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Abstract: Every red–blue coloring of the edges of a graph G results in a sequence G1, G2, . . ., G` of
pairwise edge-disjoint monochromatic subgraphs Gi (1 ≤ i ≤ `) of size i, such that Gi is isomorphic
to a subgraph of Gi+1 for 1 ≤ i ≤ `− 1. Such a sequence is called a Ramsey chain in G, and ARc(G)

is the maximum length of a Ramsey chain in G, with respect to a red–blue coloring c. The Ramsey
index AR(G) of G is the minimum value of ARc(G) among all the red–blue colorings c of G. If G
has size m, then (k+1

2 ) ≤ m < (k+2
2 ) for some positive integer k. It has been shown that there are

infinite classes S of graphs, such that for every graph G of size m in S, AR(G) = k if and only if
(k+1

2 ) ≤ m < (k+2
2 ). Two of these classes are the matchings mK2 and paths Pm+1 of size m. These are

both subclasses of linear forests (a forest of which each of the components is a path). It is shown that
if F is any linear forest of size m with (k+1

2 ) < m < (k+2
2 ), then AR(F) = k. Furthermore, if F is a

linear forest of size (k+1
2 ), where k ≥ 4, that has at most (k−1

2 ) components, then AR(F) = k, while for
each integer t with (k−1

2 ) < t < (k+1
2 ) there is a linear forest F of size (k+1

2 ) with t components, such
that AR(F) = k− 1.
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1. Introduction

For every graph G of size m, there is a unique positive integer k, such that (k+1
2 ) ≤

m < (k+2
2 ). The graph G is said to have an ascending subgraph decomposition {G1, G2, . . ., Gk}

into k (pairwise edge-disjoint) subgraphs of G if Gi is isomorphic to a proper subgraph of
Gi+1 for i = 1, 2, . . . , k− 1. The following conjecture was stated in [1].

The Ascending Subgraph Decomposition Conjecture Every graph has an ascending sub-
graph decomposition.

This conjecture has drawn the attention of many researchers but has never been proved
or disproved. There are many papers dealing with this conjecture (see [2–9], for example).
Among the several classes of graphs for which the conjecture has been verified are regular
graphs (see [3,10]). Two classes of graphs for which the conjecture can easily be verified are
matchings mK2 (consisting of m components K2) and stars K1,m: that is, for every positive
integer m, where (k+1

2 ) ≤ m < (k+2
2 ), there is an ascending subgraph decomposition {G1,

G2, . . ., Gk} of the graph G if either G = mK2 or G = K1,m, such that Gi is isomorphic to a
proper subgraph of Gi+1 for 1 ≤ i ≤ k− 1. If G = mK2, the subgraphs Gi are matchings
and if G = K1,m, each subgraph Gi is a star.

By a red–blue edge coloring (or simply a red–blue coloring) of a graph G, every edge
of G is colored red or blue. Such an edge coloring is also referred to as a 2-edge coloring.
In [11], the concept of ascending subgraph decomposition was extended to graphs pos-
sessing a red–blue coloring. Suppose that a red–blue coloring of a graph G = mK2 or
G = K1,m is given, where (k+1

2 ) ≤ m < (k+2
2 ). It was shown in [12] that there is not only an

ascending subgraph decomposition {G1, G2, . . ., Gk} of G but one in which each subgraph
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is monochromatic as well. This (perhaps unexpected) observation led to another concept,
which is related to some topics in Ramsey Theory, named for the British mathematician
Frank Ramsey [13]. Ramsey theory is one of the most studied areas in combinatorics and
graph theory, with many highly nontrivial and beautiful results (see [14–22], for example).
We refer to the books [11,23] for basic definitions and notation in graph theory that are not
defined here.

Let G be a graph (without isolated vertices) of size m with a red–blue coloring c. A
subgraph H of G is monochromatic if all edges of H are colored the same. A Ramsey chain
of G with respect to c is a sequence G1, G2, . . ., G` of pairwise edge-disjoint subgraphs of G,
such that each subgraph Gi (1 ≤ i ≤ `) is monochromatic of size i and Gi is isomorphic to
a subgraph of Gi+1 for 1 ≤ i ≤ `− 1. Each subgraph Gi (1 ≤ i ≤ `) in a Ramsey chain is
called a link of the chain. The maximum length of a Ramsey chain of G with respect to c
is the (ascending) Ramsey index ARc(G) of G. The Ramsey index AR(G) of G is defined by
AR(G) = min{ARc(G) : c is a red–blue edge coloring of G}. Consequently, if AR(G) = k
for some graph G, then for every red–blue coloring of G, there is a Ramsey chain of length k
in G, while there exists at least one red–blue coloring for which there is no Ramsey chain
of length greater than k. These concepts were introduced and studied in [11,12], using
somewhat different technology, and they were studied further in [24,25]. An immediate
observation on Ramsey indexes of graphs was presented in [12].

Observation 1 ([12]). If G is a graph of size m where 2 ≤ m < (k+2
2 ) for a positive integer k,

then AR(G) ≤ k.

The result obtained on matchings and stars can therefore be stated as follows:

Theorem 1 ([12]). If G ∈ {mK2, K1,m}, where m ≥ 3, then

AR(G) = k if and only if (k+1
2 ) ≤ m < (k+2

2 ).

In [24], the question was posed as to whether there are other infinite classes S of
graphs, such that for every sufficiently large integer m and each graph G of size m in S,
it follows that AR(G) = k if and only if (k+1

2 ) ≤ m < (k+2
2 ). In [24,25], this concept was

studied for cycles and paths. As the emphasis here is on the size of a graph, let Cm denote a
cycle of size m and Qm a path of size m: that is, Qm is a path of order m + 1.

Theorem 2 ([12,25]). If G ∈ {Cm, Qm}, where m ≥ 3, then

AR(G) = k if and only if (k+1
2 ) ≤ m < (k+2

2 ).

A linear forest is a forest of which every component is a path. Here, we are only
concerned with linear forests without isolated vertices. Paths and matchings are linear
forests, namely, the linear forests with the minimum and maximum number of components.
The goal here is to determine whether Theorems 1 and 2 can be extended to include linear
forests distinct from paths and matchings.

2. Ramsey Indexes of Linear Forests

We saw in Theorems 1 and 2 that if G = mK2 or G = Qm for a positive integer m,
then AR(G) = k if and only if (k+1

2 ) ≤ m < (k+2
2 ). As mK2 and Qm are both linear forests,

this raises the question whether the same result holds for all linear forests of size m. This
question can be answered immediately. The linear forest F = Q2 + (m− 2)K2 consisting
of m− 1 components where m = (k+1

2 ) with k ≥ 3 has Ramsey index k − 1, not k. The
red–blue coloring of F that assigns red to both edges of Q2 and blue to all other edges does
not result in a Ramsey chain of length k, since a Ramsey chain F1, F2, . . . , Fk of length k
would require that F2 = Q2 and F3 = 3K2; however, F2 6⊆ F3. On the other hand, (k

2)K2 ⊆ F
and AR((k

2)K2) = k− 1 by Theorem 1; therefore, AR(F) = k− 1 by Observation 2.
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Each of the linear forests Q2 + 8K2, Q3 + 7K2, Q4 + 6K2, 2Q3 + 4K2, Q4 + Q3 + 3K2,
Q7 + 3K2 has size 10 = (k+1

2 ), where k = 4. In each of these linear forests, a red–blue
coloring is given in Figure 1 that shows that its Ramsey index is 3 = k− 1. In Figure 1, a
bold edge indicates a red edge and a thin edge indicates a blue edge.

Each of the six linear forests in Figure 1 has t components for t = 4, 5, . . . , 9. The
examples in Figure 1 suggest that determining AR(F) for a linear forest F may depend
not only on its size but the number of components of F as well. First, we present a result
that gives the Ramsey index of linear forests of size m, where m 6= (k+1

2 ) for any positive
integer k. Prior to doing this, we state some useful information from three results presented
in [24,25].

Figure 1. Linear forests of size 10 with Ramsey index 3.

Observation 2 ([24]). If H and G are graphs, such that H ⊆ G, then AR(H) ≤ AR(G).
Consequently, if AR(H) ≥ k for each graph H of size m, then AR(G) ≥ k for every graph G of
size m + 1.

Theorem 3 ([25]). Let n ≥ 5 be an integer. For every set {n1, n2, . . . , nt} of t integers, such
that 1 ≤ n1 < n2 < · · · < nt ≤ dn/2e and ∑t

i=1 ni = n, every linear forest of size n can be
decomposed into the matchings n1K2, n2K2, . . ., ntK2.

Proposition 1 ([25]). Let m = (k+1
2 ) for some integer k ≥ 5. For every two positive integers m1

and m2 with m = m1 + m2 and m1, m2 /∈ {2, 4}, there exists a partition of [k] = {1, 2, . . . , k}
into two subsets A = {a1, a2, . . . , ak1} and B = {b1, b2, . . . , bk2}, where k1 + k2 = k, a1 < a2 <

· · · < ak1 ≤
⌈m1

2
⌉
, and b1 < b2 < · · · < bk2 ≤

⌈m2
2
⌉
, such that ∑k1

i=1 ai = m1 and ∑k2
i=1 bi = m2.

We now apply Observations 1 and 2, Theorem 3, and Proposition 1, to establish the
following result.

Theorem 4. If H is a linear forest of size m, where (k+1
2 ) < m < (k+2

2 ) for some integer k ≥ 3,
then AR(H) = k.

Proof. As AR(H) ≤ k by Observation 1, it remains only to verify that AR(H) ≥ k: that is,
to verify that H has a Ramsey chain of length k for every 2-edge coloring of H. It suffices
to assume that m = (k+1

2 ) + 1 by Observation 2. Let c be a 2-edge coloring of H using the
colors 1 and 2. We show that there is a Ramsey chain of length k in H. For i = 1, 2, let Hi
be the linear forest in H induced by the edges of H colored i. Let Hi have size mi where
1 ≤ m1 ≤ m2. Therefore, m1 + m2 = m = (k+1

2 ) + 1. We now consider five cases, according
to whether m1 ∈ {1, 2, 3, 4} or m1 ≥ 5.

Case 1: m1 = 1; thus, m2 = (k+1
2 ). As k ≥ 3, it follows that k ≤

⌈
(k+1

2 )
2

⌉
. Be-

cause 1 + 2 + · · ·+ k = (k+1
2 ), it follows by Theorem 3 that H2 can be decomposed into

K2, 2K2, 3K2, · · · , kK2, which is a Ramsey chain of length k in H.

Case 2: m1 = 2; thus, m2 = (k+1
2 )− 1. As k ≥ 3, it follows that k ≤

⌈
(k+1

2 )−1
2

⌉
. Because

2 + 3 + · · · + k = (k+1
2 ) − 1, it follows by Theorem 3 that H2 can be decomposed into

2K2, 3K2, · · · , kK2. As K2 ⊆ H1, there is a Ramsey chain of length k in H.
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Case 3: m1 = 3; thus, m2 = (k+1
2 )− 2. Suppose first that k = 3; then, m2 = 4. The linear

forest H1 can be decomposed into K2 and 2K2, while the linear forest H2 contains either
3K2 or Q2 + K2. In either case, H contains a Ramsey chain of length k = 3. Hence, we may
assume that k ≥ 4. Let F be a linear forest of size m′ = (k+1

2 )− 3 in H2. As k ≥ 4, it follows

that k ≤
⌈
(k+1

2 )−3
2

⌉
. Because 3 + 4 + · · ·+ k = (k+1

2 )− 3, it follows by Theorem 3 that F can

be decomposed into 3K2, 4K4, . . . , kK2. As H1 can be decomposed into K2 and 2K2, there is
a Ramsey chain of length k in H.

Case 4: m1 = 4; thus, m2 = (k+1
2 )− 3 ≥ 7, and so, k ≥ 4. Therefore, k ≤

⌈
(k+1

2 )−3
2

⌉
.

As 3 + 4 + · · ·+ k = (k+1
2 )− 3, it follows by Theorem 3 that H2 can be decomposed into

3K2, 4K4, . . . , kK2. Let F be a linear forest of size 3 in H1. As F can be decomposed into K2
and 2K2, there is a Ramsey chain of length k in H.

Case 5: m1 ≥ 5; thus, m2 = (k+1
2 ) + 1− m1 and k ≥ 5. Let F be a linear forest of

size m′2 = m2 − 1 ≥ 5 in H2. Consequently, m1 /∈ {2, 4}, m′2 /∈ {2, 4}, and m1 + m′2 =

(k+1
2 ). By Proposition 1, there exists a partition of [k] = {1, 2, . . . , k} into two subsets A =
{a1, a2, . . . , ak1} and B = {b1, b2, . . . , bk2}, where k1 + k2 = k, a1 < a2 < · · · < ak1 ≤

⌈m1
2
⌉

and b1 < b2 < · · · < bk2 ≤
⌈

m′2
2

⌉
, such that ∑k1

i=1 ai = m1 and ∑k2
i=1 bi = m′2. Hence, H1 can

be decomposed into a1K2, a2K2, . . . ak1 K2 and F can be decomposed into b1K2, b2K2, . . . bk2 K2,
resulting in a Ramsey chain K2, 2K2, . . . , kK2 of length k in H.

We illustrate the proof of Theorem 4 for the linear forest Q5 + Q6 of size m = 11
consisting of paths of sizes 5 and 6. Then, k = 4 and (4+1

2 ) < 11 < 15 = (4+2
2 ). Five red–

blue colorings of Q5 + Q6 are given in Figure 2, to reflect the five cases for m1 = 1, 2, 3, 4, 5
in the proof, where a bold edge indicates a red edge and a thin edge indicates a blue edge.
For i = 1, 2, 3, 4, an edge labeled i belongs to the link Gi in a Ramsey chain R : G1, G2, G3, G4
of length 4 in Q5 + Q6, and the unlabeled edge is not used in R.

4
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Figure 2. Red–blue colorings of Q5 + Q6 of size 11.

3. Binomial Linear Forests

From the results obtained in Section 2, it follows that investigating AR(F) for a linear
forest F of size m, we need only be concerned when m = (k+1

2 ) for some integer k ≥ 3.
Thus, it is convenient to introduce terminology for this class of linear forests. A linear forest
is k-binomial (or simply binomial) if its size is (k+1

2 ) for some positive integer k. For example,
a 3-binomial linear forest has size 6, a 4-binomial linear forest has size 10, and a 5-binomial
linear forest has size 15. We begin with an observation that is a consequence of Theorem 4
and Observation 2.

Corollary 1. If H is a k-binomial linear forest where k ≥ 3, then AR(H) ∈ {k− 1, k}. Further-
more, both values k− 1 and k are attainable.

Proof. First, AR(H) ≤ k by Observation 1. By Theorem 4, every linear forest of size (k+1
2 )−

1 has Ramsey index k− 1. Hence, AR(H) ≥ k− 1 by Observation 2. Therefore, AR(H) ∈
{k − 1, k}. As AR(Q2 + ((k+1

2 ) − 2)K2) = k − 1 and AR(Q
(k+1

2 )
) = k, both values k − 1

and k are attainable.
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By Theorem 4 and Corollary 1, if H is a 3-binomial linear forest, then AR(H) ∈ {2, 3}.
We now determine the exact value of the Ramsey index of every 3-binomial linear forest.
All 3-binomial linear forests are listed below:

Q6, Q5 + K2, Q4 + Q2, Q4 + 2K2, 2Q3, Q3 + Q2 + K2,
Q3 + 3K2, 3Q2, 2Q2 + 2K2, Q2 + 4K2, 6K2.

Proposition 2. Let H be a 3-binomial linear forest. Then, AR(H) = 2 if and only if

H ∈ {Q4 + 2K2, Q3 + 3K2, Q2 + 4K2}.

Proof. Let X = {Q4 + 2K2, Q3 + 3K2, Q2 + 4K2}. First, observe that the linear forests H
in X are the only 3-binomial linear forests containing a subgraph F = Q2, such that
H − E(F) = 4K2 and, consequently, contains no copies of Q2. Let c be a 2-edge coloring
of H that assigns the color 1 to the two edges of F and the color 2 to all other edges of H. We
claim that there is no Ramsey chain of length 3 in H. Assume, to the contrary, that there is a
Ramsey chain G1, G2, G3 of length 3 in H. As the size of H is 6, it follows that {G1, G2, G3}
is a decomposition of H. Necessarily, G2 = F = Q2, and so, Q2 ⊆ G3. As H − E(F) = 4K2,
this is impossible. Therefore, AR(H) = 2 by Corollary 1.

For the converse, suppose that H /∈ X. We show that AR(H) = 3. As AR(H) ≤ 3 by
Observation 1, it suffices to show that AR(H) ≥ 3. Let c be a 2-edge coloring of H using
the colors 1 and 2, where mi is the number of the edges in the subgraph Hi of H colored i
for i = 1, 2 and m1 ≤ m2. Thus, 1 ≤ m1 ≤ 3 and m1 + m2 = 6. We consider all possible
pairs (m1, m2):

? If (m1, m2) = (1, 5), then G1 = H1 = K2 and H2 is a linear forest of size 5. As 2+ 3 = 5,
it follows by Theorem 3 that H2 can be decomposed into 2K2, 3K2. Thus, K2, 2K2, 3K2
is a Ramsey chain of length 3 in H.

? If (m1, m2) = (2, 4), then G2 = H1 ∈ {Q2, 2K2}. First, suppose that H1 = 2K2. Then,
H2 is a linear forest of size 4, and so, H2 can be decomposed into K2 and a subgraph G3
of size 3. As every graph of size 3 contains 2K2, it follows that K2, H1 = 2K2, G3 is a
Ramsey chain of length 3 in H. Next, suppose that H1 = Q2. As H /∈ X, it follows
that H2 6= 4K2. Thus, 1 ≤ k(H2) ≤ 3. If k(H2) = 1, then H2 = Q4 can be decomposed
into K2 and Q3. Thus, K2, Q2, Q3 is a Ramsey chain of length 3 in H. If k(H2) = 2,
then H2 = 2Q2 or H2 = Q3 + K2. As H2 can be decomposed into K2 and Q2 + K2, it
follows that K2, Q2, Q2 + K2 is a Ramsey chain of length 3 in H. If k(H2) = 3, then
H2 = Q2 + 2K2. As H2 can be decomposed into K2 and Q2 + K2, it follows that
K2, Q2, Q2 + K2 is a Ramsey chain of length 3 in H.

? If (m1, m2) = (3, 3), then H1 can be decomposed into K2 and 2K2 and H2 contains 2K2.
Thus, K2, 2K2, H2 is a Ramsey chain of length 3 in H.

We now consider k-binomial linear forests for integers k ≥ 4. The following two results
provide useful information on 2-edge colorings of k-binomial linear forests for k ≥ 4.

Proposition 3. For a k-binomial linear forest H where k ≥ 4, let c be a 2-edge coloring of H
using the colors 1 and 2. For i = 1, 2, let Hi be the subgraph of H induced by the edges of H
colored i, where Hi has size mi and 1 ≤ m1 ≤ m2. If H1 /∈ {Q2, 2Q2, Q4}, then K2, 2K2, . . . kK2
is a Ramsey chain of length k in H and ARc(H) = k.

Proof. We consider five cases, depending on whether m1 ∈ {1, 2, 3, 4} or m1 ≥ 5.

Case 1: m1 = 1. Let H1 = K2. As k ≤
⌊
(k+1

2 )−1
2

⌋
for k ≥ 4 and 2 + 3 + · · · + k =

(k+1
2 )− 1, it follows by Theorem 3 that H2 can be decomposed into 2K2, 3K2, . . . , kK2. Thus,

K2, 2K2, . . . kK2 is a Ramsey chain of length k in H and ARc(H) = k.
Case 2: m1 = 2. Thus, H1 ∈ {2K2, Q2} and m2 = (k+1

2 )− 2. As H1 6= Q2, it follows that
H1 = 2K2. Because H2 is a linear forest of size (k+1

2 )− 2 and 1 + 3 + 4 · · ·+ k = (k+1
2 )− 2
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and k ≤
⌊
(k+1

2 )−2
2

⌋
when k ≥ 4, it follows by Theorem 3 that H2 can be decomposed into

K2, 3K2, 4K2, · · · , kK2; thus, K2, 2K2, 3K2, . . . , kK2 is a Ramsey chain of length k in H and
ARc(H) = k.

Case 3: m1 = 3. The subgraph H1 can be decomposed into K2 and 2K2. As k ≤⌊
(k+1

2 )−3
2

⌋
for k ≥ 4 and 3 + · · ·+ k = (k+1

2 )− 3, it follows by Theorem 3 that H2 can be

decomposed into 3K2, 4K2, . . . , kK2. Thus, K2, 2K2, . . . kK2 is a Ramsey chain of length k
in H and ARc(H) = k.

Case 4: m1 = 4. Then, H1 ∈ {Q4, Q3 + K2, 2Q2, Q2 + 2K2, 4K2} and m2 = (k+1
2 )− 4. As

H1 /∈ {2Q2, Q4}, it follows that H1 ∈ {Q2 + 2K2, Q3 + K2, 4K2}:
? Let k = 4. Then, H2 is a linear forest of size 6. As 1+ 2+ 3 = 6, it follows by Theorem 3

that H2 can be decomposed into K2, 2K2, 3K2. Thus, K2, 2K2, 3K2, H1 is a Ramsey chain
of length 4 in H.

? Let k ≥ 5. Then, H1 can be decomposed into K2 and 3K2. As 2 + 4 + 5 + · · ·+ k =

(k+1
2 ) − 4 and k ≤

⌊
(k+1

2 )−4
2

⌋
when k ≥ 5, it follows by Theorem 3 that H2 can be

decomposed into 2K2, 4K2, 5K2, · · · , kK2. Thus, K2, 2K2, . . . , kK2 is a Ramsey chain of
length k in H and ARc(H) = k.

Case 5: m1 ≥ 5. By Proposition 1, there exists a partition of [k] = {1, 2, . . . , k} into two
sets A = {a1, a2, . . . , ak1} and B = {b1, b2, . . . , bk2}, where k1 + k2 = k, a1 < a2 < · · · <
ak1 ≤

⌈m1
2
⌉

and b1 < b2 < · · · < bk2 ≤
⌈m2

2
⌉
, such that ∑k1

i=1 ai = m1 and ∑k2
i=1 bi = m2. As

m2 ≥ m1 ≥ 5, it follows by Theorem 3 that H1 can be decomposed into the matchings a1K2,
a2K2, . . ., ak1 K2 and H2 can be decomposed into the matchings b1K2, b2K2, . . ., bk2 K2.
Consequently, K2, 2K2, . . . kK2 is a Ramsey chain of length k in H and ARc(H) = k.

Proposition 4. For a k-binomial linear forest H where k ≥ 4, let c be a 2-edge coloring of H using
the colors 1 and 2. For i = 1, 2, let Hi be the subgraph of H induced by the edges of H colored i,
where Hi has size mi and 1 ≤ m1 ≤ m2. If

(a) H1 = Q2 and H2 has at least k− 2 pairwise edge-disjoint copies of Q2 or
(b) H1 ∈ {Q4, 2Q2} and H2 has at least k− 3 pairwise edge-disjoint copies of Q2,

then Q1, G2 ∈ {Q2, 2Q1}, Q2 +Q1, Q2 + 2Q1, . . ., Q2 +(k− 2)Q1 is a Ramsey chain of length k
in H.

Proof. First, suppose that H1 = Q2 and H2 has at least k− 2 pairwise edge-disjoint copies
of Q2, which are denoted by A3, A4, . . ., Ak. Then, the number of edges of H2 not belonging
to any Ai (3 ≤ i ≤ k) is

(k+1
2 )− 2− 2(k− 2) = (k+1

2 )− 2k + 2 = (k−1
2 ) + 1,

and so, these (k−1
2 ) + 1 edges of H2 can be decomposed into

B1 = Q1, B3 = Q1, B4 = 2Q1, B5 = 3Q1, . . . , Bk = (k− 2)Q1,

in such a way that Ai + Bi = Q2 + (i− 2)Q1 for 3 ≤ i ≤ k. Consequently, Q1, Q2, Q2 + Q1,
Q2 + 2Q1, . . ., Q2 + (k− 2)Q1 is a Ramsey chain of length k in H.

Next, suppose that H1 ∈ {Q4, 2Q2}. Then, H1 can be decomposed into G1 = Q1 and
G3 = Q2 + Q1. The subgraph H2 has at least k − 3 pairwise edge-disjoint copies of Q2,
which are denoted by A4, A5, . . ., Ak. Then, the number of edges of H2 not belonging to
any Ai (4 ≤ i ≤ k) is

(k+1
2 )− 4− 2(k− 3) = (k+1

2 )− 2k + 2 = (k−1
2 ) + 1,

and so, these (k−1
2 ) + 1 edges of H2 can be decomposed into

B2 = 2Q1, B4 = 2Q1, B5 = 3Q1, . . . , Bk = (k− 2)Q1,
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in such a way that Ai + Bi = Q2 + (i− 2)Q1 for 4 ≤ i ≤ k. Consequently, Q1, 2Q1, Q2 + Q1,
Q2 + 2Q1, . . ., Q2 + (k− 2)Q1 is a Ramsey chain of length k in H.

With the aid of Observation 1 and Propositions 3 and 4, we are able to establish the
following result.

Theorem 5. If H is a k-binomial linear forest, where k ≥ 4 with at most (k−1
2 ) components, then

AR(H) = k.

Proof. As AR(H) ≤ k by Observation 1, it remains to show that AR(H) ≥ k. Thus, we
show that every 2-edge coloring of H produces a Ramsey chain of length k in H. Let c
be a 2-edge coloring of H using the colors 1 and 2. For i = 1, 2, let Hi be the linear forest
in H induced by the edges of H colored i, where Hi has size mi with 1 ≤ m1 ≤ m2 and
k(Hi) components. By Proposition 3, if H1 /∈ {Q2, 2Q2, Q4}, then there is a Ramsey chain
of length k in H. Thus, we may assume that H1 ∈ {Q2, 2Q2, Q4}. We consider these two
cases, depending on whether H1 = Q2 or H1 ∈ {Q4, 2Q2}.

Case 1: H1 = Q2. Then, H2 is a linear forest of size (k+1
2 )− 2. Let k(H2) = `. Then,

` ≤ k(H) + 1 ≤ (k−1
2 ) + 1. Let J1, J2, . . . , J` be the components of H2, where Ji has size qi

for 1 ≤ i ≤ `. Thus, ∑`
i=1 qi = m2 = (k+1

2 )− 2. Let p be the maximum number of pairwise
edge-disjoint copies of Q2 in H2. In each component Ji (1 ≤ i ≤ `), the maximum number
of pairwise edge-disjoint copies of Q2 is bqi/2c, and so, at most one edge of Ji does not
belong to these bqi/2c pairwise edge-disjoint copies of Q2 in Ji. Hence, at most one edge in
each Ji (1 ≤ i ≤ `) does not belong to any of these p pairwise edge-disjoint copies of Q2

in H2. As ` ≤ (k−1
2 ) + 1, it follows that

p ≥ 1
2

[
(k+1

2 )− 2− `
]
≥ 1

2

[
(k+1

2 )− 2− (k−1
2 )− 1

]
= k− 2.

Therefore, there are at least k− 2 pairwise edge-disjoint copies of Q2 in H2. By Proposition 4,
there is a Ramsey chain of length k in H.

Case 2: H1 ∈ {Q4, 2Q2}. Then, H1 can be decomposed into G1 = Q1 and G3 = Q2 +Q1.
Here, H2 is a linear forest of size (k+1

2 )− 4. Let k(H2) = `. Then, ` ≤ k(H) + 2 ≤ (k−1
2 ) + 2.

Let J1, J2, . . . , J` be the components of H2, where Ji has size qi for 1 ≤ i ≤ `. Thus,
∑`

i=1 qi = m2 = (k+1
2 )− 4. Let `′ be the number of these components having odd size. If Ji

has even size, then let J′i = Ji. If Ji has odd size, then let J′i be the subgraph of Ji obtained
by removing a pendant edge from Ji, where J′i is empty if qi = 1. Hence, every subgraph J′i
has even size q′i for 1 ≤ i ≤ ` and every nonempty linear forest J′i can be decomposed

into q′i
2 copies of Q2. The size of the linear forest H′2 consisting of J′1, J′2, · · · , J′` is, therefore,

∑`
i=1 q′i = (k+1

2 ) − 4 − `′, which is an even number. As ` ≤ k(H) + 2 ≤ (k−1
2 ) + 2, it

follows that

(k+1
2 )− 4− `′ ≥ (k+1

2 )− 4− ` ≥ (k+1
2 )− 4− (k−1

2 )− 2 = 2k− 7.

As (k+1
2 )− 4− `′ is even, it follows that (k+1

2 )− 4− `′ ≥ 2k− 6. Therefore, the number of
pairwise edge-disjoint copies of Q2 in H′2 (and in H2 as well) is at least 1

2 (2k− 6) = k− 3.
By Proposition 4, there is a Ramsey chain of length k in H.

Next, we illustrate Theorem 5 for some 4-binomial forests of size 10, for which the
number of components is 1, 2, or 3 = (4−1

2 ). Figure 3 shows red–blue colorings of the linear
forests Q10, Q3 + Q7, and Q2 + Q3 + Q5 of size 10, where four bold edges are red edges
and six thin edges are blue edges. For i = 1, 2, 3, 4, an edge labeled i belongs to the link Gi
in a Ramsey chain G1, G2, G3, G4 of length 4 in the linear forest.
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1
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Figure 3. Red–blue colorings of three 4-binomial linear forests of size 10.

4. Binomial Linear Forests with an Intermediate Number of Components

By Theorems 1 and 5, every k-binomial linear forest where k ≥ 4 with t components,
such that either t = (k+1

2 ) or 1 ≤ t ≤ (k−1
2 ), has Ramsey index k. A natural question

concerns whether these bounds on t can be improved. As we will see, no such improvement
is possible. First, we provide a necessary and sufficient condition for a k-binomial linear
forest to have Ramsey index k− 1.

Theorem 6. A k-binomial linear forest H, where k ≥ 4 has Ramsey index k− 1 if and only if

(a) H contains a subgraph F = Q2, such that H− E(F) has at most k− 3 pairwise edge-disjoint
copies of Q2 or

(b) H contains a subgraph F ∈ {Q4, 2Q2}, such that H − E(F) has at most k − 4 pairwise
edge-disjoint copies of Q2.

Proof. First, we show that if H is a k-binomial linear forest where k ≥ 4, such that neither
(a) nor (b) holds, then AR(H) = k. As AR(H) ≤ k by Observation 1, it remains to show
that AR(H) ≥ k. Let c be a 2-edge coloring of H using the colors 1 and 2. For i = 1, 2,
let Hi be the linear forest in H induced by the edges of H colored i. Let Hi have size mi,
where 1 ≤ m1 ≤ m2. By Proposition 3, there is a Ramsey chain of length k in H if
H1 6∈ {Q2, 2Q2, Q4}. Thus, we may assume that H1 ∈ {Q2, 2Q2, Q4}:
? If H1 = Q2, let F = H1 = Q2. As (a) does not occur, it follows that H − E(F) has

at least k− 2 pairwise edge-disjoint copies of Q2. Hence, H has a Ramsey chain of
length k by Proposition 4.

? If H1 ∈ {2Q2, Q4}, let F = H1. As (b) does not occur, it follows that H − E(F) has
at least k− 3 pairwise edge-disjoint copies of Q2. Hence, H has a Ramsey chain of
length k by Proposition 4.

For the converse, suppose that H is a k-binomial linear forest where k ≥ 4, such that
either (a) or (b) occurs. We show that AR(H) = k− 1. As AR(H) ≥ k− 1 by Corollary 4, it
remains to show that AR(H) ≤ k− 1. We consider two cases, according to whether (a) or
(b) occurs.

Case 1: (a) occurs. Let F = Q2 be a subgraph of H, such that H − E(F) has at most
k− 3 pairwise edge-disjoint copies of Q2. Let c be a 2-edge coloring of H that assigns the
color 1 to the two edges of F and the color 2 to all other edges of H. Then H1 = F = Q2
and H2 = H − E(F). We claim that there is no Ramsey chain of length k with respect to c.
Assume, to the contrary, that there is a Ramsey chain G1, G2, . . . , Gk of length k in H. As
the size of H is (k+1

2 ), it follows that {G1, G2, . . . , Gk} is a decomposition of H. Necessarily,
G2 = H1 = F = Q2, and so, Q2 ⊆ Gi for 3 ≤ i ≤ k, which implies that H − E(F) contains
at least k− 2 pairwise edge-disjoint copies of Q2, which contradicts the fact that H − E(F)
has at most k − 3 pairwise edge-disjoint copies of Q2. Thus, AR(H) ≤ k − 1, and so,
AR(H) = k− 1.

Case 2: (b) occurs. Let F ∈ {Q4, 2Q2} be a subgraph of H, such that H − E(F)
has at most k − 4 pairwise edge-disjoint copies of Q2. Let c be a 2-edge coloring of H
that assigns the color 1 to the four edges of F and the color 2 to all other edges of H.
Then, H1 = F ∈ {Q4, 2Q2} and H2 = H − E(F). We claim that there is no Ramsey
chain of length k, with respect to c. Assume, to the contrary, that there is a Ramsey
chain G1, G2, . . . , Gk of length k in H. As {G1, G2, . . . , Gk} is a decomposition of H, it follows
that either (i) H1 is decomposed into G1 = Q1 and G3 ∈ {Q3, Q2 + Q1} or (ii) G4 = H2 = F.
If (i) occurs, then Q2 ⊆ Gi for 4 ≤ i ≤ k, which implies that H − E(F) contains at least
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k− 3 pairwise edge-disjoint copies of Q2, which contradicts the fact that H − E(F) has at
most k− 4 pairwise edge-disjoint copies of Q2. If (ii) occurs, then G3 contains a copy of Q2
and Gi contains two edge-disjoint copies of Q2 for 5 ≤ i ≤ k, which implies that H − E(F)
contains at least 1 + 2(k− 4) = 2k− 7 > k− 4 pairwise edge-disjoint copies of Q2, which
contradicts the fact that H − E(F) has at most k− 4 pairwise edge-disjoint copies of Q2.
Thus, AR(H) ≤ k− 1, and so, AR(H) = k− 1.

We have now seen for a linear forest H of size m where (k+1
2 ) ≤ m < (k+2

2 ) and
k ≥ 4 that by Theorems 1, 4, and 5, if (i) (k+1

2 ) < m < (k+2
2 ) or (ii) m = (k+1

2 ) and H
has t components, where t = (k+1

2 ) or 1 ≤ t ≤ (k−1
2 ), then AR(H) = k. Consequently, it

remains only to consider those k-binomial linear forests with an intermediate number t
of components, namely, (k−1

2 ) < t < (k+1
2 ). Let c be any 2-edge coloring of H using the

colors 1 and 2, resulting in the monochromatic subgraphs H1 and H2 of sizes m1 and m2, re-
spectively, where m1 ≤ m2. By Proposition 3, if H1 /∈ {Q2, 2Q2, Q4}, then ARc(H) = k. By
Proposition 4 and Theorem 6, if H1 ∈ {Q2, 2Q2, Q4}, then ARc(H) ∈ {k, k− 1}. Further-
more, by Theorem 6, if H1 = Q2, then ARc(H) = k only when H2 contains at least k− 2 pair-
wise edge-disjoint copies of Q2; otherwise, ARc(H) = k− 1. Moreover, if H1 ∈ {2Q2, Q4},
then ARc(H) = k only when H2 has at least k − 3 pairwise edge-disjoint copies of Q2;
otherwise, ARc(H) = k− 1. All of these suggest the need for only considering those 2-edge
colorings of H for which H1 ∈ {Q2, 2Q2, Q4} and determining whether there is (a) any
2-edge coloring of H where H1 = Q2, such that H2 has fewer than k− 2 pairwise edge-
disjoint copies of Q2 or (b) any 2-edge coloring of H where H1 ∈ {2Q2, Q4}, such that H2
has fewer than k− 3 pairwise edge-disjoint copies of Q2. If there is a 2-edge coloring of H
resulting in (a) or (b), then AR(H) = k− 1; otherwise, AR(H) = k. Therefore, to determine
the Ramsey index of a k-binomial linear forest H where k ≥ 4 with an intermediate number
t of components with (k−1

2 ) < t < (k+1
2 ), it suffices to study the 2-edge colorings of H, such

that H1 ∈ {Q2, 2Q2, Q4}, such that H2 = H − E(H1) possesses the minimum number of
pairwise edge-disjoint copies of Q2.

Each k-binomial linear forest H with t of components can be expressed as Qq1 + Qq2 +

· · · + Qqt , where q1 ≥ q2 ≥ · · · ≥ qt ≥ 1 and ∑t
i=1 qi = (k+1

2 ). The maximum number
of pairwise edge-disjoint copies of Q2 in H is s = ∑t

i=1
⌊ qi

2
⌋
. Now, let c be any 2-edge

coloring of H using the colors 1 and 2 resulting in the monochromatic subgraphs and H2
of sizes m1 and m2, respectively, where m1 ≤ m2 and H1 ∈ {Q2, 2Q2, Q4}. First, we make
some observations. If H1 = Q2, then the maximum number of pairwise edge-disjoint
copies of Q2 in H2 is either s− 1 or s− 2; while, if H1 ∈ {Q4, 2Q2}, then the maximum
number of pairwise edge-disjoint copies of Q2 in H2 is s− 2, s− 3, or s− 4. We are now
prepared to present the following result.

Theorem 7. Let H = Qq1 + Qq2 + · · ·+ Qqt be a k-binomial linear forest of size ∑t
i=1 qi = (k+1

2 )

for some integer k ≥ 4 with t components, where (k−1
2 ) < t < (k+1

2 ), where s = ∑t
i=1
⌊ qi

2
⌋

is the
maximum number of pairwise edge-disjoint copies of Q2 in H:

(1) If s > k, then AR(H) = k.
(2) If s = k and H contains two components of even size 4 or more, then AR(H) = k − 1;

otherwise, AR(H) = k.
(3) If s = k− 1 and H contains at least one component of even size 4 or more, then AR(H) =

k− 1; otherwise, AR(H) = k.
(4) If s ≤ k− 2, then AR(H) = k− 1.

Proof. We first verify (1). Suppose that s > k. By Observation 1, it suffices to show that
ARc(H) = k for every 2-edge coloring c of H. Let c be a 2-edge coloring of H using the
colors 1 and 2. For i = 1, 2, let Hi be the linear forest in H induced by the edges of H
colored i where Hi has size mi and 1 ≤ m1 ≤ m2. By Proposition 3, we may assume that
H1 ∈ {Q2, 2Q2, Q4}. If H1 = Q2, then the number of pairwise edge-disjoint copies of Q2
in H2 is at least s − 2. As s − 2 > k − 3, it follows that ARc(H) = k by Theorem 6. If
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H1 ∈ {Q4, 2Q2}, then the number of pairwise edge-disjoint copies of Q2 in H2 is at least
s− 4. As s− 4 > k− 4, it follows that ARc(H) = k by Theorem 6. Therefore, AR(H) = k.

Next, we verify (2). Suppose that s = k:

? First, assume that H contains two components, Qx and Qy, where x, y ≥ 4 are both
even. Define a 2-edge coloring c of H using the colors 1 and 2, such that H1 = 2Q2
and H1 is placed in H in such a way that each of Qx and Qy contains a copy of Q2
of H1 and the number of pairwise edge-disjoint copies of Q2 in H2 is s− 4 = k− 4.
Thus, ARc(H) = k− 1 by Theorem 6, and so, AR(H) = k− 1.

? Next, assume that H contains at most one component of even order 4 or more. Let c
be any 2-edge coloring of H using the colors 1 and 2. For i = 1, 2, let Hi be the linear
forest in H induced by the edges of H colored i where Hi has size mi and 1 ≤ m1 ≤ m2.
By Proposition 3, we may assume that H1 ∈ {Q2, 2Q2, Q4}. If H1 = Q2, then the
number of pairwise edge-disjoint copies of Q2 in H2 is at least s − 2 = k − 2, and
so, ARc(H) = k by Theorem 6. If H1 ∈ {Q4, 2Q2}, then, since H contains at most
one component of even order 4 or more, any placement of H1 in H produces at least
s− 3 = k− 3 pairwise edge-disjoint copies of Q2 in H2. It follows by Theorem 6 that
ARc(H) = k. Therefore, AR(H) = k.

We now verify (3). Suppose that s = k− 1:

? First, assume that H contains at least one component Qx where x ≥ 4 is even. Define
a 2-edge coloring c of H using the colors 1 and 2, such that H1 = Q2 and H1 is placed
in Qx, in such a way that the number of pairwise edge-disjoint copies of Q2 in H2
is s− 2 = k− 3. It follows by Theorem 6 that ARc(H) = k− 1, and so, AR(H) = k− 1.

? Next, assume that H contains no component of even order 4 or more. Let c be any
2-edge coloring of H using the colors 1 and 2, where Hi is the linear forest of size mi
in H induced by the edges of H colored i and 1 ≤ m1 ≤ m2. By Proposition 3, we
may assume that H1 ∈ {Q2, 2Q2, Q4}. If H1 = Q2, then the number of pairwise
edge-disjoint copies of Q2 in H2 is at least s − 1 = k − 2, and so, ARc(H) = k by
Theorem 6. If H1 ∈ {Q4, 2Q2}, then, as H contains no component of even order 4 or
more, any placement of H1 in H produces at least s− 2 = k− 3 pairwise edge-disjoint
copies of Q2 in H2. It follows by Theorem 6 that ARc(H) = k. Therefore, AR(H) = k.

Finally, we verify (4). Suppose that s ≤ k− 2. Define a 2-edge coloring c of H using
the colors 1 and 2, such that H1 ∈ {Q2, Q4, 2Q2}. Then, the number of pairwise edge-
disjoint copies of Q2 in H2 is at least s− 1. As s− 1 ≤ k− 3, it follows by Theorem 6 that
ARc(H) = k− 1, and so, AR(H) = k− 1.

We have seen (by Theorems 1 and 5) that if H is a k-binomial linear forest where k ≥ 4
with t components, whether t = (k+1

2 ) or 1 ≤ t ≤ (k−1
2 ), then AR(H) = k. With the aid of

Theorem 7, we are now able to show that these bounds on t cannot be improved.

Theorem 8. For every two integers t and k where (k−1
2 ) < t < (k+1

2 ) and k ≥ 4, there is a
k-binomial linear forest H with t components, such that AR(H) = k− 1.

Proof. For each integer i with 1 ≤ i ≤ 2k− 2 where k ≥ 4, we construct a k-binomial linear
forest Fi with t = (k−1

2 ) + i components, such that AR(Fi) = k− 1. In particular, F1 has
t = (k−1

2 ) + 1 components and F2k−2 has t = (k−1
2 ) + (2k− 2) = (k+1

2 )− 1 components.

For an integer k ≥ 4, let F1 = Qx + Qy +
[
(k−1

2 )− 1
]

Q1, where x = y = k if k is even
and x = k + 1 and y = k − 1 if k ≥ 5 is odd. Thus, x, y ≥ 4 are both even. As the size
of F1 is (k+1

2 ), it follows that F1 is a k-binomial linear forest with t = (k−1
2 ) + 1 components.

The maximum number of pairwise edge-disjoint copies of Q2 in F1 is s =
⌊ x

2
⌋
+
⌊ y

2
⌋
= k.

As s = k and F1 has two components of even size 4 or more, it follows by Theorem 7 that
AR(F1) = k− 1.
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Next, let F2 = Qx−1 + Qy + (k−1
2 )Q1. Then, F2 is a k-binomial linear forest with

t = (k−1
2 ) + 2 components. The maximum number of pairwise edge-disjoint copies of Q2

in F2 is s =
⌊

x−1
2

⌋
+
⌊ y

2
⌋
= k − 1 and F2 has the component Qy of even size 4 or more.

By Theorem 7, AR(F2) = k− 1. Next, let F3 = Qx−2 + Qy +
[
(k−1

2 ) + 1
]

Q1. Then, F3 is a

k-binomial linear forest with t = (k−1
2 ) + 3 components. The maximum number of pairwise

edge-disjoint copies of Q2 in F3 is s =
⌊ x−2

2
⌋
+
⌊ y

2
⌋
= k− 1 and F3 has the component Qy

of even size 4 or more. By Theorem 7, AR(F3) = k− 1.
Next, let F4 = Qx−2 + Qy−1 +

[
(k−1

2 ) + 2
]

Q1. Then, F4 is a k-binomial linear forest

with t = (k−1
2 ) + 4 components. The maximum number of pairwise edge-disjoint copies

of Q2 in F4 is s =
⌊ x−2

2
⌋
+
⌊

y−1
2

⌋
= k− 2. We continue this procedure, reducing the size of

components greater than 1 until we arrive at

F2k−2 = Q2 + Q1 +
[
(k−1

2 ) + 2k− 4
]

Q1 = Q2 +
[
(k−1

2 ) + 2k− 3
]

Q1 = Q2 +
[
(k+1

2 )− 2
]

Q1.

Here, F2k−2 is a k-binomial linear forest with t = (k+1
2 )− 1 components. For each integer i

with 4 ≤ i ≤ 2k− 2, the maximum number of pairwise edge-disjoint copies of Q2 in Fi
is s ≤ k− 2, and so, AR(Fi) = k− 1 by Theorem 7.

To illustrate Theorem 7, we consider k = 5 and (4
2) < 7 ≤ t ≤ 14 < (6

2). For i =

1, 2, . . . , 8, we construct a 5-binomial linear forest Fi with t = (5−1
2 ) + i = 6 + i components,

such that AR(Fi) = 4:

? Let F1 = Q6 + Q4 + 5Q1, where t = 7 and s = 5. As F1 has 2 components Q6 and Q4
of even size 4 or more, AR(F1) = 4 by Theorem 7.

? Let F2 = Q5 + Q4 + 6Q1, where t = 8 and s = 4. As F2 has the component Q4 of size 4,
it follows by Theorem 7 that AR(F2) = 4.

? Let F3 = Q4 + Q4 + 7Q1, where t = 9 and s = 4. As F3 has the component Q4 of size 4,
it follows by Theorem 7 that AR(F3) = 4.

? For 4 ≤ i ≤ 8, let
F4 = Q4 + Q3 + 8Q1, where t = 10 and s = 3,
F5 = Q3 + Q3 + 9Q1, where t = 11 and s = 2,
F6 = Q3 + Q2 + 10Q1, where t = 12 and s = 2,
F7 = Q2 + Q2 + 11Q1, where t = 13 and s = 2, and
F8 = Q2 + Q1 + 12Q1, where t = 14 and s = 1.
As s ≤ 5− 2 = 3, it follows by Theorem 7 that AR(Fi) = 4 for 4 ≤ i ≤ 8.

We saw that the 5-binomial linear forest F1 = Q6 + Q4 + 5Q1 has 7 components and
AR(F1) = 4. This does not imply that every 5-binomial linear forest with 7 components
has Ramsey index 4. For example, F = 4Q3 + 3Q1 is also a 5-binomial linear forest with 7
components and the maximum number of pairwise edge-disjoint copies of Q2 in F is s = 4.
As F has no component of even size 4 or more, it follows by Theorem 7 that AR(F) = 5.

5. Closing Comments

From the information obtained on Ramsey chains of linear forest, a question remains,
namely that of determining information on Ramsey chains of other familiar classes of
graphs. For every graph G of size m that has been investigated where (k+1

2 ) ≤ m <

(k+2
2 ), it has been shown that either AR(G) = k or AR(G) = k − 1. This leads to the

following problem:

Problem 1. Let G be a graph of size m with (k+1
2 ) ≤ m < (k+2

2 ) for some positive integer k. Is it
true that either AR(G) = k or AR(G) = k− 1?
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