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Abstract: In this paper we investigate the solutions of the so-called ᾱ-Poisson equation in the complex
plane. In particular, we will give sufficient conditions for Lipschitz continuity of such solutions. We
also review some recently obtained results. As a corollary, we can restate results for harmonic and
(p, q)-harmonic functions.
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1. Introduction and Preliminaries

For a positive weight function ρ on the unit disc D, we define the operators Lρ and
L∗ρ by

Lρ = Dz(ρDz) and L∗ρ = Dz(ρDz).

In [1], these operators are called the weighted Laplacian operators. For the weight function

ρ = ρα(z) = (1− |z|2)−α, z ∈ D = {z ∈ C : |z| < 1}, α > −1,

the operator Lρ is called the standard weighted Laplacian and is denoted by Lα for simplicity.
Likewise, the operator L∗ρ is denoted by Lα.

In analogy with the Poisson equation L0u = g, the ᾱ-Poisson equation is defined on D as

Lαu = g, (1)

where the function g is given on the unit disc D. Assume that g is continuous on the disc
D and that ρ−1

α g is bounded. Our main result states that, if a solution u of the ᾱ-Poisson
Equation (1) has a continuous extension to the unit circle T that is Lipschitz on T, then u
is Lipschitz on the entire unit disc D. The Poisson equation is a fundamental problem in
classical literature. For example, the book [2] considers elliptic partial differential equations
of the second order, which are uniformly strongly elliptic. Since the operator Lα is not
uniformly elliptic, we can not apply these classical methods; see for example [3], where the
first two authors of this paper showed that the corresponding analogue of the Hopf lemma
is false.

Harmonic quasiconformal mapping (shortly HQC-for definition and properties of
quasiconformal mappings in Rn see [4,5]) of the unit disk are related to the context of this
paper, and the subject related to HQC mappings is now an active area of research; in partic-
ular, it has been intensively studied with Belgrade Analysis group, for example, [6–9] and
the literature cited therein and in this paper. Particularly, paper [7] studies quasiconformal
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diffeomorphisms f : G1 → G2, (where G1, G2 are domains with C2-smooth boundaries),
which are also a solution of the (classical) Poisson’s equation. In this case, it is proven
that all partial derivatives of f are bounded on G1, i.e., that such a mapping is Lipschitz.
For more details see Section 4. This particular result is, in some sense, a spatial version
of the famous Kellogg’s theorem. In the short terms, Kellogg’s theorem is related to the
boundary behavior of conformal mapping f between two C1,β, 0 < β < 1 plane domains.
Roughly speaking, the plane Jordan curve is C1,β smooth if its arc length parametrization
has a β-Hölder first derivative. The conclusion of this theorem is that the complex deriva-
tive of f has a β-Hölder extension to the boundary [10,11]. Many generalizations of this
classical result were obtained by various mathematicians. In a broader sense, this topic
is connected to the gradient estimates of spatial harmonic functions [12]. Deeper origins
of this topic can also be seen in the famous Schwartz lemma, and some newer result and
history of this area can be found in [3]. For additional results, it is important to mention
[13,14], where Lipschitz continuity of the solution of the hyperbolic Poisson’s equation and
(a, b)–harmonic functions are investigated.

1.1. A Short Preview of This Article

First, we consider some basic properties of α–harmonic mappings. In particular, we
improve on the results of Chen and Kalaj [15]. Behm [16] found the Green function and
provided a solution for the Dirichlet boundary value problem in the case of the α–Poisson
equation. Our method is based on Theorem 8, which gives an estimate of the Green
potential Gα of g. At the beginning of this paper, we will introduce a basic notation together
with a definition of the so-called α–Laplacian and α–harmonic functions. Also, the definition
and properties of α–Poisson’s kernel and α–Poisson’s integral are stated, as a very important
technical asset used in our research. More information about this notion can be found in
Olofsson’s and Wittsten’s paper [1]. After that, we recall the definition of the Green function
for the α–Laplacian, which is thoroughly investigated in Behm [16]. A formulation and a
solution for the Dirichlet boundary value problem in the case of α–Poisson’s equation are
presented and proven in Chen and Kalaj’s paper [17], which demonstrates Theorem 1.
In paper [18], Chen used this result to prove the necessary and sufficient condition on
the boundary function for Lipschitz continuity of an α-harmonic mapping and proved
Theorem 2.

The first result of this paper is weakening the assumption on the boundary value of
an α-harmonic mapping v, which is written in part (iv) of Theorem 2 [15] , and obtaining
Theorem 6. In fact, since Sα(L∞(T)) ⊂ L∞(D) for α > 0, by Claim 1, we proved that
condition Sα[ f ′] ∈ L∞(D) is unnecessary. The proof of Theorem 6 uses the Hardy space
technique and it can be found in the first author’s monography [4], and Theorem 5 is
proven in first author’s and A. Khalfallah’s paper [19]. Also, Theorem 7 gives another
form of the part (i) of Theorem 2, which considers (p, q)−harmonic mappings, as well as
Hölder continuous boundary values. The second improvement of Theorem 2 considers the
condition on g = −Lαu. This result is proven in Theorem 8, and uses various estimates,
which we establish in Section 2.3.

1.2. α–Harmonic Mappings

Let u be a C2 function on D. Recall that two complex derivatives ∂
∂z = Dz and ∂

∂z = Dz
of u are written by

∂

∂z
u = Dzu = (ux − iuy)/2 and

∂

∂z
u = Dzu = (ux + iuy)/2

respectively, where z = x + iy.
For the weighted Laplacian defined above, we have

L∗ρu = Lαu = DzρDzu + ρDzzu = α(1− |z|2)−α−1zuz + (1− |z|2)−αuzz,

Lαu = α(1− |z|2)−α−1zuz + (1− |z|2)−αuzz.
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First, we can see that L∗αu = 0 if

(1− |z|2)uzz + αzuz = 0. (2)

Moreover, Lαu = 0 if L∗αu = 0. For a, b ∈ R, which cannot be negative integers and
which satisfies a + b > −1, the operator is defined in [14] as

La,bu = (1− |z|2)uzz + azuz + bzuz − abu. (3)

Let us recall the notion of (a, b)-harmonic functions. A function u is said to be (a, b)-
harmonic if u ∈ C2(D) and La,bu = 0.

It is clear that (0, α)−harmonic functions are α-harmonic functions, and (α, 0)−har-
monic functions are α-harmonic functions.

Definition 1. Let G be a bounded subset of C. A function f : G → C is β-Hölder continuous on
G where 0 < β < 1 if there exists c′ > 0 such that

| f (z1)− f (z2)| 6 c′|z1 − z2|β, z1, z2 ∈ G.

We say that f is Lipschitz continuous on G if there exists c′′ > 0 such that

| f (z1)− f (z2)| 6 c′′|z1 − z2|, z1, z2 ∈ G.

Set p = uz and q = uz. Since uz = uz and uz = uz, we find zuz and zuz are conjugates
of each other, and also uzz = qz and uzz = qz = qz; therefore, uzz and uzz are conjugate. It is
easy to check that uzz =

1
4 ∆u, where ∆u = ∂2u

∂x2 +
∂2u
∂y2 .

If we set d(z) = 1− |z|2, then ρα = d−α, and by easy computation we find

ρz = αd−αz, ρz = αd−α−1z, ρx = 2αd−α−1x and ρy = 2αd−α−1y.

Since 2ρDzu = ρ(ux − iuy), we find

4Lρ = Dx[ρ(ux − iuy)] + iDy[ρ(ux − iuy)] = Dx(ρux) + Dy(ρuy) + i(ρyux − ρxuy).

Hence,
4Lρ = ρ∆u + ρxux + ρyuy + i(ρyux − ρxuy).

If u is a real-valued function, then Lρu = 0 if ρ∆u+ ρxux + ρyuy = 0 and yux− xuy = 0,
that is

∆u + 2αρ1(xux + yuy) and yux − xuy = 0.

The general solution of the equation yux − xuy = 0 is u = f (x2 + y2). Since ρuz =
ρg(r)z, we find ρg(r)r2 = zF(z) = c, and hence, F = 0 and uz = 0. Thus, u = c.

If a function u ∈ C2(D) satisfies the α-harmonic equation

Lα(u) = 0,

then it is said to be an α-harmonic mapping. In the case α = 0, α-harmonic mappings are
just Euclidean harmonic mappings. In the literature, Lα is sometimes denoted as ∆α.

Set u = pdz + qdz. We can rewrite ∆αu = (ραq)z in the form ∆αu = (ραq)z. Hence, if
u is α-harmonic, then there is a holomorphic function f such that ραq = f .

Next, by computation, we find uθ = piz− iqz, ur = peiθ + qe−iθ and

eiθρα(irur − uθ) = 2ir f , ρα(irur − uθ) = 2iz f .

At first glance, we would like to conclude that, if u is real-valued, then ραuθ and
irραur are Euclidean conjugate harmonic. However, it seems that every real-valued α-
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harmonic mapping is constant. By Riesz’s theorem on conjugate functions (see Rudin [20],
Theorem 17.26), there exists a finite constant Ap such that

Mp(r, rur) 6 Ap Mp(r, uθ).

1.3. α-Poisson’s and (p, q)-Poisson’s Integral

Let us recall that the classical Poisson kernel and Poisson integral are given by

P(z) =
1− |z|2
|1− z|2 and P [ f ](z) =

1
2π

∫ 2π

0
u(eiθ)

1− |z|2
|z− eiθ |2

dθ.

Olofsson and Wittsten showed in [1] that, if an α-harmonic function f satisfies

lim
r→1−

fr = f ∗ ∈ D′(T) (α > −1),

then, for z ∈ D, it can be expressed in terms of a Poisson-type integral

f (z) = Pα[ f ∗](z) =
1

2π

∫ 2π

0
Pα(ze−iθ) f ∗(eiθ)dθ

where

Pα(z) =
(1− |z|2)α+1

(1− z)(1− z)α+1

is the complex valued α-harmonic Poisson kernel in D. In the case α = 0 we obtain the
classical Poisson’s kernel P ≡ P0.

More generally, if a, b ∈ R are not negative integers and a + b > −1, the (a, b)-Poisson
kernel and the (a, b)-Poisson integral for f ∈ L1(T) is defined by

Ka,b(z) := ca,b
(1− |z|2)a+b+1

(1− z)a+1(1− z)b+1 , where ca,b =
Γ(a + 1)Γ(b + 1)

Γ(a + b + 1)

and

Ka,b[ f ](z) :=
1

2π

∫ 2π

0
Ka,b(ze−iθ) f (eiθ)dθ, z ∈ D,

where Γ is the Gamma-function. Clearly, the (0, α)-Poisson integral is just the α-Poisson integral.

2. Lipschitz Continuity of ᾱ-Harmonic Mappings
2.1. An Introductory Result

As a starting point of our investigation, we used Theorem 2 which can be found
in Chen’s paper [18]. This theorem gives some rather strong assumption on g = −Lαu
(g ∈ C(D)), as well as for the boundary values of u (condition (d) of Theorem 2), which are
proven to be sufficient for Lipschitz continuity of u.

Before we formulate the basic result, we need to introduce some notions. We say that
function v : D→ Ω, v ∈ C2(D) is a solution of the α-Poisson equation if we have that{

u(z) = f (z), if z ∈ T,
−(Lα)u(z) = g, if z ∈ D,

(4)

for some g ∈ C(D) in the sense that ur → f ∈ L1(D) when r → 1−, where ur(eiθ) = u(reiθ).
The family of such u that are diffeomorphisms preserving an orientation of D will be
denoted as VD→Ω[g].

Behm [16] has found a solution to the Dirichlet problem for the α−Poisson’s equation,
for zero boundary values in the sense of distributions. In addition, Chen and Kalaj [17]
derived a formula for general functions, which has prescribed arbitrary boundary values,
using Olofsson’s and Wittsten’s [1] result. This is described in the following theorem.



Axioms 2023, 12, 998 5 of 13

Theorem 1 ([17]). Let a function g ∈ C(D) satisfy the condition (1− |z|2)α+1g ∈ L1(D), where
α > −1 is arbitrary. If u ∈ C2(D) satisfies equation −Lαu = g and if ur → f ∈ L1(T), r → 1−

where ur(t) = u(reit), t ∈ [0, 2π), then

u(ω) = v(ω) + Gα[g](ω) for every ω ∈ D,

where

v(ω)=
1

2π

2π∫
0

(1−|ω|2)α+1

(1−eiθω)(1−e−iθω)α+1 f (eiθ)dθ, Gα[g](ω)=
∫∫
D

Gα(z, ω)g(z)dx dy, (5)

and Gα(z, ω) denotes the Green function of the operator Lα, having the following form:

Gα(z, ω) =
(1− zω)αh(q(z, ω))

2π
, with z 6= ω,

h(r) =
1
2

∫ 1−r2

0

tα

1− t
dt, q(z, ω) =

∣∣∣∣ z−ω

1−ωz

∣∣∣∣.
In [18], Chen provided the following boundary characterizations of a Lipschitz-conti-

nuous α-harmonic mapping. Define f (t) = f (eit) and

Sα[ f ](w) =
1
π

∫ 2π

0

(1− |w|2)α

(1− zw)α

Im (wz)
|z− w|2 f (t)dt, (6)

where z = eit. We remark that if α > 0 and f ∈ L∞(T), then Sα[ f ] is bounded.

Theorem 2 ([18]). Let g ∈ C(D) and assume u ∈ VD→Ω[g] has the representation

u(ω) = v(ω) + Gα[g](ω),

with Gα as in (5). If α > 0, then the following four conditions are equivalent:

(i) u is (K, K’)-qc and ∂
∂r v is a bounded function on D.

(ii) u is Lipschitz on D.
(iii) v is Lipschitz on D.
(iv) f ∈ AC(T) is such that f ′ belongs to the class L∞(T) and Sα[ f ′] is bounded on D.

In order to prove the main result of this paper, we need to show two refinements of
the above result.

2.2. Refinement of Part (iv) in Theorem 2

Let p ∈ (0, ∞]. For a function f : D→ C and 0 < r < 1, we define

Mp(r, f ) =
(

1
2π

∫ 2π

0
| f (reiθ)|p dθ

)1/p

and

‖ f ‖p =


sup

0<r<1
Mp(r, f ) for p > 0,

sup
z∈D
| f (z)| for p = ∞.

The generalized Hardy spaceHp
G(D) is the space of all measurable functions f : D→ C

for which Mp(r, f ) exists for each 0 < r < 1 and ‖ f ‖p < ∞; see e.g., [19]. Moreover, Hardy
spaceHp(D) (resp. hp(D)) is defined as the set of all analytic (resp. harmonic) functions in
Hp
G(D) on D.
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Definition 2 ([4]). The Hilbert transformationH[ψ] of a function ψ ∈ L1([0, 2π]) is given by

H[ψ](t) = − 1
2π

π∫
0+

ψ(t+ϕ)− ψ(t−ϕ)

tan ϕ
2

dϕ.

An alternative definition of the Hilbert transform is provided by the following property.

Theorem 3 ([4]). If u = P[ψ] and f = u + iv is analytic with v(0) = 0, then v(t) = H[ψ](t)
a.e., where we use the notation u(t) = u(eit).

If ψ ∈ AC([0, 2π]) (consequently ψ′ ∈ L1([0, 2π])), it can be checked that

∂u
∂θ

= P [ψ′].

Having in mind that the harmonic conjugate of U = ∂u
∂θ is the function defined by V = r ∂u

∂r ,
we know that

V(reiθ) = P [H(ψ′)], (7)(
∂u
∂r

)
(eiθ) = H[ψ′](θ) a.e. (8)

In Theorem 2 from [15], the authors used operator S (defined at (6)), which generalizes
the Hilbert transform. In the case α = 0, The radial limits of the operator S0 coincide with
the Hilbert operatorH. The next claim shows that, in the case of α > 0, this new operator
is bounded on L∞(T), which was not the case for the Hilbert transform.

Claim 1. If α > 0, then the operator

Sα : L∞(T)→ L∞(D)

is bounded.

Proof. Let α > 0. Recall that

Sα[ f ](w) =
1
π

∫ 2π

0

(1− |w|2)αIm (wz)
(1− zw)α|z− w|2 f (t) dt, (9)

where z = eit and

Im (wz̄) =
(wz̄− 1) + (1− w̄z)

2i
.

Hence,
|Im (wz̄)| 6 |1− w̄z|.

In addition, as zz̄ = 1, we have

|z− w| = |1− zw̄|.

Using the previous inequalities, we obtain

|Sα[ f ](w)| 6 1
π

∫ 2π

0

(1− |w|2)α

|1− zw̄|α+1 dt| f |∞ 6 2Mα| f |∞,

where Mα = Γ(α)
Γ( α+1

2 )2 , see [1].



Axioms 2023, 12, 998 7 of 13

Remark in the case α = 0,

S0[ f ](w) =
1
π

∫ 2π

0

Im (wz)
|z− w|2 f (t) dt = P̃ [ f ](w).

where P̃ denotes the conjugate Poisson kernel,

P̃(z) = Im
1 + z
1− z

=
2Im z
|1− z|2 .

Moreover, if f ∈ L1(T), then P̃ [ f ] has radial limits almost everywhere and there holds
the relation

lim
r→1−

P̃ [ f ](reiθ) = H[ f ](eiθ).

If, in addition, we haveH[ f ] ∈ L1(T), then

S0[ f ] = P̃ [ f ] = P [H[ f ]].

Theorem 4. If α > 0, and p ∈ (1, ∞] then the operator

Sα : Lp(T)→ Hp
G(D)

is bounded.

Proof. We will consider only the case p ∈ (1, ∞). According to Jensen’s inequality, we have

|Sα[ f ](w)|p 6
1
π

∫ 2π

0

(1− |w|2)α| f (t)|p

|1− we−it|α+1 dt
(

1
π

∫ 2π

0

(1− |w|2)αdt
|1− we−it|α+1

)p−1

Next, by Fubini’s theorem, we obtain that

1
2π

∫ 2π

0
|Sα[ f ](|w|eiθ)|pdθ ≤ ‖ f |pLp

(
1
π

∫ 2π

0

(1− |w|2)α dt
|1− we−it|α+1

)p

≤ (2Mα)
p‖ f |pLp .

Hence
‖Sα[ f ]‖p ≤ 2Mα‖ f ‖Lp .

For the proof of the main result we also need a corollary of this theorem:

Theorem 5 ([19]). Let us assume that u = Pα[ϕ] where ϕ ∈ AC(T) is such that ϕ̇ ∈ Lp(T)
with 1 6 p 6 ∞, and α > −1 is not equal to zero.

(a) In the case α > 0, we have that ∂
∂z u, ∂

∂z u ∈ Hp
G(D) ⊂ Lp(D).

(b) In the case −1 < α < 0 and p < −1/α, we get ∂
∂z u, ∂

∂z u ∈ Lp(D).
(c) In the case −1 < α < 0 and p > −1/α, we can find a function u that is α-harmonic on D

and satisfies the conditions ∂
∂z u, ∂

∂z u 6∈ Lp(D). In addition, we have that ∂
∂z u, ∂

∂z u 6∈ H1
G(D).

The following theorem is the first result of this paper and we use it in proof of our
main result.

Theorem 6. (a) Let h be defined on D and assume that h ∈ h1(D). Then h is Lipschitz if and only
if h′ ∈ L∞ andH(h′) ∈ L∞.

(b) Let h be α-harmonic on D for α > 0 and assume that h ∈ H1
G(D). Then h is Lipschitz if

and only if h′ ∈ L∞.

Proof. (a) For detailed proof of this part, see [4].



Axioms 2023, 12, 998 8 of 13

(b) We can prove this by using part (a) of Theorem 5 in the case p = ∞ .

2.3. K-Quasiconformal (p, q)-Harmonic Mappings and Hölder Continuity

Let z = x + iy ∈ G and let u be a differentiable function in z and let d f (z) denote the
differential operator at the point z. Then we define

|u′(z)| = max
|h|=1
|d f (z)h| =

∣∣∣∣ ∂

∂z
u(z)

∣∣∣∣+ ∣∣∣∣ ∂

∂z
u(z)

∣∣∣∣, (10)

l(u′(z)) = min
|h|=1
|d f (z)h| =

∣∣∣∣∣∣∣∣ ∂

∂z
u(z)

∣∣∣∣− ∣∣∣∣ ∂

∂z
u(z)

∣∣∣∣∣∣∣∣,
Ju(z) =

∣∣∣∣ ∂

∂z
u(z)

∣∣∣∣2 − ∣∣∣∣ ∂

∂z
u(z)

∣∣∣∣2.

We say that function u0 : [a, b] → C,−∞ < a < b < ∞ is absolutely continuous on
interval [a, b], or shortly u0 ∈ AC([a, b]), if for every ε > 0 there is δ > 0 such that whenever
a finite sequence of pairwise disjoint sub-intervals (ak, bk) ⊂ I satisfies ∑j(bj − aj) < δ, we
have that

∑
j
| f (bj)− f (aj)| < ε.

Recall that ACL(G) denotes the class of functions that are absolutely continuous on
the lines in domain D, i.e., the class of functions whose restriction to all intervals I that
are parallel to the coordinate axis belongs to the class AC(I). A sense-preserving homeo-
morphism u : G → Ω is (K, K′)-quasiconformal (or shortly (K, K′)−qc) if u ∈ ACL(G) and
there exist K > 1 and K′ > 0, satisfying

|u′(z)|2 6 K|Ju(z)|+ K′, (11)

for every z ∈ G. We say that u is K–quasiconformal if it satisfies Formula (11) for K′ = 0.
For more information about quasiconformal mappings, see [4].

A. Khafallah and M. Mhamdi proved the following theorem, which can be seen as a
improvement of part (i) in Theorem 2.

Theorem 7 ([14]). Let u = Ka,b[ f ] be a K–quasiconformal, where a + b ∈ (−1, ∞).

• If f is β-Hölder continuous on T for 0 < β < 1, then u is β-Hölder continuous on D.
• If f is Lipschitz continuous on T, then u is Lipschitz continuous on D.

3. Lipschitz Continuity of ᾱ−Green Integral

In this subsection, we will prove that, instead of g ∈ C(D), we can use the assumption
that g ∈ C(D) can be such that (1− |z|2)αg belongs to the class L∞(D), in order to prove
Lipschitz continuity of the α-Green integral Gα[g] of the function g. This fact will play an
important part in the proof of our main result.

The following two estimates can be obtained by direct investigation of the Green
function Gα, and can be found in [18].

2π

∣∣∣∣ ∂

∂ω
Gα(z, ω)

∣∣∣∣ 6 αCα|1− zω|α−1

(
1−
∣∣∣∣ z−ω

1−ωz

∣∣∣∣2
)α+1(

1− log
∣∣∣∣ z−ω

1−ωz

∣∣∣∣2
)

+
(1− |z|2)α+1(1− |ω|2)α

2|1− zω|α+1|z−ω| , (12)

2π

∣∣∣∣ ∂

∂ω
Gα(z, ω)

∣∣∣∣ 6 (1− |z|2)α+1(1− |ω|2)α

2|1− zω|α+1|z− w| . (13)
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In order to start with our work, we will prove the following two technical lemmas.

Lemma 1. If β > 1, then ∫ 2π

0

dt
|1− rρeit|β

� 1
|1− rρ|β−1

for 0 < r, ρ < 1.

Proof. ∫ 2π

0

dt
|1− rρeit|β

= 2
∫ π

0

dt
((1− rρ)2 + 4rρ sin2 t

2 )
β/2

6
∫ π

0

dt
((1− rρ)2 + c1t2)β/2 6 |t = (1− rρ)u|

6
∫ π/(1−rρ)

0

(1− rρ)du
(1− rρ)β(1 + c1u2)β/2

6
1

(1− rρ)β−1

∫ ∞

0

du
(1 + c1u2)β/2 ,

since the last integral converges, we have the desired result.

Lemma 2. There exists c2 > 0 such that

M1(r) =
∫∫

D

dx dy
|z− r| 6 c2

for every 0 < r < 1.

Proof. Let us use the substitution z− r = ρeit, where 0 6 t < 2π,
0 < ρ < ρ(t) = |r− eit| 6 r + 1. Then

∫∫
D

dx dy
|z− r| =

∫ 2π

0
dt
∫ ρ(t)

0

ρ dρ

ρ
6
∫ 2π

0
(r + 1)dt 6 4π. (14)

Let |ω| = r,

I1(ω) =
∫∫

D

(1− |z|2)α+1(1− |ω|2)α

2|1− zω|α+1|z−ω| dx dy,

I2(ω) =
∫∫

D
|1−zω|α−1

(
1−
∣∣∣∣ z−ω

1−ωz

∣∣∣∣2
)α+1(

1− log
∣∣∣∣ z−ω

1−ωz

∣∣∣∣2
)

dx dy.

Also, inequalities

|1−ωζ| > 1− |ω| and |1−ωζ| > 1− |ζ| (15)

can easily be verified.
The following two lemmas are crucial for the main result of this section:

Lemma 3. There exists c3 > 0 such that

I1(ω) 6 c3(1− |ω|2)α (16)

for every |ω| < 1.
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Proof. Using (15), we get

I1(ω) � (1− |ω|2)α
∫∫

D

dx dy
|z−ω| .

Since we can use the coordinate change s = ω
|ω| z, we can use Lemma 2 to get our result.

Let ζ = ϕω(z) = ω−z
1−ωz . If ω ∈ D, we have that ϕω is conformal automorphism of the

unit disc D. The following formulae can be easily checked:

z =
ω− ζ

1−ωζ
, 1− |z|2 =

(1− |ζ|2)(1− |ω|2)
|1−ωζ|2 , (17)

1−ωz =
1− |ω|2
1−ωζ

, dz = − 1− |ω|2
(1−ωζ)2 dζ

Lemma 4. There exists c4 > 0 such that

I2(ω) 6 c4(1− |ω|2)α (18)

for every |ω| < 1.

Proof. By using the substitution s = ω
|ω| ζ, and s = ρeit we get

I2(ω) = I2(r) =
∫∫

D

(1− |ω|2)α+1(1− |ζ|2)α+1

|1−ωζ|α+3 (1− log |ζ|2)dζ dη

= (1−|ω|2)α
∫ 1

0
(1−ρ2)α+1(1−r2)(1− log ρ2)

∫ 2π

0

dt
|1−rρeit|α+3 ρ dρ.

Using Lemma 1, we get

I2(r) � (1− |ω|2)α
∫ 1

0

(1− ρ2)α+1(1− r2)(1− log ρ2)

|1− rρ|α+2 ρ dρ.

Since 1− rρ > 1− r and 1− rρ > 1− ρ, we have that

I2(r) � (1− |ω|2)α
∫ 1

0
ρ(1− log ρ2)dρ 6 c4(1− |ω|2)α

for some c4 > 0, which does not depend on 0 6 r < 1.

We are now ready to formulate the main result of this section, which is the general-
ization of Lemma 3.4 in Chen’s paper [18]. The proof of this result follows directly from
Lemmas 3 and 4.

Theorem 8. Let g ∈ C(D) be such that (1− |z|2)αg ∈ L∞(D) and let α > 0 be arbitrary. Assume
that Gα[g] is the α-Green potential of the function g, i.e.,

Gα[g](ω) =
∫∫

D
Gα(z, ω)g(z)dx dy.

Then ∂
∂ω Gα[g], ∂

∂ω Gα[g] ∈ L∞(D).
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Proof. By the assumption, we have that there exists M > 0 such that |g(z)| 6 M(1− |z|2)−α.
Using (12) and (13), now we have that

∣∣∣ ∂
∂ω Gα[g](ω)

∣∣∣ 6 M( Ī1(ω) + Ī1(ω)) and
∣∣∣ ∂

∂ω Gα[g](ω)
∣∣∣ 6

MĪ1(ω), where

Ī1(ω) =
∫∫

D

(1− |z|2)(1− |ω|2)α

2|1− zω|α+1|z−ω| dx dy,

Ī2(ω) =
∫∫

D
(1− |z|2)−α|1−zω|α−1

(
1−
∣∣∣∣ z−ω

1−ωz

∣∣∣∣2
)α+1(

1− log
∣∣∣∣ z−ω

1−ωz

∣∣∣∣2
)

dx dy.

For estimating integral Ī1 we can use (15) and Lemma 2 to get

Ī1(ω) 6 c5

∫∫
D

dx dy
|z−ω| 6 4πc5.

After applying (17), we get that

Ī2(ω) =
∫∫

D

(
(1− |ζ|2)(1− |ω|2)

|1−ωζ|2

)−α
(1− |ω|2)α+1(1− |ζ|2)α+1

|1−ωζ|α+3 (1− log |ζ|2)dζ dη

=
∫∫

D

(1− |ω|2)(1− |ζ|2)|1−ωζ|α
|1−ωζ|3 (1− log |ζ|2)dζ dη

6 2α
∫ 1

0
(1−ρ2)(1−r2)(1− log ρ2)

∫ 2π

0

dt
|1−rρeit|3

ρ dρ.

Again, from Lemma 1 and (15), we get that Ī2 is bounded on the unit disc D, which
gives our conclusion.

As a direct consequence of Theorem 8 and Theorem 6 we have the main result of
this paper.

Theorem 9. Assume that g ∈ C(D) is such that (1 − |z|2)αg is bounded and suppose that
u(ω) = v(ω) + Gα[g](ω), where v ∈ C(D) is an α−harmonic function, for some α > 0. If the
boundary function v is Lipschitz, then u is also Lipschitz continuous on D.

4. Discussion

The main result of this article is one possible version of Kellogg’s theorem on a
solution of the α-Poisson’s equation with a prescribed boundary mapping, assuming that
the boundary function has the Lipschitz continuity property. In the previous sections, we
discussed novelties of our work. Here, we add further comments. As an original approach
in this article, we mention using some elementary integral inequalities originating from the
Hardy theory. This approach was used to prove the boundedness of the gradient, whereas
some earlier papers used some complicated infinite summation methods instead. Our
method leads to a result under weaker conditions on the α-Laplacian and leaves space
for further improvement. For example, this approach can be used to prove similar results
under the α-Laplacian-gradient condition, where certain other continuity properties of
Riesz potentials can be used; see [7]. A similar method is thoroughly investigated in [21–24].

As usual, Rn = {(x1, x2, . . . , xn) : x1, . . . , xn ∈ R} and |x| =
√

x2
1 + x2

2 + . . . + x2
n is

the Euclidean norm of x ∈ Rn. We recall that, for a differentiable function f : G → R on a
domain G ⊂ Rn, its gradient vector ∇ f and (assuming twice continuous differentiability)
its standard Laplacian ∆ f are

∇ f =
( ∂ f

∂x1
,

∂ f
∂x2

, . . . ,
∂ f
∂xn

)
and ∆ f =

n

∑
j=1

∂2 f
∂x2

j
.
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We say that function f satisfies the Laplacian-gradient inequality on the domain G if there
exist positive constants a, b such that

|∆ f (x)| 6 a|∇ f (x)|2 + b for every x ∈ G.

Let G1 and G2 be domains in Rn with C2 boundaries. One of the results obtained in [7]
says that, if every coordinate of a quasiconformal diffeomorphism f : G1 → G2 satisfies
the Laplace-gradient inequality, then f is Lipschitz. The proof of this result is based on the
Flattening the boundary method, with some use of continuity properties of Riesz potentials.

5. Concluding Remarks and Observations

It is interesting to mention one important application of our work. For positive
integers α, the Lipschitz continuity of α-harmonic functions f from the unit disc D onto a
C2-domain was proved in [15], where the harmonic extension of the boundary function
f is (K, K′)-quasiconformal. Lipschitzity of quasiconformal harmonic mappings between
the unit ball Bn and a spatial domain with a C1,β boundary (0 < β < 1) was proved in [25].
At this point, for our next article, we can announce a result that generalizes two results
that were previously mentioned, using the main result of this article. Namely, for any
α > 0, we expect to prove the Lipschitz continuity of (K, K′)-quasiconformal solutions f
of the α-Poisson’s equation that map D onto a C1,β domain, under the assumption that
ρ−1

α Lα f ∈ L∞(D).
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