ∈ (0, ∞) are satisfied.

Proof. (1) Consider the numerator in the right-hand side of (A2). Its derivative equals(
δ1−αα−1/2 − 1

)′
= −2δα log δ + δ

2α3/2δα
,

and

lim
α→1

(
−2δα log δ + δ

2α3/2δα

)
= − log δ− 1/2.

According to L’Hôpital’s rule,

lim
α→1

HT(α) = lim
α→1

(
δ1−αα−1/2 − 1

)′
/(1− α)′ =

1
2
(1 + log 2π) + log σ.

This means that the Tsallis entropy converges to the Shannon entropy when α → 1,
and at the point α = 1, the Tsallis entropy can be extended by the Shannon entropy to be
continuous.

(2) Now, we investigate the monotonicity of the value

−HT(α) =
θα−1α−1/2 − 1

α− 1
, α > 0.

First, let us calculate two derivatives of the function g(α) = θα−1α−1/2, α > 0. Obviously,

g′(α) = θα−1(log θ · α−1/2 − 1
2

α−3/2),

g′′(α) = θα−1[log2 θ · α−1/2 − log θ · α−3/2 +
3
4

α−5/2],

= θα−1α−1/2[log2 θ − α−1 log θ +
3
4

α−2].

It is easy to see that the quadratic function x2 − βx + 3
4 β2 > 0, where x = log θ and

β = α−1. This means that g(α) is convex, whence its slope function g(α)−1
α−1 increases when

α increases from 0 to +∞. In turn, this means that HT(α) decreases from +∞ to −∞ when
α increases from 0 to +∞.

(3) In order to establish the convexity of HT(α), denote, as before, g(α) = θα−1α−1/2

and recall that g′′(α) > 0, α > 0. Also,

−HT(α) =
g(α)− 1

α− 1
.

Then,

−H′T(α) =
g′(α)(α− 1)− g(α) + 1

(α− 1)2 ,

and

−H′′T(α) = [g′′(α)(α− 1)(α− 1)2 − 2(α− 1)[g′(α)(α− 1)− g(α) + 1](α− 1)−4
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= 2
[

1
2

g′′(α)(α− 1)2 − g′(α)(α− 1) + g(α)− 1
]
(α− 1)−3. (7)

According to the Taylor formula,

g(1) = 1 = g(α) + g′(α)(1− α) +
1
2

g′′(α)(α− 1)2 +
1
6

g′′′(ξ)(1− α)3, ξ ∈ (1∧ α, 1∨ α).

Therefore,

−H′′T(α) = −2 · 1
6

g′′′(ξ)(1− α)3(α− 1)−3 =
1
3

g′′′(ξ), and

H′′T(α) = −
1
3

g′′′(ξ), ξ ∈ (1∧ α, 1∨ α).

It is easy to calculate the 3rd derivative of function g:

g′′′(α) = θ(α−1)α−7/2
(

x3 − 3
2

x2 +
9
4

x− 15
8

)
,

where x = α log θ, θ = (σ
√

2π)−1. Function

h(x) = x3 − 3
2

x2 +
9
4

x− 15
8

is increasing on R with the unique root x0 ≈ 1.05357. Consider several cases. In some of
them, we can produce analytical inference about the sign of H′′T(α); in other cases, numerics
are necessary.

(a) Let θ < 1. Then, log θ < 0, and for all ξ > 0, x = ξ log θ < 0; consequently,
x < x0, g′′′(ξ) < 0, and H

′′
T(α) > 0 for all α > 0. This means that in the case θ < 1,

HT is a convex function on the whole interval (0,+∞).
(b) Let 1 < θ < ex0 , α < 1. Then, ξ ∈ (α, 1) and ξ log θ < x0. Consequently, g′′′(ξ) < 0

and H
′′
T(α) > 0. Similarly, let 1 < θ < ex0 , α ∈ (1, x0

log θ ). Then, ξ ∈ (1, α) ⊂ (1, x0
log θ ),

and ξ log θ < x0. Consequently, g′′′(ξ) < 0 and H
′′
T(α) > 0. This means that in the

case 1 < θ < ex0 , HT is a convex function on the interval (0, x0
log θ ).

(c) Let θ > ex0 , α > 1. Then, ξ ∈ (1, α); therefore, ξ log θ > x0, and consequently,

g′′′(ξ) > 0, whence H
′′
T(α) < 0. Let θ > ex0 , α ∈

(
x0

log θ , 1
)

. Then, α log θ > x0 and

g′′′(ξ) > 0, whence H
′′
T(α) < 0. Therefore, in the case θ > ex0 , HT is a concave

function on the interval ( x0
log θ ,+∞).

(d) Analyzing the asymptotics of g(α), g′′(α) and g′′(α) at 0 and at +∞, respectively,
we obtain that for θ > 0

H′′T(α) ∼
3
4

θ−1α−
5
2 → ∞ as α→ 0.

Furthermore, for θ > 1 and for α → +∞, it is sufficient to analyze the sign of the
value

− 1
2

g′′(α)(α− 1)2 + g′(α)(α− 1) + g(α)− 1

∼ −1
2

θα−1α−
1
2 log2 θ(α− 1)2 → −∞ as α→ ∞.

This means that HT is convex on some interval (0, α(1, θ)) and concave on some
interval (α(2, θ),+∞), where the first statement is true for any θ > 0, while the
second is true only for θ > 1.
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Remark 4. Figures 1 and 2 correspond to the behavior of Tsallis entropy for θ < 1. Two cases need
to be investigated numerically:

θ ∈ (1, ex0), α >
x0

log θ

and
θ > ex0 , α <

x0

log θ
.

In both cases, we already know from item (d) of Theorem 3 that HT is a convex function on the
interval (0, α(1, θ)) and is a concave function on the interval (α(2, θ), ∞) for some 0 < α(1, θ) <
α(2, θ) < ∞. The surfaces plotted on Figures 3 and 4 confirm numerically that for any θ > 1,
there exists the unique inflection point α(0, θ) ∈ (α(1, θ), α(2, θ)) of HT as the function of α.
Furthermore, Figures 5 and 6 give us an idea of the entropy graphs for different θ. The marked
points are points of the intersection of the entropy graph with the vertical line ν(θ) = x0

log θ . Note
that ex0 ≈ 2.86788; therefore, the values of θ in Figure 5 correspond to the interval (1, ex0), while
the values in Figure 6 correspond to (ex0 , ∞).

Moreover, we numerically compared the values of the inflection points which are the solutions of
the equation H′′T(α) = 0 (which is equivalent to 1

2 g′′(α)(α− 1)2 − g′(α)(α− 1) + g(α)− 1 = 0;
see (7)) with ν(θ). Figure 7 confirms that the unique inflection point is close to ν(θ), slightly
overcomes ν(θ) for θ < ex0 and is less than ν(θ) for θ > ex0 . In the case θ = ex0 , we have a
coincidence of inflection points with ν(θ) = 1.

Figure 1. Tsallis entropy as a function of θ and α, θ < 1.
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Figure 2. Tsallis entropy as a function of α for θ = 0.3, 0.6, 0.9.

Figure 3. Tsallis entropy as a function of θ and α, 1 < θ < ex0 .
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Figure 4. Tsallis entropy as a function of θ and α, θ > ex0 .

Figure 5. Tsallis entropy as a function of α for θ = 1.5, 2.0, 2.8.
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Figure 6. Tsallis entropy as a function of α for θ = 3, 5, 9.

Figure 7. ν(θ) and inflection points.

Now, let us study the properties of the Sharma–Mittal entropy HSM(α, β) as the
function of parameters α and β. It is well known (see [21]) that the Shannon, Rényi and
Tsallis entropies are the limiting cases of HSM(α, β), namely

HSM(α, β)→ HR(α) as β→ 1,

HSM(α, β)→ HT(α) as β→ α,
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HSM(α, β)→ HS as α, β→ 1.

Therefore, the Sharma–Mittal entropy can be extended to a continuous function of α
and β.

Theorem 4. Consider, as before, the centered normal distribution with variance σ2.

(1) Let us denote

θ1 = θ1(α) =

√
2πσ

α
1

2(1−α)

.

For any fixed α > 0, α 6= 1, HSM(α, β) decreases in β ∈ (0,+∞), namely as follows:

(i) If θ1 = 1, then HSM(α, β) = 0.
(ii) If θ1 < 1, then HSM(α, β) decreases from θ1 − 1 to −∞.
(iii) If θ1 > 1, then HSM(α, β) decreases from θ1 − 1 to 0.

(2) For any fixed α > 0, α 6= 1, the function HSM(α, β) is concave in β if θ1 < 1, and it is
convex if θ1 > 1.

(3) For a fixed β ∈ (0, 1) ∪ (1, ∞), HSM(α, β) is a decreasing and convex function in α.

Proof. (1) We have

HSM(α, β) =
θ

1−β
1 − 1
1− β

, β ∈ (0, 1) ∪ (1, ∞).

Denote x = 1− β ∈ (−∞, 0) ∪ (0, 1). Then,

F(x) =
θx

1 − 1
x

=
θx

1 − θ0
1

x− 0

is a slope function for f (x) = θx
1 , which in convex. Therefore, F(x) is increasing in

x ∈ (−∞, 0) ∪ (0, 1). Consequently, the statements (i)–(iii) hold.
(2) Let θ1 < 1. We can write

−HSM(α, β) =
g1(β)− g1(1)

β− 1
, β ∈ (0, 1) ∪ (1, ∞).

where g1(β) = θ
1−β
1 . Since the third derivative g′′′1 (β) = −θ

1−β
1 (log θ1)

3 is positive for
θ1 < 1, we see that −HSM(α, β) is convex in β by Lemma A1 from Appendix B. Hence,
HSM(α, β) is concave in β.

In the case θ1 > 1, we represent HSM(α, β) in the following form:

HSM(α, β) =
g2(β)− g2(1)

β− 1
, β ∈ (0, 1) ∪ (1, ∞),

where g2(β) = −g1(β) = −θ
1−β
1 . For θ1 > 1, we have g′′′2 (β) = θ

1−β
1 (log θ1)

3 > 0; hence,
the desired convexity follows from Lemma A1.

(3) It is not hard to see that

log θ1(α) = HR(α), (8)

where HR(α) is the Rényi entropy, which is a decreasing function of α according to
Theorem 1. Hence, θ1(α) decreases. Moreover,

∂

∂α
HSM(α, β) =

θ′1(α)

θ
β
1 (α)

< 0, (9)
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and HSM(α, β) also decreases in α.

In order to establish convexity, we differentiate (8) and obtain θ′1(α)
θ1(α)

= H′R(α), whence
θ′1(α) = θ1(α)H′R(α) and

θ′′1 (α) = θ′1(α)H
′
R(α) + θ1(α)H′′R(α) > 0,

because θ′1(α) < 0, H′R(α) < 0, and H′′R(α) > 0, according to Theorem 1 and to the previous
statement. Then, by differentiation of (9), we obtain

∂2

∂α2 HSM(α, β) =
θ′′1 (α)θ

β
1 (α)− βθ

β−1
1 (α)θ′1(α)

θ
2β
1 (α)

> 0,

since θ′′1 (α) > 0 and θ′1(α) < 0. Thus, convexity is proved.

Remark 5. Let us consider the equation θ1 = 1, i.e.,

α
1

2(1−α) =
√

2πσ

or
log α

2(1− α)
= log

(√
2πσ

)
=: ρ.

According to the proof of Theorem 1 (statement 3), the function log α
2(1−α)

increases from −∞ to
0 in α ∈ (0, 1) ∪ (1, ∞).

Thus:

• If
√

2πσ > 1, then θ1 > 1 and (iii) holds.
• If

√
2πσ = 1, then (iii) holds too.

• If
√

2πσ < 1, then let α0 be a number such that

α
1

2(1−α0)
0 =

√
2πσ.

If α < α0, then θ1 > 1 and (iii) holds. If α > α0, then θ1 < 1 and (ii) holds. If α = α0, then
θ1 = 1 and (i) holds.

3. Examples of Gaussian Fractional Processes with Their Variances: Entropies of
Fractional Gaussian Processes

Now, we consider several types of fractional Gaussian processes. Our goal is very
simple: to compare the entropies of their marginal distributions. In order to compare
their entropies and variances correctly, we normalize the variances using the normalizing
coefficients so that at the point t = 1, the variance of every process equals 1.

As already mentioned in the introduction, the entropy of vector fractional Gaussian
noise is calculated using the formulas given in the book [23]. However, firstly, these
calculations are based on the fact that fractional Gaussian noise is a stationary process, and
secondly, using them to compare different processes, even fractional Gaussian noise with
different Hurst indices, is too complicated a problem for an analytical solution. The main
difficulty is that the formula for the entropy of a Gaussian vector contains the determinant
of the covariance matrix, the calculation of which there are no simple proposals for at
the moment, except for cumbersome standard formulas, and at the same time, they do
not make it possible to compare these determinants. Therefore, having at our disposal
several classes of fractional processes that model a wide variety of processes, from physics
to financial mathematics, we set out to compare in as simple a way as possible the terms of
the information they carry, or, more simply, to compare their entropies. The comparisons of
entropies presented are based on calculating the variances of the corresponding processes,
and these calculations are quite simple and understandable to a wide range of readers.
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3.1. Fractional, Subfractional and Bifractional Brownian Motions

Let us start with the definition of fractional Brownian motion. This process was first
introduced in [25].

Definition 2. A centered Gaussian process BH = {BH
t , t ≥ 0} with a covariance function

Cov
(

BH
t , BH

s

)
=

1
2

(
t2H + s2H − |t− s|2H

)
, t, s ∈ R+

is called a fractional Brownian motion (fBm) with the Hurst parameter H ∈ (0, 1).

Obviously, Var(BH
t ) = t2H .

Definition 3 ([26]). A centered Gaussian process ξH = {ξH
t , t ≥ 0} with a covariance function

Cov
(

ξH
t , ξH

s

)
=

(
s2H + t2H − 1

2

(
(s + t)2H + |t− s|2H

))
, t, s ≥ 0

is called a subfractional Brownian motion with the Hurst parameter H ∈ (0, 1)

Obviously,

Var
(

ξH
t

)
=

(
2t2H − 1

2
(2t)2H

)
=
(

2− 22H−1
)

t2H .

Let us put ξ̄H
t = (2 − 22H−1)−

1
2 ξH

t . Then, ξ̄H
t has the same variance as fractional

Brownian motion.

Definition 4 ([27] (p.71)). The process LH = {LH
t , t ≥ 0}, defined by

LH
t =

1
Γ(H + 1

2 )

∫ t

0
(t− s)H−1/2dWs, t ≥ 0, H ∈ (0, 1),

and where W = {Wt, t ≥ 0} is a Wiener process, is called a Riemann–Liouville fractional
Brownian motion.

Then

Var(LH
t ) =

1
Γ2(H + 1

2 )

∫ t

0
(t− u)2H−1du =

t2H

2HΓ2(H + 1
2 )

.

Therefore, the process LH
= (2H)1/2Γ(H + 1

2 )LH
t has the same variance as fractional

Brownian motion and subfractional Brownian motion.

Definition 5 ([28]). A centered Gaussian process BH,K = {BH,K
t , t ≥ 0}, starting from zero, with

a covariance function

Cov
(

BH,K
t , BH,K

s

)
:=

1
2K

(
(t2H + s2H)K − |t− s|2HK

)
is called a bifractional Brownian motion with H ∈ (0, 1) and K ∈ (0, 1].

Then

Var
(

BH,K
t

)
= Cov

(
BH,K

t , BH,K
t

)
=

1
2K

(
(t2H + t2H)K

)
= t2HK.

Obviously, at point t = 1, variance equals Var(BH,K
1 ) = 1.
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Proposition 2. Let X be one of the following processes: BH , ξ̄H or LH . Then, one has the following
formulas for the entropies of Xt:

(1) The Shannon entropy equals

HX
S (t) = H log t +

1
2
(1 + log(2π)). (10)

(2) The Rényi entropy (α > 0, α 6= 1) equals

HX
R (α, t) = H log t +

1
2

log(2π) +
log α

2(α− 1)
. (11)

For α = 1, we extend the Rényi entropy by the Shannon entropy continuously.
(3) The generalized Rényi entropy in the case α = β equals

HX
GR(α, t) = H log t +

1
2

log(2π) +
1

2α
, (12)

and for α = β = 1, we extend the generalized Rényi entropy by the Shannon entropy (and
Rényi entropy with α = 1) continuously.

(4) The generalized Rényi entropy in the case α 6= β equals

HX
GR(α, β, t) = H log t +

1
2

log(2π) +
log β− log α

2(β− α)
, (13)

and for α = β, it can be extended by the generalized Rényi entropy in the case α = β
continuously.

(5) The Tsallis entropy (α > 0, α 6= 1) equals

HX
T (α, t) =

t(1−α)H(2π)
1−α

2 α−1/2 − 1
1− α

, (14)

and for α = 1, it can be extended by the Shannon entropy continuously.
(6) The Sharma–Mittal entropy for α, β ∈ (0, 1) ∪ (1, ∞) equals

HX
SM(α, β, t) =

1
1− β

(
t(1−β)H(2π)

1−β
2

α
1−β

2(1−α)

− 1

)
, (15)

and for β = 1, it can be extended by the Rényi entropy continuously.
(7) The same statements hold for X = BH,K with HK instead of H. This means that any entropy

of bifractional Brownian motion with parameters H and K equals to the corresponding
entropy of fBm with Hurst index H′ = HK. In turn, this means that if we fix the same H in
fBm and bifractional Brownian motion and take K < 1, then

HBH

A (·, t) < HBH,K

A (·, t), t < 1,

A = S, R, GR, and opposite inequality holds for t > 1. For HX
T (α, t), the situation is more

involved: if t < 1, α < 1 or t > 1, α > 1, then

HBH

T (α, t) < HBH,K

T (α, t),

and for t < 1, α > 1 or t > 1, α < 1, the opposite inequality holds.

Figure 8 contains graphs of various entropies of fractional Brownian motion with
Hurst parameter H = 0.75.
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Figure 8. Various entropies of fractional Brownian motion with Hurst parameter H = 0.75 as
functions of t.

Remark 6. It is interesting and natural to compare the variance of fBm BH = {BH
t , t ≥ 0} with

the variance of the corresponding fractional Ornstein–Uhlenbeck process XH
t =

∫ t
0 eα(t−s)dBH

s for
various H and α and consequently to compare their entropies. Consider the following cases.

(i) Let H > 1
2 . Then, according to [29],

Var XH
t = 2H(2H − 1)

∫ t

0

∫ t

0
eα(2t−s−u)|s− u|2H−2du ds.

If α > 0, then eα(2t−s−u) > 1, and

Var XH
t > 2H(2H − 1)

∫ t

0

∫ t

0
|s− u|2H−2du ds = Var BH

t .

Similarly, if α < 0, then Var XH
t < Var BH

t .
(ii) Let H < 1

2 . Then, the integral is understood via integration by parts [30]:

XH
t = BH

t + α
∫ t

0
eα(t−s)BH

s ds.

Let α > 0. Then,

Var XH
t = Var BH

t + 2α
∫ t

0
eα(t−s)E

[
BH

t BH
s

]
ds

+ α2
∫ t

0

∫ t

0
eα(2t−s−u)E

[
BH

s BH
u

]
du ds > Var BH

t , (16)

because E[BH
s BH

u ] = 1
2 (s

2H + u2H − |u− s|2H) > 0 and similarly E[BH
t BH

s ] > 0.
Let α < 0. Denote β = −α > 0. Then, our goal is to determine the sign of the value

θ(t) := −2β
∫ t

0
e−β(t−s)E

[
BH

t BH
s

]
ds + β2

∫ t

0

∫ t

0
e−β(2t−s−u)E

[
BH

s BH
u

]
du ds.



Axioms 2023, 12, 1026 19 of 30

Now, we change the variables βs = r, βu = q and take into account that E[BH
t/βBH

s/β] =

β−2HE[BH
t BH

s ], and similarly, E[BH
s/βBH

u/β] = β−2HE[BH
s BH

u ], denote βt = z and also take into
account the symmetry of the integrand in the 2nd integral and, with all of this at hand, arrive at
the value

ϕ(z) = −
∫ z

0
e−z+r

(
z2H + r2H − (z− r)2H

)
dr

+
∫ z

0

∫ r

0
e−2z+r+q

(
r2H + q2H − (r− q)2H

)
dq dr,

whose sign is interesting for us. Obviously,

ϕ(z) = −z2He−z(ez − 1)− e−z
∫ z

0
err2Hdr +

∫ z

0
e−vv2Hdv + e−2z

∫ z

0
err2H(er − 1)dr

+ e−2z
∫ z

0
er
∫ r

0
eqq2Hdq dr− e−2z

∫ z

0
e2r
∫ r

0
e−vv2Hdv dr.

Equivalently, we can consider the sign of function

ψ(z) = e2z ϕ(z) = −z2H
(

e2z − ez
)
− ez

∫ z

0
err2Hdr + e2z

∫ z

0
e−vv2Hdv +

∫ z

0
err2H(er − 1)dr

+
∫ z

0
er
∫ r

0
eqq2Hdq dr−

∫ z

0
e2r
∫ r

0
e−vv2Hdv dr.

Obviously, ψ(0) = 0. Furthermore,

ψ′(z) = −2Hz2H−1
(

e2z − ez
)
− z2H

(
2e2z − ez

)
− ez

∫ z

0
err2Hdr− e2zz2H

+ 2e2z
∫ z

0
e−vv2Hdv + ezz2H + ezz2H(ez − 1) + ez

∫ z

0
eqq2Hdq− e2z

∫ z

0
e−vv2Hdv

= −2Hz2H−1
(

e2z − ez
)
− 2z2He2z + z2Hez − e2zz2H

+ 2e2z
∫ z

0
e−vv2Hdv + ezz2H + e2zz2H − ezz2H − e2z

∫ z

0
e−vv2Hdv

= −2Hz2H−1
(

e2z − ez
)
− 2z2He2z + z2Hez + e2z

∫ z

0
e−vv2Hdv

< −2Hz2H−1
(

e2z − ez
)
− 2z2He2z + z2Hez + e2zz2H(1− e−z)

= −2Hz2H−1
(

e2z − ez
)
− z2He2z < 0.

This means that ψ(z) < 0 for all z > 0; consequently, θ(t) < 0 for all t > 0. Together with
(16), this finally means that Var XH

t > Var BH
t if α > 0, and Var XH

t < Var BH
t if α < 0.

Remark 7. Note that fractional Ornstein–Uhlenbeck process was generalized in the papers [31,32]
to the massive-FBM and the diffusing–diffusivity-FBM. The diffusing–diffusivity-FBM is non-
Gaussian, but the massive-FBM can be considered in the framework of fractional Ornstein–Uhlenbeck
processes, and the calculations above can help in the comparison of the entropies.

3.2. Multifractional Brownian Motion

Let us consider various definitions of multifractional Brownian motion. The difference
is in the form of their representation; the same situation that we have with standard fBm:
it admits Mandelbrot–van Ness representation [33] on the whole axis, Molchan–Golosov
compact interval representation [29] and spectral representation (Section 7.2.2 of [34]).
However, covariance and variance functions of all fBms are the same and can differ only
by normalizing multipliers (correct values of the multipliers are provided, for example,
in [35]). Considering different representations of multifractional Brownian motion, the
authors introduce different normalizing multipliers, basically following the form of this
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factor for the corresponding representation of fractional Brownian motion, but in this case,
they depend on time. Below, we provide these representations and analyze the relations
between them and the behavior of the normalizing multipliers as the functions on time,
because their value influences the value of variance and consequently the value of the
entropy. Obviously, if we renormalize the processes in order to equate their variances, the
entropies become equal.

Let H : R+ → [a, b] ⊂ (0, 1) be a continuous function.

Definition 6 ([36]). For t ≥ 0, the following random function is called moving-average multi-
fractional Brownian motion with functional parameter H:

Y1(t) =
1

Γ(Ht +
1
2 )

(∫ 0

−∞
[(t− s)Ht−1/2 − (−s)Ht−1/2]dW(s)

+
∫ t

0
(t− s)Ht−1/2dW(s)

)
=

1
Γ(Ht +

1
2 )

(∫ t

−∞
[(t− s)Ht−1/2 − (−s)Ht−1/2

+ ]dW(s) , (17)

where W denotes the Brownian motion.

It follows from Cor. 3.4 of [33] that

Var[Y1(t)] = c1(Ht)t2Ht ,

where

c1(x) =
1

Γ(x + 1
2 )

2

(∫ 0

−∞

(
(1− s)x− 1

2 − (−s)x− 1
2

)2
ds +

1
2H

)
, x ∈ (0, 1).

The function c1(x) can be written in the following form Appendix A of [35]:

c1(x) =
1

2xΓ(2x) sin(πx)
. (18)

Let us consider the process Y1(t) =
Y1(t)√
c1(H1)

. Then,

Var[Y1(t)] =
c1(Ht)

c1(H1)
t2Ht , Var[Y1(1)] = 1.

Remark 8. The coefficient 1
Γ(Ht+1) in (17) goes back to the seminal work of Mandelbrot and van

Ness [33], who defined fractional Brownian motion as a fractional integral of the Wiener process
(this factor ensures that a fractional integral becomes an ordinary repeated integral for integer values
of Ht − 1

2 ). However, in the literature, the moving-average multifractional Brownian motion is
often defined with a different normalizing constant, namely, it is defined as Ỹ1(t) =

Y1(t)√
c1(Ht)

. In

this case, we obviously have that Var Ỹ1(t) = t2Ht .

Let us consider a different type of multifractional Brownian motion, introduced
in [37,38]. It is based on the Molchan–Golosov compact interval representation of fBm [29].
Note that in the next definition, the class of appropriate Hurst functions is restricted to the
case Ht >

1
2 .

Definition 7 ([37]). Let H : R+ → ( 1
2 , 1). For t ≥ 0, the following random function is called

Volterra-type multifractional Brownian motion with functional parameter H:

Y2(t) =
∫ t

0
s1/2−Ht

(∫ t

s
uHt−1/2(u− s)Ht−3/2 du

)
dW(s),
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where W denotes the Brownian motion.

Then, by Prop. 2 of [37],

Var[Y2(t)] = c2(Ht)t2Ht ,

where

c2(x) =
Γ(2− 2x)Γ(x− 1

2 )
2 sin(π(x− 1

2 ))

2πx(x− 1
2 )

, x ∈ (1/2, 1). (19)

Hence, the process Y2(t) =
Y2(t)√
c2(H1)

has the variance

Var[Y2(t)] =
c2(Ht)

c2(H1)
t2Ht

and Var[Y2(1)] = 1.

Remark 9. In [38], the authors defined the Volterra-type multifractional Brownian motion with a
normalizing function in front of the integral, i.e., by the relation Ỹ2(t) =

Y2(t)√
c2(Ht)

. Evidently, in

this case, one has Var Ỹ2(t) = t2Ht .

Definition 8 ([39]). The harmonizable multifractional Brownian motion with functional
parameter H is defined by

Y3(t) =
∫
R

eitu − 1

|u|Ht+1/2 dW(u), t ≥ 0.

where W̃(du) is the “Fourier transform” of the white noise W(du) that is a unique complex-valued
random measure such that for all f ∈ L2(R)∫

R
f (u)W(du) =

∫
R

f̂ (u)W̃(du) a. s.;

see [39,40].

It is known from Prop. 4 of [41] that

Var[Y3(t)] = c3(Ht)t2Ht , (20)

where
c3(x) =

π

xΓ(2x) sin(πx)
. (21)

Define the normalized version of the harmonizable multifractional Brownian motion
by Y3(t) =

Y3(t)√
c3(H1)

so that

Var[Y3(t)] =
c3(Ht)

c3(H1)
t2Ht and Var[Y3(1)] = 1.

Proposition 3. One has the following formulas for the entropies of Yi(t), i = 1, 2, 3.

(1) The Shannon entropy equals

HYi
S (t) = Ht log t +

1
2

log ci(Ht)−
1
2

log ci(H1) +
1
2
(1 + log(2π)). (22)
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(2) The Rényi entropy (α > 0, α 6= 1) equals

HYi
R (α, t) = Ht log t +

1
2

log ci(Ht)−
1
2

log ci(H1) +
1
2

log(2π) +
log α

2(α− 1)
. (23)

(3) The generalized Rényi entropy in the case α = β equals

HYi
GR(α, t) = Ht log t +

1
2

log ci(Ht)−
1
2

log ci(H1) +
1
2

log(2π) +
1

2α
. (24)

(4) The generalized Rényi entropy in the case α 6= β equals

HYi
GR(α, β, t) = Ht log t +

1
2

log ci(Ht)−
1
2

log ci(H1)

+
1
2

log(2π) +
log β− log α

2(β− α)
. (25)

(5) The Tsallis entropy (α > 0, α 6= 1) equals

HYi
T (α, t) =

t(1−α)Ht(2πci(Ht)/ci(H1))
1−α

2 α−1/2 − 1
1− α

. (26)

(6) The Sharma–Mittal entropy for α, β ∈ (0, 1) ∪ (1, ∞) equals

HYi
SM(α, β, t) =

1
1− β

(
t(1−β)Ht(2πci(Ht)/ci(H1))

1−β
2

α
1−β

2(1−α)

− 1

)
. (27)

Now, let us compare entropies for various versions of multifractional Brownian motion.
Recall that the Volterra-type multifractional Brownian motion Y2 is well-defined only for
Ht >

1
2 .

Proposition 4. Let H : R+ → (0, 1) and A = S, R, GR, T, SM.

(i) For all t ≥ 0, HY1
A (·, t) = HY3

A (·, t).
(ii) Let Ht >

1
2 . Then

HY1
A (·, t) ≤ HY2

A (·, t) if Ht ≤ H1,

HY1
A (·, t) ≥ HY2

A (·, t) if Ht ≥ H1.

Proof. (i) It follows immediately from (18) and (21) that c3(x)
c1(x) = 2π for all x ∈ (0, 1). This

means that for any Hurst function Ht,

Var[Y1(t)] =
c1(Ht)

c1(H1)
t2Ht =

c3(Ht)

c3(H1)
t2Ht = Var[Y3(t)],

i.e., the entropies for Y1(t) and Y3(t) coincide.
(ii) According to Remark 1, all entropies are increasing functions of the variance.

Therefore, it suffices to compare the variances of moving-average and Volterra-type multi-
fractional Brownian motions.

For x ∈ ( 1
2 , 1), Formulas (18) and (19) imply that

c2(x)
c1(x)

=
Γ(2x)Γ(2− 2x)Γ(x− 1

2 )
2 sin(π(x− 1

2 )) sin(πx)
π(x− 1

2 )

=
2Γ(2x− 1)Γ(2− 2x)Γ(x− 1

2 )
2 sin(π(x− 1

2 )) sin(πx)
π
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=
2 sin(π(x− 1

2 )) sin(πx)
sin(π(2x− 1))

Γ(x− 1
2 )

2 = Γ(x− 1
2 )

2.

Hence,
Var Y2(t)
Var Y1(t)

=
Γ(Ht − 1

2 )
2

Γ(H1 − 1
2 )

2
.

Since the function Γ(x− 1
2 ) decreases for x ∈ ( 1

2 , 1), we see that Var Y1(t) ≤ Var Y2(t)
if and only if Ht ≤ H1.

3.3. Tempered Fractional Brownian Motion

Two classes of continuous stochastic Gaussian processes, known as tempered frac-
tional Brownian motion (TFBM) and tempered fractional Brownian motion of the second
kind (TFBMII), were recently introduced in [42] and [43], respectively. These processes
modify the power law kernel used in the moving-average representation of fBm by in-
troducing exponential tempering. Unlike standard fBm, TFBMs can be defined for any
Hurst parameter value H > 0. These processes attracted the attention of researchers in
various fields. Notably, a stochastic phenomenological bifurcation of the Langevin equation
perturbed by TFBM was constructed in [44], revealing diverse and intriguing bifurcation
phenomena. Additionally, TFBM and TFBMII are valuable as stochastic models for data
exhibiting fractional Brownian motion characteristics at intermediate scales but deviating
at longer scales, such as wind speed measurements.

Definition 9. Given an independently scattered Gaussian random measure W(dx) on R with
control measure dx, for any H > 0 and λ > 0, the stochastic process BI

H,λ = {BI
H,λ(t), t ≥ 0}

defined by the Wiener integral

BI
H,λ(t) :=

∫ t

−∞

[
e−λ(t−x)(t− x)H−1/2 − e−λ(−x)+(−x)H−1/2

+

]
W(dx),

where 00 = 0 is called a tempered fractional Brownian motion (TFBM).

Since TFBM ([45] (p. 7)) has the covariance function

Cov
(

BI
H,λ(t), BI

H,λ(s)
)
=

1
2

[
(CI

t )
2t2H + (CI

s )
2s2H − (CI

|t−s|)
2|t− s|2H

]
for any s, t ∈ R, where

(CI
t )

2 =
2Γ(2H)

(2λt)2H −
2Γ(H + 1/2)√

π

1
(2λt)H KH(λt), (28)

where t 6= 0 and Kν(z) is the modified Bessel function of the second kind (see Appendix C),
then we have

Var(BI
H,λ(t)) = (CI

t )
2t2H .

Definition 10. Given an independently scattered Gaussian random measure W(dx) on R with
control measure dx, for any H > 0 and λ > 0, the stochastic process BI I

H,λ = {BI I
H,λ(t), t ≥ 0}

defined by the Wiener integral

BI I
H,λ(t) :=

∫ t

−∞
gI I

H,λ,t(x)W(dx),

where

gI I
H,λ,t(x) := (t− x)H−1/2e−λ(t−x) − (−x)H−1/2

+ e−λ(−x)+
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+ λ
∫ t

0
(s− x)H−1/2

+ eλ(s−x)+ds, x ∈ R.

is called a tempered fractional Brownian motion of the second kind (TFBMII).

According to [45] (p. 7), TFBMII has the covariance function

Cov(BI I
H,λ(t), BI I

H,λ(s)) =
1
2

[
(CI I

t )2t2H + (CI I
s )2s2H − (CI I

|t−s|)
2|t− s|2H

]
for any s, t ∈ R, where

(CI I
t )2 =

(1− 2H)Γ(H + 1/2)Γ(H)(λt)−2H
√

π

×
[
1− 2F3({1,−1/2}, {1− H, 1/2, 1}, λ2t2/4)

]
+

Γ(1− H)Γ(H + 1/2)√
πH22H 2F3({1, H − 1/2}, {1, H + 1, H + 1/2}, λ2t2/4),

(29)

and 2F3 is the generalized hypergeometric function, defined in Appendix C. Therefore, the
value of the correspondent variance equals

Var(BI I
H,λ(t)) = (CI I

t )2t2H .

Let us define

BI
H,λ(t) =

BI
H,λ(t)

CI
1

, BI I
H,λ(t) =

BI I
H,λ(t)

CI I
1

.

Then,

Var[BI
H,λ(t)] =

(CI
t )

2

(CI
1)

2
t2H , Var[BI I

H,λ(t)] =
(CI I

t )2

(CI I
1 )2

t2H , (30)

and Var[BI
H,λ(1)] = Var[BI I

H,λ(1)] = 1.

According to Remark 1, in order to compare the entropies of BI
H,λ(t) and BI I

H,λ(t), it
suffices to compare their variances. By (30), this problem can be reduced to the investigation
of the behavior of the ratio CI

t /CI I
t . Namely, we need to compare its value at arbitrary

point t to its value at t = 1. Note also that the dependence of CI
t and CI I

t on λ is such
that CI

t (λ) = CI
1(λt), CI I

t (λ) = CI I
1 (λt). Therefore, it suffices to study the ratio CI

1/CI I
1 as

a function of λ. As it may be seen from Figure 9, this ratio decreases in λ for all selected
values of H. Thus, our numerical study leads to the following conjecture:

Var BI
H,λ(t) > Var BI I

H,λ(t) if t < 1

and
Var BI

H,λ(t) < Var BI I
H,λ(t) if t > 1.

The analytical proof of this result is challenging due to the complexity of expressions
(28) and (29).

Remark 10. For the reader’s convenience, the MATLAB scripts for the figures are published as
Supplementary Material.
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Figure 9. The ratio CI
1/CI I

1 as a function of λ.

4. Conclusions

We examined five distinct entropy measures applied to the Gaussian distribution:
Shannon entropy, Rényi entropy, generalized Rényi entropy, Tsallis entropy and Sharma–
Mittal entropy. We investigated their interrelationships and analyzed their properties in
terms of their dependence on specific parameters. Furthermore, our study extends to
fractional Gaussian processes, encompassing fractional Brownian motion, subfractional
Brownian motion, bifractional Brownian motion, multifractional Brownian motion and tem-
pered fractional Brownian motion. We conducted a comparative analysis of the entropies
associated with the one-dimensional distributions of these processes.

Entropy measures find widespread application in the analysis of fractional processes
across various domains, such as signal processing, finance, climate science and image anal-
ysis. Fractional processes serve as essential models for capturing long-range dependence
and self-similarity in diverse data types. Entropy plays a crucial role in quantifying the
complexity and information content of signals generated by fractional processes, which
proves invaluable for tasks like prediction, risk assessment and anomaly detection. In the
realm of finance, entropy is employed to assess the information content and predictability
of asset prices.

Our research opens up possibilities for future extensions in several directions. Potential
avenues for further investigation include exploring various entropy measures for non-
Gaussian processes, nonstationary processes and processes with nonstationary increments.
Additionally, we can delve into the solutions of stochastic differential equations that
describe the interactions of particle systems within random environments.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/axioms12111026/s1, the MATLAB scripts for the figures.
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Appendix A. Computation of Entropies for Centered Normal Distribution

Appendix A.1. Shannon Entropy

The following transformations are obvious:

HS = −
∫
R

f (x) log f (x)dx

= −
∫
R

1
σ
√

2π
exp

(
− x2

2σ2

)
log
(

1
σ
√

2π
exp

(
− x2

2σ2

))
dx

= −
∫
R

exp
(
− x2

2σ2

)
σ
√

2π

(
log

1
σ
√

2π
− x2

2σ2

)
dx

= − log
1

σ
√

2π
+
∫
R

1
σ
√

2π
exp

(
− x2

2σ2

)
x2

2σ2 dx

= log σ
√

2π + 1/2 = 1/2(1 + log 2π) + log σ.

Appendix A.2. Rényi Entropy

∫
R

f α(x)dx =
∫
R

(
1

σ
√

2π
exp

(
− x2

2σ2

))α

dx

=

(
1

σ
√

2π

)α ∫
R

exp
(
− x2α

2σ2

)
dx

=

(
1

σ
√

2π

)α
√

2πσ2/α√
2πσ2/α

∫
R

exp
(
− x2

2(σ/
√

α)2

)
dx

=

(
1

σ
√

2π

)α√2πσ√
α

=
1

σα−1(2π)
α−1

2 α1/2
,

(A1)

whence
HR(α) =

1
1− α

log
∫
R

f α(x)dx =
1

α− 1
log
(

σα−1(2π)
α−1

2 α1/2
)

= log σ + 1/2 log(2π) +
log α

2(α− 1)
.

Appendix A.3. Generalized Rényi Entropy

Let us calculate the generalized Rényi entropy in the case α = β. We denote γ := σ√
α

and use Formula (A1):

HGR(α) = −
∫
R f α(x) log f (x)dx∫

R f α(x)dx

=
∫
R

δ−αe−
αx2

2σ2

(
log δ +

x2

2σ2

)
dx · δα−1α1/2

= δα−1/2δ−α
∫
R

1
γ
√

2π
e
− x2

2γ2

(
log δ +

x2

2σ2

)
dx · δα−1α1/2
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= log δ +
1

2σ2

∫
R

x2e
− x2

2γ2 1
γ
√

2π
dx

= log δ +
1

2σ2 γ2 = log δ +
1

2α
.

To calculate the generalized Rényi entropy in the case α 6= β, we use Formula (A1):

HGR(α, β) =
1

β− α
log

∫
R f α(x)dx∫
R f β(x)dx

=
1

β− α
log

δβ−1√β

δα−1
√

α

=
1

β− α
log
(

δβ−α
√

β/
√

α
)
= log δ +

log β− log α

2(β− α)
.

Appendix A.4. Tsallis Entropy

The Tsallis entropy (α > 0, α 6= 1) can be calculated using Formula (A1) as follows:

HT(α) =
1

1− α

(∫
R

f α(x)dx− 1
)
=

1
δα−1α1/2 − 1

1− α
=

δ1−αα−1/2 − 1
1− α

. (A2)

Appendix A.5. Sharma–Mittal Entropy

The Sharma–Mittal entropy (α > 0, α 6= 1, β 6= 1) is calculated similarly. By (A1), we
have

HSM(α, β) =
1

1− β

(∫
R

f α(x)dx
) 1−β

1−α

− 1


=

1
1− β

( 1

σα−1(2π)
α−1

2 α1/2

) 1−β
1−α

− 1

 =
1

1− β

(
(
√

2πσ)1−β

α
1−β

2(1−α)

− 1

)
.

Appendix B. Auxiliary Lemma

Lemma A1. Let function g ∈ C(3)(0,+∞) and g′′′(x) > 0, x > 0, x0 > 0. Then, the function

ψ(x) =
g(x)− g(x0)

x− x0
, x > 0

is convex.

Proof. Let us calculate the derivatives:

ψ′(x) =
g′(x)(x− x0)− g(x) + g(x0)

(x− x0)
2 ,

ψ′′(x) =
[

g′′(x)(x− x0)
3 − 2(x− x0)(g′(x)(x− x0)− g(x) + g(x0))

]
(x− x0)

−4

= 2
[

g(x)− g(x0)− g′(x)(x− x0) +
1
2

g′′(x)(x− x0)
2
]
(x− x0)

−3

= 2
[

g(x)− g(x0) + g′(x)(x0 − x) +
1
2

g′′(x)(x0 − x)2
]
(x− x0)

−3.

According to the Taylor formula,

g(x0) = g(x) + g′(x)(x0 − x) +
1
2

g′′(x)(x0 − x)2 +
1
6

g′′′(ξ)(x0 − x)3,
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where ξ is between x and x0, i.e., ξ ∈ [x ∧ x0, x ∨ x0].

Therefore,

g(x)− g(x0) + g′(x)(x0 − x) +
1
2

g′′(x)(x0 − x)2 = −1
6

g′′′(ξ)(x0 − x)3

Finally,

ψ′′(x) = 2
(
−1

6
g′′′(ξ)(x0 − x)3

)
(x− x0)

−3 =
1
3

g′′′(ξ) > 0.

Consequently, the function ψ(x) is convex.

Appendix C. Special Functions Kν and 2F3

In this subsection, we present definitions of two special functions, Kν and 2F3, which
we used in Section 3.3.

A modified Bessel function of the second kind Kν(x) has the integral representation

Kν(x) =
∫ ∞

0
e−x cosh t cosh νt dt,

where ν > 0, x > 0. The function Kν(x) also has the series representation

Kν(x) =
1
2

π
I−ν(x)− Iν(x)

sin(πν)
,

where Iν(x) = ( 1
2 |x|)ν ∑∞

n=0
( 1

2 x)2n

n!Γ(n+1+ν)
is called the Bessel function. We refer the reader

to Section 8.43 of [46] for more information about the modified Bessel function of the
second kind.

Next, we define the confluent hypergeometric function 2F3 that we used to obtain the
variance and covariance of TFBMII. In general, a generalized hypergeometric function pFq
is defined by

pFq(a1, · · · , ap, b1, · · · , bq, z) =
∞

∑
k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

zk

k!
,

where (ci)k =
Γ(ci+k)

Γ(k) is called Pochhammer Symbol. Therefore,

2F3({a1, a2}, {b1, b2, b3}, z) = 2F3(a1, a2, b1, b2, b3, z)

=
∞

∑
k=0

Γ(a1 + k)Γ(a2 + k)Γ(k)
Γ(b1 + k)Γ(b2 + k)Γ(b3 + k)

zk

k!
.
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