
Citation: Ruan, C.; Gong, S.; Chen, X.

Probabilistic Interval Ordering

Prioritized Averaging Operator and

Its Application in Bank Investment

Decision Making. Axioms 2023, 12,

1007. https://doi.org/10.3390/

axioms12111007

Academic Editors: Manuel Arana-

Jimenez, Amit K. Shukla and Darjan

Karabašević
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Abstract: Probabilistic interval ordering, as a helpful tool for expressing positive and negative in-
formation, can effectively address multi-attribute decision-making (MADM) problems in reality.
However, when dealing with a significant number of decision-makers and decision attributes, the
priority relationships between different attributes and their relative importance are often neglected,
resulting in deviations in decision outcomes. Therefore, this paper combines probability interval
ordering, the prioritized aggregation (PA) operator, and the Gauss–Legendre algorithm to address
the MADM problem with prioritized attributes. First, considering the significance of interval priority
ordering and the distribution characteristics of attribute priority, the paper introduces probability
interval ordering elements that incorporate attribute priority, and it proposes the probabilistic in-
terval ordering prioritized averaging (PIOPA) operator. Then, the probabilistic interval ordering
Gauss–Legendre prioritized averaging operator (PIOGPA) is defined based on the Gauss–Legendre
algorithm, and various excellent properties of this operator are explored. This operator considers
the priority relationships between attributes and their importance level, making it more capable of
handling uncertainty. Finally, a new MADM method is constructed based on the PIOGPA operator
using probability intervals and employs the arithmetic–geometric mean (AGM) algorithm to compute
the weight of each attribute. The feasibility and soundness of the proposed method are confirmed
through a numerical example and comparative analysis. The MADM method introduced in this paper
assigns higher weights to higher-priority attributes to establish fixed attribute weights, and it reduces
the impact of other attributes on decision-making results. It also utilizes the Gauss AGM algorithm
to streamline the computational complexity and enhance the decision-making effectiveness.

Keywords: interval ordering; probabilistic interval ordering sets; prioritized aggregation operator;
information aggregation; multi-attribute decision making

MSC: 03E72; 90B50; 91B06

1. Introduction

Today, the Internet has greatly facilitated information sharing, while big data has
enhanced the precision of this sharing. As enterprises in the supply chain have become
more interconnected, small and medium-sized enterprises (SMEs) have assumed increas-
ingly significant roles in the regular functioning and advancement of the supply chain.
Due to their relatively small scale, SMEs often encounter challenges related to financing
difficulties and financing risks. Typically, participants in the supply chain financing process
include small and medium-sized enterprises, financial institutions, such as banks, and
core guarantee enterprises. Direct financing between SMEs and investment institutions
is a significant financing approach. The rapid development of the supply chain provides
banks with a favorable opportunity, and the expansion of supply chain financial services
can drive the innovation and growth of commercial banks. Although direct financing
can optimize the credit structure of commercial banks and create new opportunities for
business development, corporate financing risk and bank loan risk remain unavoidable. To
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effectively mitigate credit risk, commercial banks must conduct comprehensive assessments
of SMEs and identify target customers, including credit history, asset scale, repayment
ability, and other relevant factors. These criteria are the important ones for judging whether
the enterprise can repay the loan on time. Therefore, it is necessary for banks to evaluate
and select SMEs before making loan decisions.

MADM is a decision-making problem in which the evaluation values of finite schemes
under different attributes are aggregated, and then the schemes are sorted, and the best
scheme is selected on this basis. It is an essential part of modern decision-making science,
and the main problem of MADM focuses on evaluation and selection. Today, many MADM
methods have been developed, such as the analytical hierarchy process (AHP) [1], the
technique for order preference by similarity to an ideal solution (TOPSIS) [2], elimination et
choice translating reality (ELECTRE) [3], and vlsekriterijumska optimizacija i kompromisno
resenje (VIKOR) [4]. These decision-making models can be divided into two categories:
the first type consists of decision-making methods based on value or utility function, and
the second type consists of decision-making methods based on priority ranking. MADM
usually consists of the following three steps: establishing an evaluation index system,
determining attribute weights, and using specific methods to rank alternatives. In recent
decades, the theory and method of MADM have been widely used in engineering, econ-
omy, technology, and culture fields, such as project evaluation [5], location selection [6],
investment decisions [7], and so on. However, due to the complexity and uncertainty of
evaluation information and the fuzziness of human thinking, evaluators are more inclined
to use fuzzy information than exact quantitative information when dealing with decision-
making problems. Therefore, it is of great academic and practical significance to study
MADM in various fuzzy environments [8–11].

With the increasing fuzziness of information and complexity of decision-making
conditions, evaluators began to use fuzzy information instead of precise mathematical
models for assessment. Since the appearance of fuzzy sets (FS) [12], scholars have conducted
extensive research on FS theory and obtained abundant research results. Various types of
fuzzy sets and their extensions have been developed and successfully applied to MADM
problems, including intuitionistic fuzzy sets (IFS) [13], hesitant fuzzy sets (HFS) [14], q-
rung orthopair fuzzy sets (q-ROFS) [15–17], Pythagorean fuzzy sets (PFS) [18], and so on.
These enumerated fuzzy sets are single-valued. In many decision-making problems in
real life, single values have certain limitations and uncertainties in information expression.
Thus, the related concept of interval value has been proposed, allowing the evaluator to
express quantitative evaluations with a set of values in the interval [19]. Sun et al. [10]
explored a weighted ranking method of dominance rough sets for an interval ordered
information system. Then, the probability was introduced based on interval-valued fuzzy
sets (IVFSs) [20] to manage the problem of multiple membership degrees, and various new
theories and methods were developed. Su et al. [21] proposed several entropy measures for
probabilistic hesitant fuzzy information. Krishankumar et al. [22] proposed a new concept
of the interval-valued probabilistic hesitant fuzzy set (IVPHFS) and presented the simple
interval-valued probabilistic hesitant fuzzy weighted geometry (SIVPHFWG) operator.
Mandal and Ranadive [23] investigated interval-valued fuzzy probabilistic rough sets
(IVF-PRSs) based on multiple interval-valued fuzzy preference relations and consistency
matrices. Li and Zhan [24] explored interval-valued probabilistic rough fuzzy sets and
their applications.

When dealing with MADM problems, aggregation operators are often used to fuse the
decision information of different experts for each alternative under different attributes. The
most common aggregation operators include various weighted averaging operators [25,26],
Bonferroni mean (BM) operators [27], Heronian mean (HM) operators [28], Einstein inte-
gration operators [29,30], and so on. These operators have been studied and extensively
applied in different fuzzy environments. In practice, however, there is often a priority
relationship between different attributes. Among the existing operators, the prioritized
averaging (PA) operator proposed by Yager [31] has excellent advantages in reflecting
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the priority relationships of operators. Prioritization provides consistency in the evalu-
ation process and ensures that decisions are made according to the overall goals of the
organization or individual, resulting in more rational decision outcomes. Therefore, PA
operators have significant advantages in managing biased and extreme data and have
attracted the attention of many scholars. Based on the PA operator, Gao [32] introduced
Pythagorean fuzzy Hamacher prioritized aggregation operators. Wei and Tang [33] pro-
posed some generalized prioritized aggregation operators. Yu et al. [34] extended the PA
operator to the intuitionistic fuzzy environment and developed a series of intuitionistic
fuzzy prioritized aggregation operators. He et al. [35] developed the probabilistic interval
preference ordering weighted averaging (PIPOWA) operator, which was used in a group
decision-making process. Khan et al. [36] proposed several Pythagorean fuzzy prioritized
aggregation operators and applied them to MADM problems. Pérez-Arellano et al. [37]
introduced a prioritized induced probabilistic (PIP) operator. Ruan et al. [38] defined a new
Fermatean hesitant fuzzy prioritized Heronian mean operator (FHFPHM) and applied it to
solving MADM problems.

In MADM problems, interval ordering can provide a sorting interval for each scheme,
representing the sorting interval of the scheme regarding a particular attribute. Therefore,
interval ordering can transform uncertain evaluation information into quantifiable interval
evaluation information and improve the scientificity and rationality of decision-making
results. The earliest interval ordering was a set of integer intervals, and it has been widely
used in various situations, such as interval optimization [39], pattern recognition [40], and
project scheduling [41]. Gonzalez-Pachon et al. [42] used the interval goal programming
model to aggregate preference ranking information to obtain the ranking results of the
schemes. Zapata et al. [43] extended the ordering of Allen’s algebra to intervals in an
arbitrary partially ordered set. Pouzet and Zaguia [44] described ordered groups such that
the ordering is a semiorder, and they introduced threshold groups generalizing totally
ordered groups. Ghosh et al. [45] introduced and analyzed the concepts of fixed ordering
structure and variable ordering structure on intervals. Nguyen et al. [46] employed an
ordered weighted averaging (OWA) operator to determine the similarity between users
and clusters. Verma et al. [47] subsequently introduced the generalized Pythagorean fuzzy
probabilistic ordered weighted cosine similarity (GPFPOWCS) operator. Huang et al. [48]
initiated an IFN comparison method with probability conversion as the foundation.

Subsequently, some scholars studied the probabilistic interval ordering problem, which
considers possible probabilistic information. As a valuable tool for expressing positive
and negative information, probabilistic interval ordering can effectively solve the MADM
problem in real life. Probabilistic interval ordering is constructed based on the interval
ranking. It considers the opinions of multiple evaluation subjects comprehensively and
obtains more comprehensive information by summarizing the ranking intervals given by
different evaluation subjects. Gao et al. [49] proposed a probabilistic interval decision-
making method based on priority. Nie et al. [50] suggested a group decision-making
support model utilizing consistency recovery strategies grounded in probabilistic linguistic
term sets (PLTS). Liu et al. [51] expanded the PLTS to encompass the belief function theory.
Qiu et al. [52] compared different types of interval numbers, defined the binary order rela-
tionships of interval numbers, integrated the characteristic information of interval numbers
using the probability density function, and constructed a probabilistic credibility model of
the interval number order relationship. Al Hantoobi et al. [53] introduced the concept of the
probabilistic interval neutrosophic hesitant fuzzy set (PINHFS). Song et al. [54] investigated
the MADM problems with dual hesitant fuzzy information. He et al. [35] defined the
concept of probabilistic interval preference ordering elements (PIPOEs) and developed
some aggregation operators and distance measures for PIPOEs. Based on probabilistic
interval-valued intuitionistic hesitant fuzzy sets (PIVIHFSs) [55], Luo and Liu [56] con-
structed a MADM model based on a probabilistic interval-valued intuitionistic hesitant
fuzzy Maclaurin symmetric mean operator.
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In the literature on probabilistic interval decision-making, scholars have often ig-
nored the critical elements associated with one or more subsequent decisions after various
decision-makers have voted and scored. Typically, attributes have varying degrees of im-
portance, and critical attributes should have higher grading requirements than general ones.
Furthermore, many existing methods often ignore the significance of interval ordering
and attribute prioritization, resulting in inaccurate decision-making results. As a result,
given that attributes frequently have a distinct priority interaction, this paper aggregates
the significance of interval preference ordering with the characteristics of attribute priority
distribution. It introduces a probabilistic parameter to represent the interval importance
and proposes the PIOPA operator. Next, accounting for the complexity and uncertainty
of decision problems and the priority relationship among different attributes, this paper
further defines the PIOGPA operator by incorporating the Gauss–Legendre algorithm [57],
and it explores some notable properties of the operator. Last, a MADM model based on the
PIOGPA operator is constructed and applied to assess investment decisions for commercial
banks, confirming the model’s scientific validity and effectiveness.

The PIOGPA operator proposed in this paper effectively manages extreme or biased
data, offering enhanced applicability and flexibility. Unlike previous methods, this paper
reduces the influence of extreme values on the algorithm’s mean and offers a more accurate
representation of the overall data distribution. Additionally, the AGM algorithm addresses
the limitation of geometric mean values, which cannot handle zero and non-negative data
values. It also avoids significant reductions in results when addressing highly dispersed
data. In practice, the importance of attributes often varies over time due to changing
environmental factors. The presented PIOGPA operator is well suited for decision-making
in uncertain environments since it allows for the adjustment of attribute importance in
response to changing conditions. When the environment evolves, the PIOGPA operator can
promptly adapt by reevaluating critical attributes and determining new attribute weights.
This adaptability ensures that the most appropriate decision options are obtained for the
current environment, making the PIOGPA operator flexible and highly applicable.

In summary, the PIOGPA operator offers several advantages over other existing
aggregation operators, as outlined below:

(1) The PIOGPA operator introduces the probability parameter and priority and can
reflect the importance degrees and priority relationships of attributes;

(2) The PIOGPA operator is more flexible and robust. It considers the priority between
different attributes and can manage the influence of extreme data or biased data and
obtain more reasonable decision results;

(3) The PIOGPA operator is more applicable in addressing uncertain problems. It can
adjust the critical attributes in time and determine the new critical attribute weight.

The paper is organized as follows: Section 2 provides the basic definitions and methods
related to probabilistic interval ordering. Section 3 presents the PIOPA operator and
PIOGPA operator and discusses related properties. A MADM method based on the PIOGPA
operator is developed in Section 4. In Section 5, a numerical example of the MADM method
is proposed, and the feasibility and rationality of the method are verified. Section 6
summarizes this paper with some remarks.

2. Basic Concepts

In this section, some basic concepts of interval ordering and probabilistic interval
ordering sets are illustrated, and definitions of the PA operator and PIPOWA operator
are given.

Definition 1 ([10]). Let m be a set of positive integers. Then, the interval ordering X can be
expressed as:

X = [Xν, Xν + 1, . . . , Xµ − 1, Xµ] (1)
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Among these values, Xν, Xµ ∈ M , and Xν < Xµ, where Xν and Xµ represent the minimum
value and maximum value of interval ordering set m, respectively. The interval ordering can be
denoted as X = [Xν, Xµ]. When Xν = Xµ = X∗, the interval ordering X becomes a definite
ordering X = X∗.

Definition 2 ([35]). Let m be a set of positive integers. Then, the probabilistic interval ordering set
Hp is given as:

Hp =
{〈

m,
.
hp(m), p(h)

〉∣∣∣m ∈ M
}

(2)

where ∑n
k=1 pk = 1, and

.
hp(m) represents a collection of PIPOEs that consists of some positive

integer intervals, encompassing sorting ordering information denoted as m(m ∈ M), and the
probabilities associated with various sorting possibilities.

.
hp(m) signifies the probability that the

expert group assigns the scheme’s corresponding attribute ranking among all schemes within this

interval. It can be expressed as
[

.
h

l(i)
p (m),

.
h

r(i)
p (m)

]
p(h)

with
.
h

l(1)
p <

.
h

l(2)
p < · · · <

.
h

l(n)
p , where

.
h

l(i)
p (m) and

.
h

r(i)
p (m) denote, respectively, the minimum and maximum values of the interval set.

Definition 3 ([35]). Let E
( .

hp(m)
)

and S
( .

hp(m)
)

be the expected and scoring values of the

PIPOE
.
hp(m), respectively, then E

( .
hp(m)

)
and S

( .
hp(m)

)
can be defined as:

E
( .

hp(m)
)
=

[
m

∑
i=1

pk
.
h

l(i)
p (m),

m

∑
i=1

pk
.
h

r(i)
p (m)

]
(3)

S
( .

hp(m)
)
=
[
St, Sy] =

∑n
i=1 pk

.
h

l(i)
p (m)

#M
,

∑n
i=1 pk

.
h

r(i)
p (m)

#M

 (4)

where #M represents the number of ordering elements, and
.
h

l(i)
p (m) and

.
h

r(i)
p (m) are the minimum

and maximum values of the intervals in
.
hp(m), respectively. The sorting value in

.
hp(m) indicates

the ranking order of the scheme. The smaller that the sorting value is, the higher that the ranking
order of the scheme is. To further compare the pros and cons of two different schemes within the
PIPOEs

.
hp(m), the possibility degree formula is defined as:

P
(

S
( .

hp(m)1

)
> S

( .
hp(m)2

))
= max

{
1−max

{
Sy

2 − St
1

Sy
2 − St

2 + Sy
1 − St

1
, 0

}
, 0

}
(5)

Definition 4 ([35]). Let S
( .

hp(m)1

)
and S

( .
hp(m)2

)
be the scores of two different schemes in the

probabilistic interval ordering set; then:

(1) when P
(

S
( .

hp(m)1

)
> S

( .
hp(m)2

))
< 0.5,

.
hp(m)1 �

.
hp(m)2;

(2) when P
(

S
( .

hp(m)1

)
> S

( .
hp(m)2

))
= 0.5,

.
hp(m)1 =

.
hp(m)2;

(3) when P
(

S
( .

hp(m)1

)
> S

( .
hp(m)2

))
> 0.5,

.
hp(m)1 ≺

.
hp(m)2.

Definition 5 ([31]). Given a set of attributes A = {A1, A2, · · · , An}, each attribute Ai contains
a set of probabilistic interval orderings Hp with the importance ranking A1 � A2 � · · · � An,
and then the attributes are called prioritized attributes. The prioritized averaging operator (PA) is
defined as:

PA
(

S
( .

hp(m)i

))
=

n

∑
j=1

ωjS
( .

hp(m)j

)
(6)
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where ωj =
T(j)

∑n
j=1 T(j) , T(j) = ∏

j−1
k=1 S

( .
hp(m)i

)
, T(1) = 1, S

( .
hp(m)i

)
is the score function of

.
hp(m).

Definition 6 ([35]). Given a set of attributes A = {A1, A2, . . . , An}, each attribute Ai contains a
set of probabilistic interval orderings Hp. For convenience, hi(i = 1, 2, · · · , n) is used to represent

the
.
hp(m)i(i = 1, 2, · · · , n). In traditional MADM models, the weight of each attribute follows

the assumption of uniform distribution of attribute values. Then, the PIPOWA operator can be
expressed as:

PIPOWA(h1, h2, · · · , hn) =
n
⊕

j=1

(
ωjhj

)
= ∪

.
h

l(i)
p ∈

.
hp(m)

{[
n
∑

j=1
ωj pj

.
h

l(i)
p (m),

n
∑

j=1
ωj pj

.
h

r(i)
p (m)

]}
(7)

where ωj =
S
( .

hp(m)j

)
∑n

j=1 S
( .

hp(m)j

) , S
( .

hp(m)i

)
=

∑j∈n
.
hp(m)j×p(h)j

n , and S
( .

hp(m)i

)
is the score function

of
.
hp(m).

When ω = ( 1
n , 1

n , · · · , 1
n )

T
, the PIPOWA operator degenerates into the probabilistic

interval preference ordering averaging operator (PIPOA):

PIPOA(h1, h2, · · · , hn) =
n
⊕

j=1

(
1
n

hj

)
∪

hl(i)
p ∈hp(m)

{[
1
n

n

∑
j=1

pj
.
h

l(i)
p (m),

1
n

n

∑
j=1

pj
.
h

r(i)
p (m)

]}
(8)

3. Probabilistic Interval Ordering Averaging Operator with Attribute Priority

Although some scholars have studied the aggregation of interval ordering information,
most existing probabilistic interval ordering averaging operators have assumed that differ-
ent attributes are independent and have failed to consider the correlation between attributes
in the decision-making process. Furthermore, decision-makers usually have different risk
preferences and concerns in practice. Thus, decision-makers should consider the priority
relationship between attributes when making decisions. To address this issue, this paper
introduces the PA operator to consider the priority relationship between different attributes.
Considering the complexity of the decision condition, the PIOPA operator, based on the
accuracy of the probabilistic interval ordering operator, is proposed, and its properties and
algorithms are discussed. This operator can solve the decision preference problem faced by
decision-makers and improve the rationality and effectiveness of decision results.

Definition 7. Given a set of attributes A = {A1, A2, · · · , An}, each attribute Ai contains a set
of probabilistic interval orderings Hp with the importance ranking A1 � A2 � · · · � An. Let

Hp =
{〈

m,
.
hp(m), p(h)

〉∣∣∣m ∈ M
}

be a set of probabilistic interval orderings with a particular
priority relationship between different attributes. Then, the PIOPA operator is defined as:

PIOPA(h1, h2, . . . , hn) =
T(j)h1

∑n
j=1 T(j) ⊕

T(j)h2
∑n

j=1 T(j) ⊕ . . .⊕ T(j)hn
∑n

j=1 T(j)

=
n
⊕

j=1

T(j)hj

∑n
j=1 T(j) = ∪

.
h

i
p(m)∈hj




1−

n
∏

i=1,j=1

(
1− pk

.
h

l(i)
p (m)

#M

)ω(j)

,

1−
n
∏

i=1,j=1

(
1− pk

.
h

r(i)
p (m)

#M

)ω(j)




(9)

where ωj =
T(j)

∑n
j=1 T(j) , T(j) = ∏

j−1
k=1 S

( .
hp(m)k

)
and T(1) = 1; S

( .
hp(m)k

)
is the score function

of
.
hp(m).
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Considering the influence of decision-makers’ risk preference and environment com-
plexity and uncertainty on decision results, as well as the operation rules of PIOPA operator,
this paper compares the attribute ranking of different schemes by experts to determine the
optimal solution. To overcome the complexity of traditional weight interval processing
methods in data processing, this paper creatively introduces the Gauss–Legendre algorithm
and further develops the PIOGPA for probabilistic interval ordering.

The AGM algorithm is an iterative algorithm that leverages a specific elliptic inte-
gral constructed through the algebraic relationship between Jacobi elliptic functions. This
algorithm can approximate many mathematical constants effectively. It can be used to
calculate elliptic integral constants with second-order convergence. Compared with tra-
ditional methods with first-order convergence, this approach can double the number of
digits of convergence accuracy in a single iteration. As a result, the AGM algorithm re-
duces the computational complexity and enhances the correctness and effectiveness of
decision-making results.

Definition 8. Given a set of attributes A = {A1, A2, · · · , An}, each attribute Ai contains a set
of probabilistic interval orderings Hp with the importance ranking A1 � A2 � · · · � An. Let

Hp =
{〈

m,
.
hp(m), p(h)

〉∣∣∣m ∈ M
}

be a set of probabilistic interval orderings with a particular
priority relationship between different attributes. Then, the PIOGPA operator can be denoted as:

PIOGPA(h1, h2, . . . , hn) = ω(j)h1 ⊕ω(j)h2 ⊕ . . .⊕ω(j)hn

=
n
⊕

j=1
ω(j)hj = ∪

.
h

i
p(m)∈hj




1−

n
∏

i=1,j=1

(
1− pk

.
h

l(i)
p (m)

#M

)ω(j)

,

1−
n
∏

i=1,j=1

(
1− pk

.
h

r(i)
p (m)

#M

)ω(j)




(10)

where

ω(V) = ω(ν, µ) =
2
π

∫ π
2

0

dθ√
ν2 cos2 θ + µ2 sin2 θ

=
4

(ν + µ)π
K
(

ν− µ

ν + µ

)
(11)

K(x) =
∫ π

2

0

dθ√
1− x2 cos2 θ

=
1
2

∫ π

0

dθ√
1 + x2 − 2x cos2 θ

(12)

V = [ν, µ] =

[
T(j)−

∑n
j=1 T(j)−

,
T(j)+

∑n
j=1 T(j)+

]
(13)

T(j) can be denoted as:

T(j) =

{
j−1

∏
k=1

S
( .

hp(m)k

)}
, j = 2, 3, . . . , n (14)

Theorem 1. Let Hp =
{〈

m,
.
hp(m), p(h)

〉∣∣∣m ∈ M
}

be a set of probabilistic interval orderings;
then, the result obtained after the aggregation of the PIOGPA operator is still a probabilistic interval
ordering Gauss–Legendre prioritized averaging element.

PIOGPA(h1, h2, . . . , hn) = ∪
.
h

i
p(m)∈hj


 1−

n
∏
j=1

(
1− yl

)ω(j)
,

1−
n
∏
j=1

(1− yr)ω(j)


 (15)
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where ωj = ω(V) = 2
π

∫ π
2

0
dθ√

ν2 cos2 θ+µ2 sin2 θ
, V = T(j)

∑n
j=1 T(j) , T(j) = ∏

j−1
k=1 S

( .
hp(m)k

)
, T(1) =

1, S
( .

hp(m)k

)
is the score function of m.

Proof of Theorem 1. This theorem can be proved by mathematical induction.
When n = 2,

PIOGPA = ωjhj = ∪
.
h

i
p(m)∈hj




1−
n
∏

i=1,j=1

(
1− yl(i)(m)

)ω(j)
,

1−
n
∏

i=1,j=1

(
1− yr(i)(m)

)ω(j)




PIOGPA(h1, h2) = ∪
.
h

i
p(m)∈hj


 1−

(
1− yl(i)(1)

)ω(j)(
1− yl(i)(2)

)ω(j)
,

1−
(

1− yr(i)(1)
)ω(j)(

1− yr(i)(2)
)ω(j)




Suppose that, when n = k, Theorem 1 is true.

PIOGPA(h1, h2, . . . , hk) = ωjhj = ∪
.
h

i
p(m)∈hj




1−
n
∏

i=1,j=1

(
1− yl(i)(m)

)ω(j)
,

1−
n
∏

i=1,j=1

(
1− yr(i)(m)

)ω(j)




Then, when n = k + 1, we have

PIOGPA(h1, h2, . . . , hk+1)

= ∪
.
h

i
p(m)∈hj




1−
n
∏

i=1,j=1

(
1− yl(i)(m)

)ω(j)
,

1−
n
∏

i=1,j=1

(
1− yr(i)(m)

)ω(j)


⊕ωk+1hk+1

= ∪
.
h

i
p(m)∈hj




1−
n
∏

i=1,j=1

(
1− yl(i)(m)

)ω(j)
⊕
(

1− yl(i)(k + 1)
)ω(j)

,

1−
n
∏

i=1,j=1

(
1− yr(i)(m)

)ω(j)
⊕
(

1− yr(i)(k + 1)
)ω(j)


 = ∪

.
h

i
p(m)∈hj




1−
n
∏

i=1,j=1

(
1− yl(i)(m)

)ω(j)
,

1−
n
∏

i=1,j=1

(
1− yr(i)(m)

)ω(j)




Therefore, Theorem 1 holds for n = k + 1. �

Property 1. (Idempotency) Let Hp =
{〈

m,
.
hp(m), p(h)

〉∣∣∣m ∈ M
}

be a set of probabilistic interval order-
ings. If h1 = h2 = · · · = hn = h∗, then

PIOGPA(h1, h2, . . . , hn) = h∗ (16)

Property 2. (Boundedness) Let Hp =
{〈

m,
.
hp(m), p(h)

〉∣∣∣m ∈ M
}

be a set of probabilistic interval order-
ings, then

.
h

l(−)
p (m) ≤ PIOGPA(h1, h2, . . . , hn) ≤

.
h

r(+)

p (m) (17)

where
.
h

l(−)
p (m) = min

{
.
h

1
p(m), · · · ,

.
h

n
p(m)

}
and

.
h

r(+)

p (m) = max
{

.
h

1
p(m), · · · ,

.
h

n
p(m)

}
.

Property 3. (Permutation Invariance) Let Hp =
{〈

m,
.
hp(m), p(h)

〉∣∣∣m ∈ M
}

be a set of probabilistic
interval orderings; then

PIOGPA(h1, h2, · · · , hn) = PIOGPA(h1
′, h2

′, · · · , hn
′) (18)

.
h

l(−)
p (m) ≤ PIOGPA(h1, h2, · · · , hn) ≤

.
h

r(+)

p (m) (19)

where
{

.
h

1
p

′
(m),

.
h

2
p

′
(m), · · · ,

.
h

n
p
′
(m)

}
is any permutation of

{
.
h

1
p(m),

.
h

2
p(m), · · · ,

.
h

n
p(m)

}
.
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4. MADM Method Based on the PIOGPA Operator
Based on the PIOGPA operator, a probabilistic interval MADM method considering consistency

and attribute priority information is proposed in this section. Figure 1 describes how to use the
consistency algorithm to remove abnormal data and modify the probabilistic interval ordering set;
then, it gives the concrete MADM steps on this basis.
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Figure 1. Flow chart of the MADM method based on the PIOGPA operator.

Assume that C = {C1, C2, · · · , Cn} is a set of alternatives, and A = {A1, A2, · · · , An} is a
collection of attributes with the priority relationship A1 � A2 � · · · � An. Multiple experts
evaluate each alternative Ci with respect attribute Ai. Considering differences in experts’ knowledge
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backgrounds, research fields, risk preferences, and environmental conditions, this paper aims to
obtain a reasonable result in group decision-making.

Therefore, this paper summarizes the experts’ scoring interval ordering for each attributes Ai,
removes the abnormal data, and modifies the probabilistic interval to generate a new probabilistic

interval ordering set denoted as Hp =
{〈

m,
.
hp(m), p(h)

〉∣∣∣m ∈ M
}

with ∑n
k=1 pk = 1. The modified

probabilistic interval ordering set and the PIOGPA operator are used to calculate the weights of
each attribute Ai and the scoring weight interval for each alternative Ci, respectively. Finally, the
optimal scheme is determined by comparing the scoring weight interval of each scheme. The specific
calculation steps are as follows:

4.1. Consistency Algorithm
In the normal distribution X ∈ N(µ, δ2), variables are distributed on both sides of µ according to

a certain trend, where µ reflects the concentrated distribution position of variables, and δ reflects the
degree of dispersion of variables. The smaller that the value of δ is, the stronger that the concentration
of data is. In this paper, the following steps are used to eliminate abnormal evaluation data, correct
the interval ordering set probability, and optimize the initial data to obtain a new probabilistic interval
ordering set.

Step 1. Obtain the initial information Hp of the probabilistic interval ordering set.
Step 2. Compute the location parameter µ(i) and data dispersion parameter δ2 for a normal

distribution within Hp =
{〈

m,
.
hp(m), p(h)

〉∣∣∣m ∈ M
}

with
.
hp(m) =

[
.
h

l(i)
p (m),

.
h

r(i)
p (m)

]
p(h)

.

µ(i) = E(hp(m)) =

{[
n

∑
i=1

pk
.
h

l(i)
p (m),

n

∑
i=1

pk
.
h

r(i)
p (m)

]}
(20)

δ2 =
#i

∑
i=1

pk(
.
h
(i)
p − µ)2 (21)

Step 3. In the normal distribution, the intervals [µ− δ, µ + δ], [µ− 2δ, µ + 2δ], [µ− 3δ, µ + 3δ]
represent the minimum probability of the outcome being 68.3%, 95.4%, and 99.7%, respectively.
To maximize the inclusion of data within the specified range and remove unreasonable data with
excessive deviations, this paper uses the interval [µ− 3δ, µ + 3δ] as the appropriate criterion for
judgment. Here, µ− 3δ and µ + 3δ can be expressed as:

µ− 3δ =
[
µ− − 3δ+, µ+ − 3δ−

]
µ + 3δ =

[
µ− + 3δ

_
, µ+ + 3δ+

]
Step 4. Utilize the comparative degree formula to compare the

.
hp(m) and µ− 3δ in the proba-

bilistic interval ordering:

P(
.
h

i
p(m) > µ− 3δ) = max

1−max

 (µ+ − 3δ−)−
.
h

l(i)
p (m)

(µ+ − 3δ−)− (µ− − 3δ+) +
.
h

r(i)
p (m)−

.
h

l(i)
p (m)

, 0

, 0

 (22)

(1) when P
( .

hp(m) ≥ µ− 3δ
)
< 0.5,

.
hp(m) � µ− 3δ,

.
hp(m) is better than µ− 3δ;

(2) when P
( .

hp(m) ≥ µ− 3δ
)
= 0.5,

.
hp(m) = µ− 3δ,

.
hp(m) is as good as µ− 3δ;

(3) when P
( .

hp(m) ≥ µ− 3δ
)
> 0.5,

.
hp(m) ≺ µ− 3δ,

.
hp(m) is not as good as µ− 3δ.

Step 5. If µ− 3δ ≺
.
h

l(I)
p (m) and µ+ 3δ �

.
h

r(I)
p (m), it implies a 99.73% probability that the interval

meets the condition, and
.
h

1
p(m) is retained. Conversely, if µ− 3δ �

.
h

l(I)
p (m) or µ + 3δ ≺

.
h

r(I)
p (m), it

means that
.
h

1
p(m) fails to meet the requirements; then, we recalculate the probability of each interval:

pa(h) =
p(h)

∑
k

pa(h)
(23)

Return to Step 1 and recalculate the scores of the PIPOEs until all the data in the set meet
the requirements.
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4.2. MADM Steps Based on the PIOGPA Operator
After the experts provide their priority information for all alternatives Ci and relevant attributes

Ai, all the information is summarized in Hp. The specific calculation steps are as follows:
Step 1. Use consistency testing to remove the data deviating from the centralized position

and modify the probabilistic interval and probability to obtain a new probabilistic interval ordering

set Hp =
{〈

m,
.
hp(m), p(h)

〉∣∣∣m ∈ M
}

and modified Hp. Then, calculate the expected range of
each alternative under different attributes and the score of attributes, respectively, according to
Equations (24) and (25).

E
( .

hp(m)
)
=

[
m

∑
i=1

pk
.
h

l(i)
p (m),

m

∑
i=1

pk
.
h

r(i)
p (m)

]
(24)

S
( .

hp(m)
)
=
[
St, Sy] =

∑n
i=1 pk

.
h

l(i)
p (m)

#M
,

∑n
i=1 pk

.
h

r(i)
p (m)

#M

 (25)

Step 2. The M1 model in reference [35] is cited to determine the importance of attributes under
expert scoring standards. Based on the obtained attribute weight results, the priority ordering of
attributes is determined in this paper. Then, Equation (27) is used to calculate the attribute weight
interval V, and the weights of each attribute are integrated according to Equation (26), combined with
the Gaussian AGM algorithm.

ω(V) = ω(ν, µ) =
2
π

∫ π
2

0

dθ√
ν2 cos2 θ + µ2 sin2 θ

=
4

(ν + µ)π
K
(

ν− µ

ν + µ

)
(26)

V = [ν, µ] =

[
T(j)−

∑n
j=1 T(j)−

,
T(j)+

∑n
j=1 T(j)+

]
(27)

Step 3. Calculate the adjusted Hp and use Equation (28) to obtain Hi under the PIOPA operator:

PIOGPA(h1, h2, . . . , hn) = ω(j)h1 ⊕ω(j)h2 ⊕ . . .⊕ω(j)hn

=
n
⊕

j=1
ω(j)hj = ∪

.
h

i
p(m)∈hj




1−

n
∏

i=1,j=1

(
1− pk

.
h

l(i)
p (m)
#M

)ω(j)

,

1−
n
∏

i=1,j=1

(
1− pk

.
h

r(i)
p (m)
#M

)ω(j)




(28)

Subsequently, use Equation (29) to calculate the overall probabilistic interval scores of each scheme:

S(Ci) =
∑n

i=1 Hi
n

(29)

Step 4. Compare the scores of different alternatives according to the comparison rules in
Equation (30), where pa

ij represents P
[
S(hp(m)1) > S(hp(m)2)

]
. Then, a possibility matrix Pa =

(pa
ij)n×n

is constructed, where pa
ij ≥ 0, pa

ij + pa
ji = 1 and pa

ii = 0.5. The prioritized weight

ωi = (ω1, ω2, · · · , ωn)
T of the alternative obtained from Pa = (pa

ij)n×n
is denoted as the follow-

ing formulas:

P
(

S
( .

hp(m)1

)
> S

( .
hp(m)2

))
= max

{
1−max

{
Sy

2 − St
1

Sy
2 − St

2 + Sy
1 − St

1
, 0

}
, 0

}
(30)

ω =
1

n(n− 1)

 n

∑
j=1

pa
ij +

n
2
− 1

, (i = 1, 2, · · · ·, n) (31)

Step 5. The alternatives are ranked according to the prioritized weight ωi. The larger that ωi is,
the worse that the solution is; the smaller that ωi, the better that the solution is.
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5. Case Study
5.1. Case Analysis

China has declared to end the measures undertaken due to three-year-long epidemic of novel
coronavirus pneumonia, which was renamed novel coronavirus infection by the end of 2022. Despite
the impact of the epidemic, the gross domestic product (GDP) of China continued to grow over the
past three years, and the macroeconomic situation has improved. However, from a microperspective,
many small and medium-sized enterprises (SMEs) are facing challenges and difficulties due to the epi-
demic. The government recognized that fostering a healthy and stable business environment requires
not only the prosperity of large enterprises but also the vitality of all SMEs in the market. In 2022, the
Institute of Economics of the Chinese Academy of Social Sciences conducted a systematic review of
China’s economy and made predictions for its development in 2023. The future development strategy
must effectively combine the expansion of domestic demand with supply-side structural reforms.

Suppose that a commercial bank plans to provide loans to SMEs in need of financing in a large
supply chain network to take advantage of new investment opportunities To ensure that investment
decisions meet the bank’s expectations regarding investment risk and profitability criteria, the bank
invites 100 experts in the field of supply chain finance to evaluate the candidates. After a simple
screening and evaluation by the experts, six enterprises with excellent conditions in all aspects
are selected and denoted as C1, C2, C3, C4, C5, C6. According to the expertise and experience of the
experts, the bank determines four important evaluation indicators: business operation status (A1),
market demand (A2), supply chain status (A3), and corporate reputation (A4). Then, the experts
comprehensively rank the six enterprises according to these four indicators, and they obtain the
probabilistic interval priority sets, as shown in Table 1. In addition, they adjust the initial priority
sequence to achieve an acceptable level of consistency and apply the proposed group decision scheme
to assess the strengths and weaknesses of the six production enterprises. This process enables the
bank to select the most suitable production enterprises to provide loans. The specific steps are
as follows:

Table 1. The probabilistic interval ordering sets.

A1 A2 A3 A4

C1 [1,2]0.6, [2,3]0.3, [3,4]0.1 [2,3]0.7, [3,4]0.1, [5,6]0.2 [1,3]0.5, [3,4]0.3, [4,5]0.2 [1,2]0.7, [3,4]0.1, [4,5]0.2
C2 [1,3]0.4, [3,4]0.4, [5,6]0.2 [1,2]0.35, [2,3]0.65 [2,3]0.4, [3,4]0.55, [4,5]0.05 [1,3]0.55, [3,4]0.45
C3 [1,2]0.2, [2,3]0.8 [2,3]0.9, [3,4]0.09, [4,5]0.01 [3,4]0.9, [4,5]0.1 [1,2]0.6, [2,3]0.3, [5,6]0.1
C4 [1,2]0.3, [3,4]0.6, [4,5]0.1 [1,2]0.3, [3,4]0.7 [1,2]0.55, [3,4]0.41, [4,5]0.04 [1,2]0.7, [2,3]0.3
C5 [1,3]0.9, [3,4]0.08, [5,6]0.02 [2,3]0.7, [3,4]0.2, [5,6]0.1 [1,2]0.6, [3,4]0.25, [5,6]0.15 [1,2]0.3, [2,3]0.5, [4,5]0.2
C6 [1,2]0.75, [3,4]0.25 [1,2]0.6, [2,3]0.3, [3,4]0.1 [1,2]0.8, [3,5]0.17, [5,6]0.03 [1,2]0.6, [2,4]0.4

Step 1. The consistency testing algorithm is used to eliminate the intervals that do not meet the
conditions of PIPOE, and the probabilities of each interval are recalculated according to Equation (23)
to obtain the revised set of probability intervals, as shown in Table 2.

Table 2. The modified probabilistic interval ordering sets.

A1 A2 A3 A4

C1 [1,2]0.6, [2,3]0.3, [3,4]0.1 [2,3]0.7, [3,4]0.1, [5,6]0.2 [1,3]0.5, [3,4]0.3, [4,5]0.2 [1,2]0.7, [3,4]0.1, [4,5]0.2
C2 [1,3]0.4, [3,4]0.4, [5,6]0.2 [1,2]0.35, [2,3]0.65 [2,3]0.4, [3,4]0.55, [4,5]0.05 [1,3]0.55, [3,4]0.45
C3 [1,2]0.2, [2,3]0.8 [2,3]0.9, [3,4]0.09, [4,5]0.01 [3,4]0.9, [4,5]0.1 [1,2]0.6, [2,3]0.3, [5,6]0.1
C4 [1,2]0.3, [3,4]0.6, [4,5]0.1 [1,2]0.3, [3,4]0.7 [1,2]0.55, [3,4]0.41, [4,5]0.04 [1,2]0.7, [2,3]0.3
C5 [1,3]0.9, [3,4]0.08, [5,6]0.02 [2,3]0.7, [3,4]0.2, [5,6]0.1 [1,2]0.6, [3,4]0.25, [5,6]0.15 [1,2]0.3, [2,3]0.5, [4,5]0.2
C6 [1,2]0.75, [3,4]0.25 [1,2]0.6, [2,3]0.3, [3,4]0.1 [1,2]0.8, [3,5]0.17, [5,6]0.03 [1,2]0.6, [2,4]0.4

Step 2. According to the M1 model in the literature [35], the importance of attributes is sorted
as follows:

A4 ≺ A3 ≺ A1 ≺ A2

To determine the attribute prioritized weight, calculate the weight interval V = [ν, µ] for each
attribute based on Equation (27) and the weight information for each attribute using Equation (26).
The results are shown as:
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Step 3. Utilize the PIOGPA operator to aggregate the information from the probabilistic interval
ordering set Hp and obtain the score of each enterprise based on Equation (29).

S(C1) = [0.1272, 0.1872], S(C2) = [0.1229, 0.1927]
S(C3) = [0.1687, 0.2559], S(C4) = [0.1142, 0.1768]
S(C5) = [0.1175, 0.1929], S(C6) = [0.0935, 0.1587]

Step 4. Compare the scores of different schemes and construct the possibility degree matrix
using the possibility degree based on Equation (30).

Pa = (pa
ij)n×n

=

P(S(C1) ≥ S(C1)) · · · P(S(C1) ≥ S(C6))
...

. . .
...

P(S(C6) ≥ S(C1)) · · · P(S(C6) ≥ S(C6))



=



0.5000 0.5048 0.8746 0.4042 0.4854 0.2516
0.4952 0.5000 0.8472 0.4067 0.4821 0.2651
0.1254 0.1528 0.5000 0.0536 0.1488 0.0000
0.5958 0.5933 0.9464 0.5000 0.5707 0.3485
0.5146 0.5179 0.8512 0.4293 0.5000 0.2929
0.7484 0.7349 1.0000 0.6515 0.7071 0.5000


Next, obtain the priority vector by Equation (31), and the results are presented in Figure 2:

ω = (0.1674, 0.1665, 0.0994, 0.1852, 0.1702, 0.2114)T
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Step 5. The enterprises are ranked as follows according to the priority vector:

C6 ≺ C4 ≺ C5 ≺ C1 ≺ C2 ≺ C3

The larger that ωi is, the worse that the scheme is. The smaller that ωi is, the better that the
scheme is. Therefore, the best enterprise is C3.

5.2. Comparative Analysis
To further verify the scientificity and validity of the decision-making method proposed in

this paper, this section compares and analyzes the results of the interval hesitant fuzzy ordering
averaging (IHFOA) operator, the interval hesitant fuzzy ordering prioritized averaging (IHFOPA)
operator, the interval hesitant fuzzy ordering Gauss–Legendre prioritized averaging (IHFOGPA)
operator, the probabilistic interval preference ordering averaging (PIPOA) operator, and probabilistic
interval preference ordering weighted averaging (PIPOWA) operator, as described in [20,35,54,56].
The comparison results are presented in Table 3 and Figure 3.
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Table 3. Comparative analysis of different integration operators.

Integrated Operator The Priority Vector Sorting Results

PIPOA [36] ω = (0.1870, 0.1309, 0.1271, 0.1706, 0.1914, 0.1930)T C6 ≺ C5 ≺ C1 ≺ C4 ≺ C2 ≺ C3

PIPOWA [36] ω = (0.1858, 0.1337, 0.1220, 0.1691, 0.1912, 0.1981)T C6 ≺ C5 ≺ C1 ≺ C4 ≺ C2 ≺ C3

IHFOA ω = (0.1552, 0.1523, 0.1435, 0.1540, 0.1891, 0.2059)T C6 ≺ C5 ≺ C1 ≺ C4 ≺ C2 ≺ C3

IHFOPA ω = (0.1579, 0.1274, 0.1075, 0.1736, 0.2100, 0.2236)T C6 ≺ C5 ≺ C4 ≺ C1 ≺ C2 ≺ C3

IHFOGPA ω = (0.1567, 0.1261, 0.1067, 0.1740, 0.2119, 0.2246)T C6 ≺ C5 ≺ C4 ≺ C1 ≺ C2 ≺ C3

PIOPA ω = (0.1675, 0.1661, 0.1007, 0.1844, 0.1711, 0.2101)T C6 ≺ C4 ≺ C5 ≺ C1 ≺ C2 ≺ C3

PIOGPA ω = (0.1674, 0.1665, 0.0994, 0.1852, 0.1702, 0.2114)T C6 ≺ C4 ≺ C5 ≺ C1 ≺ C2 ≺ C3
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In the comparative analysis, the PIPOA and PIPOWA operators adopt the probabilistic interval
preference ordering algorithm. The difference is that the PIPOA operator does not consider the
influence of attribute weight information, while the PIPOWA operator aggregates attribute weight
information in the decision-making process. The results obtained by the two methods are the same:
enterprise C3 is the best, and C6 is the worst. The PIPOA, PIPOWA, IHFOPA, IHFGOPA, PIOPA, and
PIOGPA operators all consider the complete attribute information for all attributes. Although the
ranking results of the five methods are not exactly consistent, the results show that enterprise C3 is
the best, and enterprise C6 is the worst. The specific analysis that leads to different sorting results is
as follows.

The PIOGPA operator presented in this paper is based on the probabilistic interval ordering.
It uses the AGM algorithm of mutual support and the influence of the data to consolidate the
priority weight intervals of attributes into the attribute priority weights, thus constructing the
appropriate attribute weight scheme. By examining the correlations between different attributes, the
attribute weights for each scheme are refined. This approach improves the problem that the arithmetic
averaging operators might yield excessively low attribute weights, and geometric averaging operators
might lead to excessively high attribute weights and strengthen the data relationships. The overall
coordination is more flexible and efficient in solving practical problems. The results of the proposed
PIOPA and PIOGPA operators are consistent: C6 ≺ C4 ≺ C5 ≺ C1 ≺ C2 ≺ C3. Compared with
the PIOPA operator, the PIOGPA operator employs the Gaussian AGM algorithm to reduce the
complexity of the calculations, while the PIOPA operator utilizes the unprocessed weight interval
V = [ν, µ]. Thus, the calculation of the PIOPA operator involves double interval superposition,
resulting in a more complete and difficult calculation. On the other hand, the PIOGPA uses the AGM
algorithm to consolidate the weight intervals, allowing only the maximum and minimum values to
be used to determine the sorting interval. This approach, based on the PIOGPA operator, greatly
reduces the complexity of the calculations. However, several methods in the literature [21,36,55,57]
fail to effectively address the issue of data overestimation or underestimation, leading to varying
ranking results for the schemes. The calculations of the IHFOA, IHFOPA, and IHFOGPA operators
rely on hesitant fuzzy intervals. When information is evenly distributed, basic information can
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be distorted, making it difficult to obtain completely objective results. Based on the principle of
probabilistic interval ordering, this paper redefines the operation associated with probabilistic interval
ordering and demonstrates that the operator satisfies idempotency, boundedness, and permutation
invariance. From the perspective of effectively using decision information, the PIOGPA operator
not only can consider the subjective preferences and objective information of decision makers but
also can accurately reflect the priority relationships between attributes, making the decision results
more real. From the perspective of decision-making algorithms, the PIOGPA operator is simpler. It
can avoid redundant data traversal, reduce operation complexity, and obtain more reasonable and
effective aggregation results.

In summary, the PIOPA operator in this paper is derived from the PA operator and PIPOWA
operator. The PIOPA operator can consider important relationships between attributes during the
decision-making process, making it suitable for more complex decision-making environments. The
presented PIOGPA operator considers the normal distribution of interval numbers and overcomes the
assumption of the uniform distribution of attribute values in traditional MADM models. Furthermore,
it considers the priority relationships of attributes. The attribute weight is determined by assigning
greater importance to top-ranked attributes, thereby mitigating the influence of other attributes on
the decision-making results. Most importantly, the Gaussian AGM algorithm is used to optimize the
calculation steps, reducing the calculation complexity by converging the attribute weight intervals
and enhancing the accuracy and effectiveness of decision outcomes.

6. Conclusions
Commercial banks are increasingly focusing on investment decisions regarding supply chain

finance. In the complex and changing market environment, selecting high-quality companies that
meet specific standards becomes a multi-attribute group decision-making problem. To address this
challenge, a novel MADM method based on the PIOGPA operator is presented. First, the PIPOA
operator, combining probabilistic interval ordering with the PA operator, is proposed. However, the
PIPOA operator tends to cause some operational complexity in the selection process. Then, based
on the PIPOA operator, this paper employs the Gauss–Legendre algorithm to develop the PIOGPA
operator, which considers the priority relationships between attributes and their importance and
is more suitable for dealing with uncertain decision-making problems, and some basic properties
of the PIOGPA operator are discussed. Furthermore, this paper presents a new MADM method
of probabilistic interval ordering based on the PIOGPA operator and uses the AGM algorithm to
calculate the attribute weights. Finally, the feasibility and rationality of the proposed method are
verified by the numerical example and comparative analysis. The results show that this method is
suitable for solving practical decision-making problems and has a broad application prospect.

For MADM problems, the current research mainly focuses on aggregating values under different
attributes by constructing various weight operators. However, weight determination is challenging
in the decision-making process. Some scholars have used subjective methods to determine weights.
They have usually verified the feasibility of the method through examples and have rarely discussed
the sensitivity of different weights to the decision results. Some scholars have adopted objective
empowerment approaches, including the optimization weighting methods and entropy weighting
methods, but the weight calculation process may be complicated. The MADM method proposed in
this paper is based on the PA operator and probabilistic interval ordering operators. It calculates
the positive and negative information about attributes, satisfying the comparison of positives and
negatives through priority relationships. This method effectively avoids the direct aggregation
of attributes and does not require manual determination of attribute weights, thereby obtaining
more objective decision-making results. The presented method can be widely used in many fields.
When the fields involve multiple attributes, and the values of these attributes are uncertain, a
probability interval ranking information system can be constructed for MADM evaluation using
ranking evaluation. For example, when evaluating an investment plan, it is impossible to make a
decision based on only one index due to the diversity of evaluation indicators, so the probabilistic
interval ordering system can be used for evaluation. Then, this method can transform attributes
according to different environmental states and generate data consistent with a fuzzy information
system for decision-making.

This paper has several limitations. First, there is limited discussion of the properties of compar-
ing and ranking methods of probabilistic interval ordering. Second, the applicability of constructing
a function for addressing non-sequential problems is limited to ranking evaluation problems, and
it is difficult to apply to other evaluation problems. In addition, this paper fails to test larger data
sets, and enterprise development against the background of big data should be further considered
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as the analysis object. In the future, more probabilistic interval operators could be proposed, and
their application fields should be broadened to deal with fuzziness, including medical, financial,
autonomous driving, and other fields. Furthermore, with the evolution of the Internet of Things, the
processing of multimodal data, such as text, image, and sound, requires improving fuzzy decision
theories and techniques to enhance the comprehensiveness and accuracy of fuzzy decision-making.
In the future, the research in the fuzzy decision-making field will face a rapid increase in the amount
of data, and more efficient algorithms and techniques are needed to effectively solve large-scale
decision problems. The integration of fuzzy decision-making methods with deep learning technology
is likely to enhance the learning and innovation ability of future decision-making models.
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