
Citation: Hakemi, S.; Houshmand,

M.; Hosseini, S.A.; Zhou, X. A

Modified Quantum-Inspired Genetic

Algorithm Using Lengthening

Chromosome Size and an Adaptive

Look-Up Table to Avoid Local

Optima. Axioms 2023, 12, 978.

https://doi.org/10.3390/

axioms12100978

Academic Editor: Cesar Rego

Received: 9 August 2023

Revised: 21 September 2023

Accepted: 26 September 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

A Modified Quantum-Inspired Genetic Algorithm Using
Lengthening Chromosome Size and an Adaptive Look-Up
Table to Avoid Local Optima
Shahin Hakemi 1, Mahboobeh Houshmand 1,* , Seyyed Abed Hosseini 2 and Xujuan Zhou 3

1 Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran;
shahinhakemi@gmail.com

2 Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran;
hosseini.s.ir@ieee.org

3 School of Business, University of Southern Queensland, Toowoomba 4350, Australia;
xujuan.zhou@usq.edu.au

* Correspondence: houshmand@mshdiau.ac.ir

Abstract: The quantum-inspired genetic algorithm (QGA), which combines quantum mechanics
concepts and GA to enhance search capability, has been popular and provides an efficient search
mechanism. This paper proposes a modified QGA, called dynamic QGA (DQGA). The proposed
algorithm utilizes a lengthening chromosome strategy for a balanced and smooth transition between
exploration and exploitation phases to avoid local optima and premature convergence. Apart
from that, a novel adaptive look-up table for rotation gates is presented to boost the algorithm’s
optimization abilities. To evaluate the effectiveness of these ideas, DQGA is tested by various
mathematical benchmark functions as well as real-world constrained engineering problems against
several well-known and state-of-the-art algorithms. The obtained results indicate the merits of the
proposed algorithm and its superiority for solving multimodal benchmark functions and real-world
constrained engineering problems.

Keywords: quantum computing; quantum-inspired algorithms; metaheuristics; numerical optimization;
constrained optimization

MSC: 81P68; 68Q12; 65K10; 49M41

1. Introduction

Metaheuristic optimization algorithms have been proposed to tackle complex, high-
dimensional problems without comprehensive knowledge of the problem’s nature and
their search spaces’ derivative information, which is essential for finding critical points
of the search space in classical optimization methods. Metaheuristics have the ability to
treat optimization problems as black boxes. So, the input, output, and a proper fitness
function of an optimization problem suffice to solve the problem. As a result, metaheuristic
algorithms are problem-independent, meaning they can be applied to a wide variety of
problems with subtle modifications. Metaheuristic algorithms provide acceptable results
in a timely manner for many real-world optimization problems, but their computational
cost is excessively high using conventional algorithms. Some examples of the applications
are image and signal processing [1], engineering and structural design [2], routing prob-
lems [3], feature selection [4], stock market portfolio optimization [5], RNA prediction [6],
and resource management problems [7].

Han and Kim proposed the prominent genetic quantum algorithm (GQA) [8] and
the quantum-inspired evolutionary algorithm [9] for combinatorial optimization problems
using qubit representation and quantum rotation gates instead of the ‘crossover’ operator,

Axioms 2023, 12, 978. https://doi.org/10.3390/axioms12100978 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12100978
https://doi.org/10.3390/axioms12100978
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-2017-4369
https://orcid.org/0000-0002-0211-6248
https://orcid.org/0000-0002-1736-739X
https://doi.org/10.3390/axioms12100978
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12100978?type=check_update&version=2

Axioms 2023, 12, 978 2 of 21

in the genetic algorithm (GA). The probabilistic representation of qubits used in quantum-
inspired metaheuristic optimization algorithms instead of bits expands the diversity of
individuals in the algorithm’s population, so it helps the optimization algorithm avoid pre-
mature convergence and getting stuck in local optima. Recently, a relatively large number
of quantum-inspired metaheuristics have been proposed to solve a vast range of real-world
optimization problems. Some recent examples are as follows. In [10–12], quantum-inspired
metaheuristics are applied to image processing problems, and structural design applica-
tions are presented in [13–16]. In [17–22], quantum-inspired metaheuristics are utilized for
job-scheduling problems, and some examples of network applications of quantum-inspired
metaheuristics are found in [23–26]. In [27], a quantum-inspired metaheuristic is used for
quantum circuit synthesis. Other applications are feature selection [28,29], fuzzy c-means
clustering [30], stock market portfolio optimization [31], flight control optimization [32,33],
antenna positioning problems [34], airport gate allocation [35], and multi-objective op-
timization [36]. A comprehensive review of quantum-inspired metaheuristics and their
variants is presented in [37,38]. Considering the diverse range of applications of quantum-
inspired metaheuristics, it is clear that this scope has gained much attention, and this
approach can solve real-world optimization problems effectively.

Metaheuristic optimization algorithms such as GA [39] have been widely used in
solving some important optimization problems in, e.g., the field of quantum information
and computation, such as in distributed quantum computing [40–43], in the design and
the optimization of quantum circuits [44–46], and in finding stabilizers of a given sub-
space [47], etc.

The main challenge in all metaheuristic algorithms is achieving a properly balanced
transition between the exploration and exploitation phases. This paper proposed DQGA to
establish a smooth transition between the exploration and exploitation phases. The princi-
pal objective of the proposed algorithms is to boost global search ability without deteriorat-
ing the local search.

DQGA enhances the search power of QGA with two contributions:

• Lengthening Chromosomes Size: DQGA increases the size of chromosomes through-
out the algorithm run. This strategy leads to increasing precision levels for the duration
of generations. Low precision levels for early generations cause higher global focus
and less attention to detail, favoring diversification. As opposed to that, higher pre-
cision in the last generations promotes intensification. This manner guarantees a
smooth shift from the exploration phase to the exploitation phase. It should be noted
that the concept of utilizing variable chromosome size was introduced in [48] as an
attempt to find a suitable chromosome size for reducing computational time. Also,
in [49], the authors used different chromosome sizes to cover diverse coarse-grained
and fine-grained parts of a design in topological order. However, in this paper, we
utilized incrementing chromosome size for different purposes, namely local optima
and premature convergence avoidance.

• Adaptive Rotation Steps: Unlike the look-up table of the original GQA, which consists
of fixed values for all generations and ignores the current state of the qubits, the pro-
posed DQGA uses an adaptive look-up table which helps the algorithm to search more
properly and improves the exploration–exploitation transition.

The rest of this paper is structured as follows. Section 2 presents the quantum com-
puting basics and an overview of GQA. The proposed DQGA algorithm is described in
Section 3. The results and the comparisons of the performance of the proposed algorithm
on benchmark functions and real-world engineering optimization problems are given in
Section 4, as well as the comparison of the results with well-known metaheuristic algo-
rithms. Finally, Section 5 concludes this work and points out future studies.

Axioms 2023, 12, 978 3 of 21

2. Fundamentals
2.1. Quantum Computing Basics

Like bits in classical processing are the basic units of information, quantum bits,
or qubits, are the units of information in quantum computing. The mathematical repre-
sentation of a qubit is a unit vector in a two-dimensional Hilbert space for which the basis
vectors are denoted by the symbols |0〉 and |1〉. Unlike classical bits, qubits can be in the
superposition of |0〉 and |1〉 like α|0〉+ β|1〉, where α and β are complex numbers such that
|α2|+ |β2| = 1.

If the qubit is measured in the computational, i.e., {|0〉, |1〉} basis, the classic outcome
of 0 is observed with the probability of |α|2 and the classic outcome of 1 is observed with the
probability of |β|2. If 0 is observed, the state of the qubit after the measurement collapses to
|0〉, otherwise, it collapses to |1〉 [50].

A register with m qubits is defined as:[
α1 α2 · · · αm
β1 β2 · · · βm

]
, ∀i ∈ {1, . . . , m}, |αi|2 + |βi|2 = 1. (1)

An m-qubit register is able to represent 2m states simultaneously. The probability of
collapsing into each of these 2m states after measurement is the multiplication of the corre-
sponding probability amplitudes squared [40]. For example, consider a system comprised
of three qubits as follows: [√

2
2

√
3

2

√
2

2√
2

2
1
2 −

√
2

2

]
. (2)

The state of the system can be described as:
√

3
4
|000〉+ −

√
3

4
|001〉+ 1

4
|010〉+ −1

4
|011〉+

√
3

4
|100〉+ −

√
3

4
|101〉+ 1

4
|110〉+ −1

4
|111〉, (3)

which means the probabilities for the system to represent the states |000〉, |001〉, |010〉, |011〉,
|100〉, |101〉, |110〉, and |111〉 are 3

16 , 3
16 , 1

16 , 1
16 , 3

16 , 3
16 , 1

16 , and 1
16 , respectively.

Manipulation of qubits is performed through quantum gates. A quantum gate is a
linear transformation and is reversible. A unitary matrix U is used to define a quantum
gate. A complex square matrix U is unitary if its conjugate transpose U† and its inverse
U−1 are the same. So for any unitary matrix U Equation (4) holds.

UU† = U†U = I. (4)

2.2. GQA

The canonical QGA called GQA is presented by Han and Kim [8]. GQA is similar to
its conventional counterpart GA in terms of being population-based and evolving a set
of generations. Still, it differs from GA because it uses quantum rotation gates instead of
the classical crossover operator. The probabilistic nature of qubit representation made the
mutation operator expendable, so there is no mutation operator in GQA.

Just like its ancestor, QGA uses a population of individuals to become evolved through
the generations, but unlike GA, the individuals consist of qubits instead of bits in GQA.
The population at generation t is defined as:

Q(t) = {qt
1 qt

2 . . . , qt
n}, (5)

where n is the population size and qt
j is a qubit chromosome and is defined by Equation (6),

qt
j =

[
αt

1 αt
2 · · · αt

m
βt

1 βt
2 · · · βt

m

]
, (6)

where m is the chromosome size and j = 1, 2, ..., n. Updating qubits through the quantum ro-

Axioms 2023, 12, 978 4 of 21

tation gate is visually illustrated in Figure 1 and is mathematically presented in Equation (7).
To give an equal chance for all qubits to be measured into |0〉 and |1〉, they are initialized
by 1√

2
. [

α′i
β′i

]
=

[
cos ∆θi − sin ∆θi
sin ∆θi cos ∆θi

][
αi
βi,

]
(7)

where ∆θi is the rotation angle and α′i and β′i are the probability amplitudes of the qubit after
being updated. In each generation, the quantum rotation gates push the qubit population
to be more likely to collapse into the best individual state.

Figure 1. Updating a qubit state using quantum rotation gate.

It is worth mentioning that quantum gates are susceptible to noise that can affect
the measurements for real quantum computer implementation of quantum-inspired meta-
heuristic optimization algorithms. However, because of the stochastic nature of metaheuris-
tics, it is not necessarily a drawback. In fact, the noise in quantum gates can play the role of
the mutation operator in conventional GA, as it randomly changes the state of qubits with
a small probability, leading to further diversity in the population.

3. DQGA

In this section, DQGA is presented. The algorithm uses a lengthening chromosome
size strategy and an adaptive look-up table to determine quantum rotation gates. As the
algorithm works on different levels (i.e., different chromosome sizes), the whole number
of generations should be appropriately distributed among the levels. So, we introduced
a generation distribution scheme to maximize the algorithm’s performance in the given
number of generations. The pseudo-code of DQGA is given in Algorithm 1, and Figure 2
presents the flowchart of the algorithm. We will explain these concepts in detail in the
following subsections.

3.1. Lengthening Chromosome Size Strategy

The lengthening chromosome size strategy enables the chromosomes of the algorithm
to grow longer as the generations pass. This algorithm behavior guarantees a balanced
transition between the exploration and exploitation phases. The algorithm starts with
short-length chromosomes, which yield answers with low precision. At each level of the
precision, the previous level best individual becomes the current level best individual and
leads the population to previously found promising areas of the search space.

An example of this procedure is depicted in Figure 3. It shows an instance of a four-
level run of the algorithm. The chromosome size on levels 1 to 4 are 4, 8, 12, and 16,

Axioms 2023, 12, 978 5 of 21

respectively. At the end of the first level with chromosomes of size four, the best individual
is ‘0110’, which is six by conversion to base 10, and 0.4 by normalization. The first level
passes its best individual ‘0110’ to the second level, which is of length 8. So, the first 4 bits of
the best individual of the second level are initialized by ‘0110’. Level 2 results in ‘01111001’
as the best individual after some number of iterations. Then it passes it to level 3. Finally,
level 4 inherits its first iteration’s best individual from level 3, which is ‘100100011101’ in
this example.

Please note that, although the most significant bits of each level‘s best individual are
initialized by the preceding level‘s best individual, these bits will not necessarily remain the
same throughout the evolution of that level. A rough analogy is that when someone tries
to find a destination on a map, he first takes an overview of the map and then gradually
increases his focus on the areas that seem to be the target for details. Figure 4 shows the
exponential growth of solution precision by increasing the chromosome size.

Algorithm 1 The pseudo-code of DQGA

1: initialize DQGA parameters (min_length, max_length, interval)
2: current_level ← 1
3: Calculate max_level using Equation (8)
4: chromosome_size← min_length
5: t← 0
6: Initialize quantum population Q(t)
7: Make binary population P(t) by applying measurement on Q(t)
8: Evaluate fitness and find the best individual
9: Calculate level_iterations_number using Equation (16)

10: while (current_level ≤ max_level) do
11: while (t < level_iterations_number) do
12: t← t + 1
13: Calculate Q(t) using rotation gates on Q(t− 1) from Table 1
14: Make binary population P(t) by applying measurement on Q(t)
15: Evaluate fitness and find the best individual
16: end while
17: t← 0
18: current_level ← current_level + 1
19: best_individual(current_level)← best_individual(current_level − 1)
20: chromosome_size← chromosome_size + interval
21: Initialize quantum population Q(t)
22: end while
23: return best_individual(max_level), best_ f itness_value

Table 1. Look-up table for DQGA.

xi bi f (x) ≥ f (b) ∆θi

0 0 false Equation (15)
0 0 true Equation (15)
0 1 false Equation (10)
0 1 true Equation (12)
1 0 false Equation (11)
1 0 true Equation (13)
1 1 false Equation (14)
1 1 true Equation (14)

Axioms 2023, 12, 978 6 of 21

Figure 2. Flowchart of DQGA.

Figure 3. An example of lengthening chromosomes.

Axioms 2023, 12, 978 7 of 21

Figure 4. Exponential growth of precision by increasing the chromosome size. Possible points to
represent different chromosome sizes for each dimension are shown.

The main advantage of the lengthening chromosome strategy is local optima avoidance.
At the early levels of the algorithm, we do not have many points on the search space, as the
small number of bits cannot represent many numbers. Because of this, the chance of the
local optima being found in the first levels is minuscule. This fact is also true for the global
optimum, but we do not need to find the global optimum solution at the early stages.
The algorithm can take its time searching all over the search space even with low precision
and gradually elevate the focus at the endmost levels to exploit for the global best solution.
We can be more confident that the algorithm would not become trapped in the local optima
in this way.

The algorithm starts with a level of precision with chromosomes of length min_length
for each dimension and increases the length of the chromosomes by interval genomes until
the chromosomes length reaches max_length. So, the number of levels can be calculated by
Equation (8).

max_level =
⌊

max_length−min_length
interval

⌋
+ 1. (8)

3.2. Look-Up Table with Adaptive Rotation Steps

In DQGA, we introduced an adaptive look-up table to boost searchability. For the sake
of simplicity and to gain better control of the quantum search space, all states are limited
to reside between 0 to 90 degrees. Qubits with states closer to 90 degrees are more likely
to collapse to |1〉 after measurement, while the probability for those closer to 0 degrees
to be measured into |0〉 is more. We try to push the qubits to states that seem to yield
better solutions during the algorithm. At early iterations of each level of the algorithm,
the rotation steps toward the more fitted state are relatively small, giving the chance for
the qubit to be measured even to the opposite state. The algorithm diversifies the search
in this manner (exploration phase). As the number of iterations grows, the rotation steps
become larger to make the qubit to be more and more likely to be measured into the best
solution’s state (exploitation phase). The rotation steps are adjusted by coefficient m, which
increases gradually throughout the iterations of each level, leading the rotation steps to
become more prominent. Coefficient m is calculated using Equation (9).

m =
1

a− b(iteration/level_iterations_number)
, a ≥ b + 1, (9)

where a and b are tuning parameters and in this paper we set them to 1.1 and 0.1, respectively.
To determine the rotation step ∆θ for each qubit, we consider three cases:

Axioms 2023, 12, 978 8 of 21

1. When the ith bit of the best fitted binary solution of the previous generation b and
current chromosome x are not equal, and b is more fitted than x, we rotate the
corresponding qubit state in a direction that makes it more likely to collapse into
the state of bi with a huge step. The rotation size of a huge step is formulated in
Equation (10) for bi = 1 and xi = 0 and in and Equation (11) for bi = 0 and xi = 1.

∆θi = (π/2− θi)×m (10)

∆θi = −θi ×m, (11)

where m is the adjustment coefficient calculated by Equation (8).
2. When the ith bit of the best fitted individual b and current chromosome x are different

and x has a higher fitness value in comparison to b, the corresponding qubit is pushed
to the state of xi but this time with a little caution or hesitation, as the previous
iteration’s best individual guides us conversely. This leads to a relatively smaller
rotation size, called medium step. Equations (12) and (13) show the mathematical
representation of the case with bi = 1 and xi = 0 and the case with bi = 0 and
xi = 1, respectively.

∆θi = (π/2− θi)×
m
20

(12)

∆θi = −θi ×
m
20

. (13)

3. The last case is when bi and xi are identical. In this case, we do not care about which
individual yields better fitness, as both of them share a similar state. So, we just
move the qubit state by a tiny step in order to slightly confirm the last iteration’s best
individual state regardless of the fitness comparison. These minor fluctuations help
to keep the diversity of the population. Equation (14) expresses the tiny step when bi
and xi are in state ‘1’, while Equation 15 shows otherwise.

∆θi = (π/2− θi)×
m

500
(14)

∆θi = −θi ×
m

500
. (15)

As ∆θi is proportional to qubit’s state θi, the rotation steps are calculated adaptively. It
means that the wider the angle between the current state and the desired ket, the larger the
rotation step will be. Table 1 presents the look-up table of DQGA and summarizes all the
possible cases and their corresponding rotation steps.

3.3. Distribution of Generations in Different Precision Levels

As DQGA utilizes different chromosome sizes during the algorithm, we must assign
a certain number of iterations to each level. Intuitively, it is clear that levels with small
chromosome sizes need fewer epochs to reach a suitable solution in comparison to those
consisting of a larger amount of genomes. Because when we use low levels of precision,
the number of potential solutions is far less than the case with high levels of precision.
As a result, we determined to distribute the whole iteration number to get consistently
larger for more extended chromosome sizes. Equation (15) gives the number of iterations
at each level.

level_iterations_number =
L

max_length(max_length + 1)/2
× n, (16)

where L is the number of each level and n is the whole number of iterations. The sum of
the epochs of all levels equals to the whole number of generations. So, we have:

Axioms 2023, 12, 978 9 of 21

max_level

∑
k=1

level_iterations_numberk = n. (17)

4. Experimental Results and Comparison Discussion

In this section, the comparison results of utilizing the proposed algorithm to solve
various optimization problems are presented to assess its efficiency and performance.
The DQGA approach is applied to 10 benchmark functions and three classical constrained
engineering problems. Furthermore, we applied the Wilcoxon rank-sum test in order to
show the significance of the difference between the proposed algorithm and comparison
algorithms’ results.

4.1. Testing DQGA on Benchmark Functions

To show the abilities of the metaheuristic algorithms, it is a common practice to test
the metaheuristic algorithms by several benchmark functions with different properties.
We chose 10 of the most famous benchmark functions from the optimization literature.
The description, domain, and the optima of the benchmark functions are taken from [51–53].
The benchmark functions are depicted in Table 2 and are visualized in Figure 5. The first
five functions are unimodal, meaning they have one global optimum and no local op-
tima. Unimodal functions are suitable for testing the exploitation ability of optimization
algorithms. Conversely, the last five benchmark functions are more challenging problems
and are called multimodal functions. Each of these consists of numerous local optima.
The number of dimensions for all the benchmark functions is set to 30.

We compared the results with five well-known and highly regarded metaheuristic
algorithms, namely GA [54], GQA [8], PSO [55] which is, QPSO [56], and MFO [57].
The Python library Mealpy [58] is utilized to implement GA, PSO, and MFO algorithms
for the comparison purpose. The number of iterations and the population size for all
algorithms is set to 500 and 30, respectively. Table 3 shows the values of parameters for all
algorithms in this experimental comparison.

As can be seen in Table 4, the results of DQGA for the benchmark functions are promis-
ing in comparison to other algorithms. For unimodal benchmark functions, the proposed
algorithm yields the best average results for all the benchmark functions except for the
Sphere function, which is the second best after MFO. The results for the multimodal test
functions, which are more similar to real-world problems and are more challenging, are
even better, and DQGA outperforms all the other algorithms in all multimodal bench-
mark functions.

In order to test the significance of the difference in the results, the Wilcoxon statistical
test is applied pairwise between DQGA and other comparative algorithms with the level of
significance α = 0.05. The p-values obtained from the test are given in Table 5. From the
results, it is apparent that none of the p-values is greater than 0.05, rejecting the null
hypothesis and confirming the significance of the results.

To test the time efficiency of the proposed algorithm, we provided convergence curves
that show and compare the algorithms’ iterations needed to reach specific fitness values. It
should be noted that comparing the number of iterations is a more fair criterion than the
total execution time, especially in our case, as the algorithms are of different implementation
approaches that might have a substantial impact on the total execution time. For instance,
multi-processing and multi-threading approaches can reduce the computational time to
nearly one-fourth on a four-core CPU. For this reason, we chose to compare the algorithms
based on the number of iterations criterion rather than the total execution time.

Figure 6 presents the convergence behavior of different algorithms in this experiment.
The convergence curve of the proposed algorithm shows a steady improvement in the
solution as the generations pass. The convergence speed is also very competitive with
other algorithms. The pace is faster than other algorithms in most cases except for the

Axioms 2023, 12, 978 10 of 21

Sphere function, Schwefel 2.21, Rosenbrock function, and Levy function which was roughly
equivalent to GA and QPSO algorithms.

Boxplots in Figure 7 show the range of solutions in different runs. The low range of
distribution of results for DQGA compared to the other algorithms verifies the reliability
and consistency of the algorithm. The ranges are relatively lower or at least compara-
ble to the best for DQGA except for the Levy function, in which the GA yielded more
consistent results.

Table 2. Description of benchmark functions.

Function Name Function Description Domain Fmin

Sphere Function F1(x) = ∑n
i=1 x2

i [−5.12, 5.12] 0
Schwefel 2.22 F2(x) = ∑n

i=1|xi|+ ∏n
i=1|xi| [−10, 10] 0

Schwefel 2.21 F3(x) = maxi{|xi|, 1 ≤ i ≤ n} [−1.28, 1.28] 0
Rosenbrock F4(x) = ∑n−1

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30, 30] 0

Step Function F5(x) = ∑n
i=1(bxi + 0.5c)2 [−100, 100] 0

Ackley
F6(x) = −20 exp

(
−0.2

√
1
n ∑n

i=1 x2
i

)
−

exp
(

1
n ∑n

i=1 cos 2πxi

)
+ 20 + e

[−32, 32] 0

Rastrigin F7(x) = 10n + ∑n
i=1
[
x2

i − 10 cos(2πxi)
]

[−5.12, 5.12] 0
Schwefel F8(x) = 418.9829n−∑n

i=1 xi sin
√
|xi| [−500, 500] 0

Styblisky–Tang F9(x) = 1
2 ∑n

i=1(x4
i − 16x2

i + 5xi) [−5, 5] −39.16599n

Levy

F10(x) = sin2(πω1) + ∑n−1
i=1 (ωi − 1)2×[

1 + 10 sin2(πωi + 1)
]
+

(ωn − 1)2[1 + sin2(2πωn)
]
,

where ωi = 1 + xi−1
4 , f or i = 1, . . . , n

[−10, 10] 0

Table 3. Parameter values for optimization algorithms.

Algorithm Parameter Value

GA [54] Implementation type Real-coded
Selection method Roulette wheel

Crossover probability 80%
Mutation method Flip

Mutation probability 0.05%
GQA [8] No Parameter setting
PSO [55] c1 2

c2 2
weight_min 0.1
weight_max 0.9

QPSO [56] a1 1
a2 0.5

MFO [57] a [−2,−1]
b 1

DQGA min_length 16
max_length 32

interval 4
a 1.1
b 0.1

Axioms 2023, 12, 978 11 of 21

Figure 5. Two-dimensional representation of the benchmark functions’ search spaces.

Axioms 2023, 12, 978 12 of 21

1

Figure 6. Comparison of convergence curves of DQGA and other algorithms.

Axioms 2023, 12, 978 13 of 21

Figure 7. Box plots of the algorithms used in the comparison.

Axioms 2023, 12, 978 14 of 21

Table 4. Comparison results for the benchmark functions.

F GA [54] GQA [8] PSO [55] QPSO [56] MFO [57] DQGA

F1
Mean
STD

2.90× 100

4.06× 10−1
2.32× 101

9.40× 100
5.58× 101

2.76× 101
2.39× 10−2

3.38× 10−2
1.28 × 10−5

2.53× 10−5
3.05× 10−4

2.02× 10−4

F2
Mean
STD

1.17× 101

1.03× 100
3.34× 101

1.01× 101
2.48× 105

7.75× 105
3.95× 100

5.46× 100
4.35× 100

9.71× 100
7.41 × 10−2

2.44× 10−2

F3
Mean
STD

1.24× 101

1.30× 100
5.70× 101

6.53× 100
3.65× 101

5.26× 100
1.67× 101

5.07× 100
4.94× 101

1.41× 101
7.86 × 100

2.43× 100

F4
Mean
STD

1.93× 105

6.31× 104
8.17× 106

5.17× 106
4.04× 107

4.50× 107
7.93× 102

8.27× 102
9.76× 103

2.72× 104
5.56 × 102

7.50× 102

F5
Mean
STD

1.17× 103

1.72× 102
8.70× 103

4.40× 103
2.31× 104

1.07× 104
5.59× 101

7.11× 101
7.63× 100

5.01× 100
2.37 × 100

1.71× 100

F6
Mean
STD

7.32× 100

4.11× 10−1
1.49× 101

1.43× 100
1.99× 101

1.49× 10−1
3.92× 100

1.55× 100
1.76× 101

5.06× 100
1.63 × 100

7.56× 10−1

F7
Mean
STD

1.12× 102

9.79× 100
1.64× 102

2.89× 101
2.82× 102

6.10× 101
7.55× 101

2.49× 101
1.31E+02
2.82× 101

4.94 × 101

9.28× 100

F8
Mean
STD

5.67× 103

3.58× 102
4.63× 103

5.80× 102
7.29× 103

1.15× 103
3.28× 103

4.28× 102
4.29× 103

4.63× 102
1.91 × 103

4.03× 102

F9
Mean
STD

−9.79× 102

2.30× 101
−9.66× 102

4.96× 101
−7.77× 102

5.26× 101
−1.04× 103

3.77× 101
−1.03× 103

4.01× 101
−1.14 × 103

5.66× 100

F10
Mean
STD

3.54× 100

6.90× 10−1
2.88× 101

1.04× 101
8.60× 101

3.30× 101
5.45× 100

3.18× 100
8.45× 100

4.75× 100
3.27 × 100

1.85× 100

Table 5. p-values of the Wilcoxon ranksum test between DQGA and comparison algorithms.

Function GA [54] GQA [8] PSO [55] QPSO [56] MFO [57]

F1 1.73× 10−6 1.73× 10−6 1.73× 10−6 1.73× 10−6 1.73× 10−6

F2 1.73× 10−6 1.73× 10−6 1.73× 10−6 1.73× 10−6 3.82× 10−1

F3 1.73× 10−6 1.73× 10−6 1.73× 10−6 1.73× 10−6 1.73× 10−6

F4 1.73× 10−6 1.73× 10−6 1.73× 10−6 6.14× 10−1 3.29× 10−1

F5 1.73× 10−6 1.73× 10−6 1.73× 10−6 1.73× 10−6 3.42× 10−6

F6 1.73× 10−6 1.73× 10−6 1.73× 10−6 2.60× 10−6 1.73× 10−6

F7 1.73× 10−6 1.73× 10−6 1.73× 10−6 1.15× 10−4 1.73× 10−6

F8 1.73× 10−6 1.73× 10−6 1.73× 10−6 1.92× 10−6 1.73× 10−6

F9 1.73× 10−6 1.73× 10−6 1.73× 10−6 1.73× 10−6 1.73× 10−6

F10 7.73× 10−3 1.73× 10−6 1.73× 10−6 6.16× 10−4 2.16× 10−5

4.2. Constrained Engineering Design Optimization Using DQGA

As the ultimate purpose of metaheuristics is to tackle complex real-world problems
and not merely solve mathematical benchmark functions, we also applied DQGA to three
classical constrained engineering problems. The engineering problems are the pressure
vessel design problem, the speed reducer design problem, and the cantilever beam design
problem. The constraint handling technique used in this paper is the death penalty, meaning
that the constraint violation leads to a substantial negative fitness and inability to compete
with other solutions. The results obtained by DQGA were utterly satisfying and are
presented in the following subsections in detail.

4.2.1. Pressure Vessel Design

The pressure vessel design problem was first introduced by [59]. The problem objective
is to minimize the material, forming, and welding costs of producing a cylindrical vessel
with two hemispherical caps at both ends (see Figure 8). The problem consists of four design
variables: thickness of shell TS, thickness of head Th, inner radius R, and the cylindrical
section’s length L. The problem is formulated as follows:

Axioms 2023, 12, 978 15 of 21

Consider x = [x1 x2 x3 x4] = [Ts Th R L],

Minimize f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3,

Subject to g1(x) = 0.0193x3 − x1 ≤ 0,

g2(x) = 0.00954x3 − x2 ≤ 0,

g3(x) = 1296000− πx2
3x4 −

4
3

πx3
3 ≤ 0,

Domain 0 ≤ x1, x2 ≤ 99,

10 ≤ x3, x4 ≤ 200.

Figure 8. Pressure vessel design problem.

The results of applying DQGA to the pressure vessel design problem are given in
Table 6 and are compared with the reported results of Branch-bound [60], GA [54], GWO [61],
WOA [62], HHO [63], WSA [64], and AOA [65] algorithms. The results confirm that DQGA
outperformed the other algorithms in solving this problem.

Table 6. Results of different algorithms for the pressure vessel design problem.

Algorithm Ts Th R L Minimum Weight

Branch-bound [60] 1.125 0.625 48.97 106.72 7982.5
GA [66] 0.81250 0.43750 42.097398 176.65405 6059.94634
GWO [61] 0.812500 0.434500 42.089181 176.758731 6051.5639
WOA [62] 0.812500 0.437500 42.0982699 176.638998 6059.7410
HHO [63] 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259
WSA [64] 0.78654289 0.39348835 40.75268075 194.78059812 5929.62188231
AOA [65] 0.8303737 0.4162057 42.75127 169.3454 6048.7844
DQGA 0.79760749 0.39427185 41.31109227 186.64366007 5921.48841641

4.2.2. Speed Reducer Design

The speed reducer design problem aims to minimize the total weight of a speed
reducer by concerning the bending stress on the gear teeth, stress on the surface, transverse
deflections, and stresses in shafts constraints [67]. The problem has six continuous variables
and one discrete variable x3, which corresponds to the number of teeth on the pinion.
The structure of a speed reducer is given in Figure 9, and the problem description is defined
in the following:

Axioms 2023, 12, 978 16 of 21

Consider x = [x1 x2 x3 x4 x5 x6 x7],

Minimize f (x) = 0.7854x1x2
2(3.3333x2

3 + 14.9334x3 − 43.0934)− 1.508x1(x2
6 + x2

7)

+ 7.4777(x3
6 + x3

7) + 0.7854(x4x2
6 + x5x2

7),

Subject to g1(x) =
27

x1x2
2x3
− 1 ≤ 0,

g2(x) =
397.5

x1x2
2x2

3
− 1 ≤ 0,

g3(x) =
1.93x3

4
x2x3x4

6
− 1 ≤ 0,

g4(x) =
1.93x3

5

x2x3x4
7
− 1 ≤ 0,

g5(x) =

√
(745x4/x2x3)2 + 16.9× 106

110x3
6

− 1 ≤ 0,

g6(x) =

√
(745x4/x2x3)2 + 157.5× 106

85x3
7

− 1 ≤ 0,

g7(x) =
x2x3

40
− 1 ≤ 0,

g8(x) =
5x2

x1
− 1 ≤ 0,

g9(x) =
x1

12x2
− 1 ≤ 0,

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0,

Domain 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.3

Figure 9. Speed reducer design problem.

Table 7 presents the comparison results for solving the speed reducer design problem
by the proposed algorithm and CS [68], FA [69], WSA [64], hHHO-SCA [70], AAO [71],
AO [72], and AOA [65] algorithms. It can be seen that DQGA obtained the best result
among the comparison algorithms.

Axioms 2023, 12, 978 17 of 21

Table 7. Results for speed reducer design problem using different algorithms.

Algorithm x2 x3 x4 x5 x6 x7 x8 Minimum Weight

CS [68] 3.5015 0.7000 17 7.6050 7.8181 3.3520 5.2875 3000.9810
FA [69] 3.507495 0.7001 17 7.7196 8.0808 3.351512 5.287051 3010.137492
WSA [64] 3.500000 0.7 17 7.3 7.8 3.350215 5.286683 2996.348222
hHHO-SCA [70] 3.506119 0.7 17 7.3 7.9914 3.452569 5.286749 3029.873076
AAO [71] 3.4999 0.6999 17 7.3 7.8 3.3502 5.2872 2996.783
AO [72] 3.5021 0.7000 17 7.3099 7.7476 3.3641 5.2994 3007.7328
AOA [65] 3.50384 0.7 17 7.3 7.7293 3.35649 5.2867 2997.9157
DQGA 3.500024 0.7 17 7.3 7.8 3.350226 5.286621 2996.321084

4.2.3. Cantilever Beam Design

The purpose of the problem is to find the minimum weight for a cantilever beam
containing five hollow square based elements with constant thickness (Figure 10). The beam
is fixed at the larger end with a vertical force acting at the other end.

Consider x = [x1 x2 x3 x4 x5],

Minimize f (x) = 0.6224(x1 + x2 + x3 + x4 + x5),

Subject to g(x) =
61
x3

1
+

27
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
− 1 ≤ 0,

Domain 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100.

Figure 10. Cantilever beam design problem.

DQGA is applied to this problem and the results are compared with several algorithms
including CS [68], SOS [73], MFO [57], GCA_I [74], GCA_II [74], SMA [75], and AO [72].
The results are given in Table 8. From the results, it can be seen that DQGA presents the
optimal solution for this problem in comparison to the other algorithms.

Axioms 2023, 12, 978 18 of 21

Table 8. Comparison of the optimum results of different algorithms for the cantilever beam de-
sign problem.

Algorithm x1 x2 x3 x4 x5 Minimum Weight

CS [68] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
SOS [73] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996
MFO [57] 5.984872 5.316727 4.497333 3.513616 2.161620 1.339988
GCA_I [74] 6.01 5.304 4.49 3.498 2.15 1.34
GCA_II [74] 6.01 5.304 4.49 3.498 2.15 1.34
SMA [75] 6.017757 5.310892 4.493758 3.501106 2.150159 1.33996
AO [72] 5.8881 5.5451 4.3798 3.5973 2.1026 1.3390
DQGA 5.967485 4.821212 4.502603 3.488657 2.161575 1.306752

5. Conclusions and Potential Future Work

In this paper, we proposed a modified QGA called DQGA, which focuses not only
on exploration and exploitation abilities but on smoothing the transition between the
mentioned phases. These improvements are achieved by an adaptive look-up table and a
lengthening chromosomes strategy, which clarifies the search space gradually and post-
pones the convergence to high precision solutions to the ending generations, avoiding the
algorithm from premature convergence and being trapped in the local optima. Experi-
mental tests were conducted to ensure that the proposed concepts are effective in practice.
DQGA outperformed the comparative algorithms in most cases, especially for multimodal
benchmark functions and the more challenging engineering design problems.

These promising results give hope that the presented algorithm has the potential
to tackle other real-world optimization problems. Future studies may include applying
DQGA to various applications, such as network applications, fuzzy controller design,
image thresholding, flight control, and structural design. In addition, the binary-coded
nature of the proposed algorithm makes it suitable for discrete optimization problems like
the travelling salesman problem, the 01 knapsack problem, the job-scheduling problem,
airport gate allocation, and feature selection. Moreover, a systematic and adaptive tuning
of parameters of DQGA, such as the minimum and the maximum length of chromosomes
and incremental intervals, can be considered for further studies.

Author Contributions: S.H. under the supervision of M.H. and S.A.H. developed and implemented
the main idea and wrote the initial draft of the manuscript. S.H., M.H., S.A.H. and X.Z. verified the
idea and the results and revised the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hemanth, J.; Balas, V. Nature Inspired Optimization Techniques for Image Processing Applications; Springer: Berlin/Heidelberg,

Germany, 2019; Volume 150.
2. Gandomi, A.; Yang, X.; Talatahari, S.; Alavi, A. Metaheuristic Applications in Structures and Infrastructures; Elsevier: Amsterdam,

The Netherlands, 2013.
3. Elshaer, R.; Awad, H. A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants.

Comput. Ind. Eng. 2020, 140, 106242. [CrossRef]
4. Agrawal, P.; Abutarboush, H.; Ganesh, T.; Mohamed, A. Metaheuristic algorithms on feature selection: A survey of one decade of

research (2009–2019). IEEE Access 2021, 9, 26766–26791. [CrossRef]
5. Doering, J.; Kizys, R.; Juan, A.; Fito, A.; Polat, O. Metaheuristics for rich portfolio optimisation and risk management: Current

state and future trends. Oper. Res. Perspect. 2019, 6, 100121. [CrossRef]
6. Calvet, L.; Benito, S.; Juan, A.; Prados, F. On the role of metaheuristic optimization in bioinformatics. Int. Trans. Oper. Res. 2023,

30, 2909–2944. [CrossRef]

http://doi.org/10.1016/j.cie.2019.106242
http://dx.doi.org/10.1109/ACCESS.2021.3056407
http://dx.doi.org/10.1016/j.orp.2019.100121
http://dx.doi.org/10.1111/itor.13164

Axioms 2023, 12, 978 19 of 21

7. Bhavya, R.; Elango, L. Ant-Inspired Metaheuristic Algorithms for Combinatorial Optimization Problems in Water Resources
Management. Water 2023, 15, 1712. [CrossRef]

8. Han, K.H.; Kim, J.H. Genetic quantum algorithm and its application to combinatorial optimization problem. In Proceedings of
the 2000 Congress on Evolutionary Computation, CEC00 (Cat. No. 00TH8512), La Jolla, CA, USA, 16–19 July 2000; Volume 2,
pp. 1354–1360.

9. Han, K.H.; Kim, J.H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol.
Comput. 2002, 6, 580–593. [CrossRef]

10. Si-Jung, R.; Jun-Seuk, G.; Seung-Hwan, B.; Songcheol, H.; Jong-Hwan, K. Feature-based hand gesture recognition using an
FMCW radar and its temporal feature analysis. IEEE Sens. J. 2018, 18, 7593–7602.

11. Dey, A.; Dey, S.; Bhattacharyya, S.; Platos, J.; Snasel, V. Novel quantum inspired approaches for automatic clustering of gray level
images using particle swarm optimization, spider monkey optimization and ageist spider monkey optimization algorithms. Appl.
Soft Comput. 2020, 88, 106040. [CrossRef]

12. Choudhury, A.; Samanta, S.; Pratihar, S.; Bandyopadhyay, O. Multilevel segmentation of Hippocampus images using global
steered quantum inspired firefly algorithm. Appl. Intell. 2021, 52, 7339–7372. [CrossRef]

13. Kaveh, A.; Dadras, A.; Geran malek, N. Robust design optimization of laminated plates under uncertain bounded buckling loads.
Struct. Multidiscip. Optim. 2019, 59, 877–891. [CrossRef]

14. Arzani, H.; Kaveh, A.; Kamalinejad, M. Optimal design of pitched roof rigid frames with non-prismatic members using quantum
evolutionary algorithm. Period. Polytech. Civ. Eng. 2019, 63, 593–607. [CrossRef]

15. Zhang, S.; Zhou, G.; Zhou, Y.; Luo, Q. Quantum-inspired satin bowerbird algorithm with Bloch spherical search for constrained
structural optimization. J. Ind. Manag. Optim. 2021, 17, 3509. [CrossRef]

16. Talatahari, S.; Azizi, M.; Toloo, M.; Baghalzadeh Shishehgarkhaneh, M. Optimization of Large-Scale Frame Structures Using
Fuzzy Adaptive Quantum Inspired Charged System Search. Int. J. Steel Struct. 2022, 22, 686–707. [CrossRef]

17. Konar, D.; Bhattacharyya, S.; Sharma, K.; Sharma, S.; Pradhan, S.R. An improved hybrid quantum-inspired genetic algorithm
(HQIGA) for scheduling of real-time task in multiprocessor system. Appl. Soft Comput. 2017, 53, 296–307. [CrossRef]

18. Alam, T.; Raza, Z. Quantum genetic algorithm based scheduler for batch of precedence constrained jobs on heterogeneous
computing systems. J. Syst. Softw. 2018, 135, 126–142. [CrossRef]

19. Saad, H.M.; Chakrabortty, R.K.; Elsayed, S.; Ryan, M.J. Quantum-inspired genetic algorithm for resource-constrained project-
scheduling. IEEE Access 2021, 9, 38488–38502. [CrossRef]

20. Wu, X.; Wu, S. An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem. J. Intell. Manuf.
2017, 28, 1441–1457. [CrossRef]

21. Singh, K.V.; Raza, Z. A quantum-inspired binary gravitational search algorithm–based job-scheduling model for mobile
computational grid. Concurr. Comput. Pract. Exp. 2017, 29, e4103. [CrossRef]

22. Liu, M.; Yi, S.; Wen, P. Quantum-inspired hybrid algorithm for integrated process planning and scheduling. Proc. Inst. Mech. Eng.
Part B J. Eng. Manuf. 2018, 232, 1105–1122. [CrossRef]

23. Gupta, S.; Mittal, S.; Gupta, T.; Singhal, I.; Khatri, B.; Gupta, A.K.; Kumar, N. Parallel quantum-inspired evolutionary algorithms
for community detection in social networks. Appl. Soft Comput. 2017, 61, 331–353. [CrossRef]

24. Qu, Z.; Li, T.; Tan, X.; Li, P.; Liu, X. A modified quantum-inspired evolutionary algorithm for minimising network coding
operations. Int. J. Wirel. Mob. Comput. 2020, 19, 401–410. [CrossRef]

25. Li, F.; Liu, M.; Xu, G. A quantum ant colony multi-objective routing algorithm in WSN and its application in a manufacturing
environment. Sensors 2019, 19, 3334. [CrossRef]

26. Mirhosseini, M.; Fazlali, M.; Malazi, H.T.; Izadi, S.K.; Nezamabadi-pour, H. Parallel Quadri-valent Quantum-Inspired Grav-
itational Search Algorithm on a heterogeneous platform for wireless sensor networks. Comput. Electr. Eng. 2021, 92, 107085.
[CrossRef]

27. Chou, Y.H.; Kuo, S.Y.; Jiang, Y.C.; Wu, C.H.; Shen, J.Y.; Hua, C.Y.; Huang, P.S.; Lai, Y.T.; Tong, Y.F.; Chang, M.H. A novel
quantum-inspired evolutionary computation-based quantum circuit synthesis for various universal gate libraries. In Proceedings
of the Genetic and Evolutionary Computation Conference Companion 2022, Boston, MA, USA, 9–13 July 2022; pp. 2182–2189.

28. Ramos, A.C.; Vellasco, M. Chaotic quantum-inspired evolutionary algorithm: Enhancing feature selection in BCI. In Proceedings
of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8.

29. Barani, F.; Mirhosseini, M.; Nezamabadi-Pour, H. Application of binary quantum-inspired gravitational search algorithm in
feature subset selection. Appl. Intell. 2017, 47, 304–318. [CrossRef]

30. Di Martino, F.; Sessa, S. A novel quantum inspired genetic algorithm to initialize cluster centers in fuzzy C-means. Expert Syst.
Appl. 2022, 191, 116340. [CrossRef]

31. Chou, Y.H.; Lai, Y.T.; Jiang, Y.C.; Kuo, S.Y. Using Trend Ratio and GNQTS to Assess Portfolio Performance in the US Stock Market.
IEEE Access 2021, 9, 88348–88363. [CrossRef]

32. Qi, B.; Nener, B.; Xinmin, W. A quantum inspired genetic algorithm for multimodal optimization of wind disturbance alleviation
flight control system. Chin. J. Aeronaut. 2019, 32, 2480–2488.

33. Yi, J.H.; Lu, M.; Zhao, X.J. Quantum inspired monarch butterfly optimisation for UCAV path planning navigation problem. Int. J.
Bio-Inspired Comput. 2020, 15, 75–89. [CrossRef]

http://dx.doi.org/10.3390/w15091712
http://dx.doi.org/10.1109/TEVC.2002.804320
http://dx.doi.org/10.1016/j.asoc.2019.106040
http://dx.doi.org/10.1007/s10489-021-02688-6
http://dx.doi.org/10.1007/s00158-018-2106-0
http://dx.doi.org/10.3311/PPci.14091
http://dx.doi.org/10.3934/jimo.2020130
http://dx.doi.org/10.1007/s13296-022-00598-y
http://dx.doi.org/10.1016/j.asoc.2016.12.051
http://dx.doi.org/10.1016/j.jss.2017.10.001
http://dx.doi.org/10.1109/ACCESS.2021.3062790
http://dx.doi.org/10.1007/s10845-015-1060-6
http://dx.doi.org/10.1002/cpe.4103
http://dx.doi.org/10.1177/0954405416661006
http://dx.doi.org/10.1016/j.asoc.2017.07.035
http://dx.doi.org/10.1504/IJWMC.2020.112558
http://dx.doi.org/10.3390/s19153334
http://dx.doi.org/10.1016/j.compeleceng.2021.107085
http://dx.doi.org/10.1007/s10489-017-0894-3
http://dx.doi.org/10.1016/j.eswa.2021.116340
http://dx.doi.org/10.1109/ACCESS.2021.3089563
http://dx.doi.org/10.1504/IJBIC.2020.106428

Axioms 2023, 12, 978 20 of 21

34. Dahi, Z.A.E.M.; Mezioud, C.; Draa, A. A quantum-inspired genetic algorithm for solving the antenna positioning problem.
Swarm Evol. Comput. 2016, 31, 24–63. [CrossRef]

35. Cai, X.; Zhao, H.; Shang, S.; Zhou, Y.; Deng, W.; Chen, H.; Deng, W. An improved quantum-inspired cooperative co-evolution
algorithm with muli-strategy and its application. Expert Syst. Appl. 2021, 171, 114629. [CrossRef]

36. Sadeghi Hesar, A.; Kamel, S.R.; Houshmand, M. A quantum multi-objective optimization algorithm based on harmony search
method. Soft Comput. 2021, 25, 9427–9439. [CrossRef]

37. Ross, O.H.M. A review of quantum-inspired metaheuristics: Going from classical computers to real quantum computers. IEEE
Access 2019, 8, 814–838. [CrossRef]

38. Hakemi, S.; Houshmand, M.; KheirKhah, E.; Hosseini, S.A. A review of recent advances in quantum-inspired metaheuristics.
Evol. Intell. 2022, 1 –16.

39. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
40. Houshmand, M.; Mohammadi, Z.; Zomorodi-Moghadam, M.; Houshmand, M. An evolutionary approach to optimizing

teleportation cost in distributed quantum computation. Int. J. Theor. Phys. 2020, 59, 1315–1329. [CrossRef]
41. Daei, O.; Navi, K.; Zomorodi-Moghadam, M. Optimized quantum circuit partitioning. Int. J. Theor. Phys. 2020, 59, 3804–3820.

[CrossRef]
42. Ghodsollahee, I.; Davarzani, Z.; Zomorodi, M.; Pławiak, P.; Houshmand, M.; Houshmand, M. Connectivity matrix model of

quantum circuits and its application to distributed quantum circuit optimization. Quantum Inf. Process. 2021, 20, 1–21. [CrossRef]
43. Dadkhah, D.; Zomorodi, M.; Hosseini, S.E. A new approach for optimization of distributed quantum circuits. Int. J. Theor. Phys.

2021, 60, 3271–3285. [CrossRef]
44. Lukac, M.; Perkowski, M. Evolving quantum circuits using genetic algorithm. In Proceedings of the 2002 NASA/DoD Conference

on Evolvable Hardware, Alexandria, VA, USA, 15–18 July 2002; pp. 177–185.
45. Mukherjee, D.; Chakrabarti, A.; Bhattacherjee, D. Synthesis of quantum circuits using genetic algorithm. Int. J. Recent Trends Eng.

2009, 2, 212.
46. Sünkel, L.; Martyniuk, D.; Mattern, D.; Jung, J.; Paschke, A. GA4QCO: Genetic algorithm for quantum circuit optimization. arXiv

2023, arXiv:2302.01303.
47. Houshmand, M.; Saheb Zamani, M.; Sedighi, M.; Houshmand, M. GA-based approach to find the stabilizers of a given sub-space.

Genet. Program. Evolvable Mach. 2015, 16, 57–71. [CrossRef]
48. Kim, I.Y.; De Weck, O. Variable chromosome length genetic algorithm for progressive refinement in topology optimization. Struct.

Multidiscip. Optim. 2005, 29, 445–456. [CrossRef]
49. Pawar, S.N.; Bichkar, R.S. Genetic algorithm with variable length chromosomes for network intrusion detection. Int. J. Autom.

Comput. 2015, 12, 337–342. [CrossRef]
50. Sadeghi Hesar, A.; Houshmand, M. A memetic quantum-inspired genetic algorithm based on tabu search. Evol. Intell. 2023, 1–17.
51. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102.
52. Molga, M.; Smutnicki, C. Test functions for optimization needs. Test Funct. Optim. Needs 2005, 101, 48.
53. Jamil, M.; Yang, X.S. A literature survey of benchmark functions for global optimization problems. arXiv 2013, arXiv:1308.4008.
54. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence; MIT Press: Cambridge, UK, 1992.
55. Sun, J.; Feng, B.; Xu, W. Particle swarm optimization with particles having quantum behavior. In Proceedings of the 2004

Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 325–331.
56. Yang, S.; Wang, M.; Jiao, L. A quantum particle swarm optimization. In Proceedings of the 2004 Congress on Evolutionary

Computation (IEEE Cat. No. 04TH8753), Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 320–324.
57. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.
58. Van Thieu, N.; Mirjalili, S. MEALPY: An open-source library for latest meta-heuristic algorithms in Python. J. Syst. Archit. 2023,

139, 102871.
59. Kannan, B.; Kramer, S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization

and its applications to mechanical design. J. Mech. Des. 1994, 116, 405–411. [CrossRef]
60. Sandgren, E. Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. J. Mech. Des. 1990, 112, 223–229.

[CrossRef]
61. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61.
62. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67.
63. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872.
64. Baykasoğlu, A.; Akpinar, Ş. Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization

problems—Part 2: Constrained optimization. Appl. Soft Comput. 2015, 37, 396–415.
65. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods

Appl. Mech. Eng. 2021, 376, 113609.
66. Coello, C.A.C. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000, 41, 113–127.
67. Siddall, J.N. Analytical Decision-Making in Engineering Design; Prentice Hall: Hoboken, NJ, USA, 1972.

http://dx.doi.org/10.1016/j.swevo.2016.06.003
http://dx.doi.org/10.1016/j.eswa.2021.114629
http://dx.doi.org/10.1007/s00500-021-05799-x
http://dx.doi.org/10.1109/ACCESS.2019.2962155
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1007/s10773-020-04409-0
http://dx.doi.org/10.1007/s10773-020-04633-8
http://dx.doi.org/10.1007/s11128-021-03170-5
http://dx.doi.org/10.1007/s10773-021-04904-y
http://dx.doi.org/10.1007/s10710-014-9219-z
http://dx.doi.org/10.1007/s00158-004-0498-5
http://dx.doi.org/10.1007/s11633-014-0870-x
http://dx.doi.org/10.1115/1.2919393
http://dx.doi.org/10.1115/1.2912596

Axioms 2023, 12, 978 21 of 21

68. Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization
problems. Eng. Comput. 2013, 29, 17–35.

69. Baykasoğlu, A.; Ozsoydan, F.B. Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl. Soft
Comput. 2015, 36, 152–164.

70. Kamboj, V.K.; Nandi, A.; Bhadoria, A.; Sehgal, S. An intensify Harris Hawks optimizer for numerical and engineering optimization
problems. Appl. Soft Comput. 2020, 89, 106018.

71. Czerniak, J.M.; Zarzycki, H.; Ewald, D. AAO as a new strategy in modeling and simulation of constructional problems
optimization. Simul. Model. Pract. Theory 2017, 76, 22–33.

72. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic
optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250.

73. Cheng, M.Y.; Prayogo, D. Symbiotic organisms search: A new metaheuristic optimization algorithm. Comput. Struct. 2014,
139, 98–112.

74. Chickermane, H.; Gea, H.C. Structural optimization using a new local approximation method. Int. J. Numer. Methods Eng. 1996,
39, 829–846.

75. Zhao, J.; Gao, Z.M.; Sun, W. The improved slime mould algorithm with Levy flight. J. Phys. Conf. Ser. 2020 , 1617, 012033.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1742-6596/1617/1/012033

	Introduction
	Fundamentals
	Quantum Computing Basics
	GQA

	DQGA
	Lengthening Chromosome Size Strategy
	Look-Up Table with Adaptive Rotation Steps
	Distribution of Generations in Different Precision Levels

	Experimental Results and Comparison Discussion
	Testing DQGA on Benchmark Functions
	Constrained Engineering Design Optimization Using DQGA
	Pressure Vessel Design
	Speed Reducer Design
	Cantilever Beam Design

	Conclusions and Potential Future Work
	References

