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Abstract: In this study, the propagation of internal solitary waves in oceans at great depths was
analyzed. Using multi-scale analysis and perturbation expansion, the basic equation is simplified to
the classical Benjamin–Ono equation with variable coefficients. To better describe the propagation
characteristics of solitary waves, we derived a higher-order variable-coefficient integral differential
(Benjamin–Ono) equation. Subsequently, the bilinear form of the model was derived using Hirota’s
bilinear method, and a multi-soliton solution was obtained. Based on the multi-soliton solution of the
model, we further studied the interaction of the soliton, which led to the discovery of Mach reflection.
Some conclusions were drawn, which are of potential value for further study of solitary waves in
the ocean.

Keywords: internal solitary waves; Benjamin–Ono equation; Hirota’s bilinear method; Mach
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1. Introduction

An internal wave is an important type of seawater movement that is not only an
important part of transferring large-scale and medium-scale motion energy, but also an
important reason for seawater mixing and the formation of fine structures [1–4]. An
internal wave is an internal wave of a marine water body with stable density stratification.
It is a type of heavy ocean internal wave or an internal inertial gravity wave [5–7]. The
fluctuation is very slow, with a phase speed of less than 1 m/s. Typical internal waves
have amplitudes of several meters to dozens of meters, wavelengths of nearly 100 m to
dozens of kilometers, and periods of several minutes to dozens of hours. These factors are
crucial in explaining the mixing of seawater and the formation of fine structures. Internal
waves are an important movement of seawater, which not only transfer energy from the
upper layer of the ocean to the deep layer, but also bring colder deep-sea water together
with nutrients to the warmer shallow layer to promote the growth and reproduction of
organisms [8–10]. The internal wave causes fluctuations in the equal-density surface; this
changes the magnitude and direction of the sound velocity and has a significant influence
on the sonar, which is beneficial to the concealment of the submarine underwater, but
detrimental to offshore facilities [11,12].

As a common marine dynamic phenomenon that occurs in dense stratified seawa-
ter [13,14], internal solitary waves are often found in the South China Sea [15], Sulu Sea [16],
Andaman Sea [17] and other continental shelf edge waters, and they are very extensive in
parts of the Earth. Internal solitary waves usually propagate in the form of wave groups,
and their characteristic wavelengths range from hundreds of meters to more than ten
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kilometers. The typical distance between wave packets ranges from tens of kilometers to
100 km [18,19]. It is not only an important part of the marine energy cascade but also one of
the key physical processes that affect marine productivity; it has an important impact on the
development of marine resources, marine engineering, the marine ecological environment,
and fisheries. Hence, the study of internal solitary waves is significantly important [20,21].

The KdV equation is typically used to describe the internal solitary wave. KdV is
generated when studying waves in shallow water [22–24]. Keulegan [25] and Long [26]
were the first to discover internal solitary waves that could propagate in two liquids of
different densities. A general theoretical treatment of a new class of finite-amplitude long-
standing waves was presented by Benjamin [27,28]. Benney [29] studied a finite-amplitude
wave in an inviscid fluid. Benjamin [28] and Ono [30] obtained the well-known BO equation
by studying stratified fluids at large depths:

ft + α f fx − β[ℵ( f )]xx = 0, (1)

where α and β are constants, ℵ denotes Hilbert transform of f . Later, Joseph and Kubota
et al. further studied the character of internal gravity waves in both the shallow and deep
fluid, and obtained the intermediate long-wave (ILW) equation:

ft + 2 f fx + G[ fxx] = 0, (2)

where G[ f (x, t)] = 1
2 λ
∫ +∞
−∞ coth 1

2 πλ(x
′ − x) f (x, t)dx

′
, and λ−1 denotes the depth of the

fluid. ILW equation represents the natural connection between the Korteweg–de Vries
shallow water and Benjamin–Ono deep water theories.

Recently, with significant progress in research, researchers have gradually shifted
their attention from low- to high-order models [31–35]. Grimshaw et al. [36] investigated
internal solitary waves in density- and current-layered shear flows with free surfaces,
leading to the derivation of higher-order KdV equations. Kaya et al. [37] obtained the
exact solitary wave solution and the numerical solution of the fifth-order KdV equation
under initial conditions. Duffy et al. [38] obtained an explicit traveling solitary wave
solution for a seventh-order generalized KdV equation. Craig et al. [39] proposed a higher-
order BO model for internal waves in a two-layer ocean with two distinct but constant
densities. In addition to this, Germán Foneca and Felipe Linares [40] showed existence
and uniqueness of global solutions for the lower-order BO equation. Hidekazu Tsuji
and Masayuki Oikawa [41] numerically solved the lower-order BO equation describing
internal solitary waves and observed that Mach reflection occurs at small incidence angles.
However, several studies have been conducted on higher-order BO equations describing
internal solitary waves. With the advancement of research, it is imperative to explore
higher-order BO equations in order to more scientifically and accurately describe physical
phenomena in nature. Accordingly, we used a new perturbation expansion and multiscale
analysis method to deduce the higher-order BO equation and study its properties.

The occurrence of Mach reflection arises from the interaction between a barrier and a
sufficiently large amplitude line soliton or classical shock at an acute angle. A Y-shaped
triad is formed by two smaller amplitude solitons or shocks and a larger “Mach” stem
perpendicular to the barrier. This phenomenon was first experimentally reported in J. Scott
Russell’s seminal paper [42], which studied shallow water solitons impinging on a corner.
Later, Ernst Mach observed his eponymous phenomenon arising from interacting shocks in
gas dynamics [43,44]. We investigate the Mach reflection of the higher-order BO equation.

In this study, a new higher order Benjamin-Ono equation was obtained for an internal
solitary wave. The remainder of this paper is organized as follows: In Section 2, we derive
the well-known Benjamin–Ono (BO) model. In Section 3, based on the new perturbation
expansion and multiscale analysis, the higher order Benjamin–Ono equation is obtained
for the first time. In Section 4, the bilinear form and multi-soliton solutions of the higher
order Benjamin–Ono equation are studied using Hirota’s bilinear method [45,46]. And we
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study the interaction of solitons, determine the phenomenon of Mach reflection, and draw
conclusions. Finally, a summary is presented in Section 5.

2. Derivation of BO Equation

We considered the two-dimensional motion of two layers of incompressible and finite-
depth fluids stratified by density in the y direction. The governing equations are as follows:

∂u
∂x

+
∂v
∂y

= 0,

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
= 0,

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
,

ρ

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
− gρ,

(3)

where u and v are the velocity components in the directions x and y, ρ is the density,
t is the time variable, and p is the fluid pressure. g is the acceleration due to gravity,
and the basic hydrostatic balance is dp0

dy = −gρ0. The appropriate boundary conditions
associated with v(y) are v = 0 at y = 0 and v→ 0 at y→ ∞. We assume that the density is
continuous at y = h0. At h0 ≥ y ≥ 0, the density ρ0(y) varies with y; however, at y ≥ h0, it
remains constant.

ρ =

{
ρ0(y), h0 ≥ y ≥ 0,

ρ0(= constant), y ≥ h0.
(4)

That is, the density of the upper layer of the fluid changes with the change of y, and the
density of the lower layer does not change (see Figure 1).

ρ

ρ z( )

ρ0

h0

Figure 1. Variation of density ρ with depth z.

The boundary conditions for v(y) are: v = 0 when y = 0 and y = h1. Further, we study
the wave equation by matching the upper and lower solutions at y = h0 using coordinate
transformation and perturbation methods.

Considering the case h0 ≥ y ≥ 0. Introducing the following transformations:

T1 = ε2t, T2 = ε3t, X = ε(x− t), (5)

that is
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∂

∂t
= −ε

∂

∂X
+ ε2 ∂

∂T1
+ ε3 ∂

∂T2
,

∂

∂x
= ε

∂

∂X
,

∂

∂y
= ε

∂

∂y
.

Assuming that u, v, c, p and ρ have the following asymptotic expansion, we obtain:

u(X, y, T1, T2) = εu1(X, y, T1, T2) + ε2u2(X, y, T1, T2) + ε3u3(X, y, T1, T2) + · · · ,

v(X, y, T1, T2) = ε2v1(X, y, T1, T2) + ε3v2(X, y, T1, T2) + ε4v3(X, y, T1, T2) + · · · ,

p(X, y, T1, T2) =

p0(y) + εp1(X, y, T1, T2) + ε2 p2(X, y, T1, T2) + ε3 p3(X, y, T1, T2) + · · · ,

ρ(X, y, T1, T2) =

ρ0(y) + ερ1(X, y, T1, T2) + ε2ρ2(X, y, T1, T2) + ε3ρ3(X, y, T1, T2) + · · · .

(6)

where a small parameter ε� 1 represents the nonlinear strength.
By substituting the Equations (5) and (6) into Equation (3), the lowest-order approxi-

mation equation for ε is 

∂u1

∂X
+

∂v1

∂y
= 0,

− ∂ρ1

∂X
+ v1

dρ0

dy
= 0,

− ρ0
∂u1

∂X
+

∂p1

∂X
= 0,

∂p1

∂y
= −gρ1.

(7)

By eliminating p1, u1 and ρ1, we obtain the governing equation for v1:

∂

∂y

[
ρ0(y)

∂v1

∂y

]
− gv1

dρ0(y)
dy

= 0. (8)

By separating the variables, we assume that the solution of Equation (8) has the follow-
ing form:

v1(X, y, T1, T2) = −φ(y) fX(X, T1, T2). (9)

∂

∂y

[
ρ0(y)

dφ

dy

]
− g

c2
0

φ
dρ0

dy
= 0, (10)

Substituting Equation (9) into Equation (7), we obtain

u1 = f
dφ

dy
, p1 = ρ0

dφ

dy
f , ρ1 = −φ

dρ0(y)
dy

f . (11)

Furthermore, we obtain the following next-order approximate equation for ε:

∂u2

∂X
+

∂v2

∂y
= 0,

− ∂ρ2

∂X
+ v2

dρ0

dy
= A1 = −v1

∂ρ1

∂y
− ∂ρ1

∂T1
− u1

∂ρ1

∂X
,

− ρ0
∂u2

∂X
+

∂p2

∂X
= A2

= −ρ0u1
∂u1

∂X
− ρ0v1

∂u1

∂y
− ρ0

∂u1

∂T1
+ ρ1

∂u1

∂X
− ρ1

(
ρ0

∂u1

∂X
− ∂P1

∂X

)
,

∂p2

∂y
= −gρ2.

(12)

Similarly, the governing equation of v2 is
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∂

∂y

[
ρ0(y)

∂v2

∂y

]
− gv2

dρ0

dy
=

∂A2

∂y
− gA1. (13)

By multiplying both sides of Equation (13) by φ and integrating y from 0 to h0, we obtain

∫ h0

0

[
∂

∂y

(
ρ0

∂v2

∂y

)
− g

dρ0

dy
v2

]
φdy =

∫ h0

0

(
a1 fT1 + a2 f fX

)
φdy. (14)

where

a1 = −ρ0
dφ

dy
− ρ0

d2φ

dy2 ,

a2 =
∂

∂y

[(
ρ0

g
d2φ

dy2
dφ

dy

)
− ρ0

dφ

dy
dφ

dy
+ ρ0φ

d2φ

dy2

]
+

(
φρ0

d3φ

dy3 − ρ0
d2φ

dy2 −
dφ

dy
ρ0

d2φ

dy2

)
.

Next, we consider another case that y ≥ h0. Similarly, we introduce the transforma-
tions T = ε2t and X = x− t: u, v, c, p and ρ exhibit the following asymptotic expansion:

u = ε2U(X, y, T, ε),

v = ε2V(X, y, T, ε),

p = p0(y) + ε2P(X, y, T, ε),

ρ = ρ0(y) + ε4R(X, y, T, ε).

(15)

Substituting transformations and Equation (15) into Equation (3), we obtain

∂2V
∂X2 +

∂2V
∂y2 = 0. (16)

Similarly, the boundary conditions of V are{
V(X, y, T, ε)|y=h0

→ − fX φ(y)|y=h0
,

V(X, y, T, ε)→ 0, y→ ∞.
(17)

we obtain the solutions to Equation (16) as follows:

V(X, y, T, ε) =
P.V.

π

∫ +∞

−∞
− fX

(
X
′
, T1, ε

) y− h0

(y + h0)
2 +

(
X− X′

)2 dX
′
, (18)

where P.V. denotes the principal value of the Cauchy integral. Differentiating Equation (18)
with respect to y.

∂V(X, y, T, ε)

∂y
=

1
π

P.V.
∫ +∞

−∞
− fX

(
X
′
, T1, ε

) (
X− X

′
)2
− (y− h0)

2[
(y− h0)

2 +
(
X− X′

)2
]2 dX

′
. (19)

The two cases h0 ≥ y ≥ 0 and y ≥ h0 have been deduced. Finally, we match them at
y = h0. Assuming that the solutions of the two regions are continuous at y = h0, we obtain

ε2v1(X, h0, T1) + ε3v2(X, h0, T1) = ε2V(X, h0, T, ε), (20)

∂
(
ε2v1(X, h0, T1) + ε3v2(X, h0, T1)

)
∂y

=
∂
(
ε2V(X, h0, T, ε)

)
∂y

. (21)
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Combining Equation (20), we obtain

φ(h0)
∂ f (X, T1)

∂X
= V(X, h0, T), v2(X, h0, T1) = 0. (22)

Based on Equation (19), we obtain

∂V(X, h0, T, ε)

∂y
=

ε

π
P.V.

∂2

∂X2

∫ +∞

−∞

f (X
′
, T1)

X− X′
dX

′
. (23)

From Equations (21) and (23), we obtain

dφ(h0)

dy
= 0,

∂v2(X, h0, T1)

∂y
=

1
π

P.V.
∂2

∂X2

∫ +∞

−∞

f (X
′
, T1)

X− X′
dX

′
. (24)

Further, substituting Equations (22) and (24) into Equation (14), we obtain a new
governing equation:

fT1 + a
′
1 f fX + a

′
2[ℵ( f )]XX = 0. (25)

where

a
′
1 =

∫ +∞
−∞

{
∂

∂y

[(
ρ0
g

d2φ

dy2
dφ
dy

)
− ρ0

dφ
dy

dφ
dy + ρ0φ

d2φ

dy2

]
+
(

φρ0
d3φ

dy3 − ρ0
d2φ

dy2 −
dφ
dy ρ0

d2φ

dy2

)}
dy∫ +∞

−∞

(
−ρ0

dφ
dy − ρ0

d2φ

dy2

)
dy

,

a
′
2 =

−ρ0(h0)φ(h0)∫ +∞
−∞ φ

(
−ρ0

dφ
dy − ρ0

d2φ

dy2

)
dy

, ℵ( f ) =
1
π

P.V.
∫ +∞

−∞

f (X
′
, T1)

X− X′
dX

′
.

Equation (25) is a model that is used for the first time to describe internal solitary
waves in the ocean. Note that when h0 → ∞, Equation (25) is converted into the BO
equation, which was first deduced by Benjamin [28] and Ono [30] as a model for long
internal gravity waves in deep stratified fluids; and in the opposite limit, Equation (25) is
converted into the KdV equation, which is first used by Long to describes Rossby waves
in a single-layer barotropic fluid. It is necessary to obtain a higher-order BO equation to
describe internal solitary waves in the ocean more accurately.

3. Derivation of Higher-Order BO Equation

In the domain h0 ≥ y ≥ 0, we can obtain a higher-order approximate equation for ε:

∂u3

∂X
+

∂v3

∂y
= 0,

− ∂ρ3

∂X
+ v3

dρ0

dy
= A3,

− ρ0
∂u3

∂X
+

∂p3

∂X
= A4,

∂p3

∂y
+ gρ3 = A5,

(26)

where

A3 = − ∂ρ2

∂T1
− ∂ρ1

∂T2
− v1

∂ρ2

∂y
− u1

∂ρ2

∂X
− u2

∂ρ1

∂X
− v2

∂ρ1

∂X
, A5 = ρ0

∂v1

∂X
,

A4 = −ρ0
∂u2

∂T1
− ρ0ρ1

∂u1

∂T1
− ρ0

∂u1

∂T2
− ρ0u1

∂u2

∂X
− ρ0u2

∂u1

∂X
− ρ0v1

∂u2

∂y
− ρ0v2

∂u1

∂y

+ ρ1ρ0
∂u2

∂X
+ ρ2

1
∂u1

∂X
− ρ1

∂p2

∂X
− ρ1ρ0u1

∂u1

∂X
− ρ1ρ0v1

∂u1

∂y
+ ρ2ρ0

∂u1

∂X
− ρ2

∂p1

∂X
.
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By eliminating p3, u3 and ρ3, we obtain the governing equation and boundary condi-
tions for v3:

∂

∂y

[
ρ0(y)

∂v3

∂y

]
− gv3

dρ0

dy
=

∂A4

∂y
− ∂A5

∂X
− gA3. (27)

Similarly, multiplying both sides of Equation (27) by φ and integrating y from 0 to h0,
we obtain ∫ h0

0
φ

[
∂

∂y

(
ρ0

∂v3

∂y

)
− g

dρ0

dy
v3

]
dy =

∫ h0

0
φ

(
∂A4

∂y
− ∂A5

∂X
− gA3

)
dy, (28)

Equation (28) can be sorted as follows:

∫ h0

0
φ

[
∂

∂y

(
ρ0

∂v3

∂y

)
− g

dρ0

dy
v3

]
dy =

∫ h0

0
φ
(

b
′
1 fT2 + b

′
2 fXXX + b

′
3 f 2 fX + b

′
4 fXℵ( f )X

+b
′
5ℵ( f fX)X + b

′
6 fℵ( f )XXX

)
dy.

(29)

where

b
′
1 = −dφ

dy
dρ0

dy
− ρ0

d2φ

dy2 ,

b
′
2 =

∂

∂y

ρ0

∫ +∞
−∞

{
∂

∂y

[(
ρ0
g

d2φ

dy2
dφ
dy

)
− ρ0

dφ
dy

dφ
dy + ρ0φ

d2φ

dy2

]
+
(

φρ0
d3φ

dy3 − ρ0
d2φ

dy2 −
dφ
dy ρ0

d2φ

dy2

)}
dy∫ +∞

−∞

(
−ρ0

dφ
dy − ρ0

d2φ

dy2

)
dy

,

b
′
3 =

∂

∂y

[
ρ2

0
g

(
dφ

dy

)2 a
′
2

a1

]
− ρ0

g
dφ

dy

[
ρ0

g

(
dφ

dy

)2
+ ρ0

(
dφ

dy

)2
− ρ0φ

d2φ

dy2

]
,

b
′
4 =

∂

∂y

ρ2
0

g

(
dφ

dy

)2 −ρ0(h0)φ(h0)∫ +∞
−∞ φ

(
−ρ0

dφ
dy − ρ0

d2φ

dy2

)
dy

+
dφ

dy

,

b
′
5 = − ∂

∂y

ρ0

∫ +∞
−∞

{
∂

∂y

[(
ρ0
g

d2φ

dy2
dφ
dy

)
− ρ0

dφ
dy

dφ
dy + ρ0φ

d2φ

dy2

]
+
(

φρ0
d3φ

dy3 − ρ0
d2φ

dy2 −
dφ
dy ρ0

d2φ

dy2

)}
dy∫ +∞

−∞

(
−ρ0

dφ
dy − ρ0

d2φ

dy2

)
dy

,

b
′
6 = −

2ρ2
0

g
dφ

dy
, ℵ( f ) =

1
π

P.V.
∫ +∞

−∞

f (X
′
, T1)

X− X′
dX

′
.

In domain y ≥ h0, we introduce the following transformations:

T = ε2t, X = x− t, y = y. (30)

Suppose that u, v, c, p and ρ have the following asymptotic expansion:
u = ε3U(X, y, T, ε),

v = ε3V(X, y, T, ε),

p = p0(y) + ε3P(X, y, T, ε),

ρ = ρ0(y) + ε5R(X, y, T, ε).

(31)

Substituting Equations (30) and (31) into Equation (3), we obtain

∂2V
∂X2 +

∂2V
∂y2 = 0. (32)
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Similarly, the boundary conditions of V are as follows:{
V(X, y, T, ε)|y=h0

→ − fX φ(y)|y=h0
,

V(X, y, T, ε)→ 0, y→ ∞.
(33)

We obtain the solutions to Equation (32), as follows:

V(X, y, T, ε) =
P.V.

π

∫ +∞

−∞
− fX

(
X
′
, T1, ε

) y− h0

(y + h0)
2 +

(
X− X′

)2 dX
′
, (34)

where P.V. denotes the principal value of the Cauchy integral. Differentiating Equation (34)
with respect to y.

∂V(X, y, T, ε)

∂y
=

1
π

P.V.
∫ +∞

−∞
− fX

(
X
′
, T1, ε

) (
X− X

′
)2
− (y− h0)

2[
(y− h0)

2 +
(
X− X′

)2
]2 dX

′
. (35)

Assuming that the solutions of the two regions are continuous at y = h0, we obtain

ε2v1(X, h0, T1) + ε3v2(X, h0, T1) + ε4v3(X, h0, T1) = ε3V(X, h0, T, ε), (36)

∂
(
ε2v1(X, h0, T1) + ε3v2(X, h0, T1) + ε4v3(X, h0, T1)

)
∂y

=
∂
(
ε3V(X, h0, T, ε)

)
∂y

. (37)

Combining Equation (36), we obtain

v3(X, h0, T1) = 0. (38)

Based on Equation (35), we obtain

∂V(X, h0, T, ε)

∂y
=

ε

π
P.V.

∂2

∂X2

∫ +∞

−∞

f (X
′
, T1)

X− X′
dX

′
. (39)

From Equations (37) and (39), we obtain

∂v3(X, h0, T1)

∂y
=

1
π

P.V.
∂2

∂X2

∫ +∞

−∞

f (X
′
, T1)

X− X′
dX

′
. (40)

Further, substituting Equations (38) and (40) into Equation (29) and using T to repre-
sent T2, the following higher-order BO equation is obtained

fT + b1 fXXX + b2 f 2 fX + b3 fXℵ( f )X + b4ℵ( f fX)X + b5 fℵ( f )XXX + b6[ℵ( f )]XX = 0. (41)

where

b1 =
b
′
2

b′1
, b2 =

b
′
3

b′1
, b3 =

b
′
4

b′1
, b4 =

b
′
5

b′1
, b5 =

b
′
6

b′1
, b6 =

−ρ0(h0)φ(h0)∫ +∞
−∞ φ

(
−ρ0

dφ
dy − ρ0

d2φ

dy2

)
dyb′1

,

ℵ( f ) =
1
π

P.V.
∫ +∞

−∞

f (X
′
, T1)

X− X′
dX

′
.

Equation (41) is a more complex higher-order BO equation that can describe the
amplitude of the internal solitary waves. Based on the model, it can provide more ideas for
the study of internal solitary waves propagation evolution.
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4. Bilinear Form and Multi-Soliton Solutions

Multi-soliton solutions of BO equation were obtained by Matsuno [47] and play an
important role in the research. Hence, it is necessary to find multi-soliton solutions for
Equation (41). Next, we will use Hirota’s bilinear method to solve Equation (41) with b4 = 0.
First, we assume that the equation has a solution of the form

f (X, T) = i
∂

∂X
ln

w
′
(X, T)

w(X, T)
, (42)

w(X, T) =
N

∏
n=1

(X− Xn(T)), (43)

w
′
(X, T) =

N
′

∏
n=1

(
X− X

′
n(T)

)
, (44)

ImXn > 0, ImX
′
n < 0, (45)

where X and X
′

are complex functions of time T, and N and N
′

are positive integers.
Substituting Equation (42) into ℵ( f ) and using the following formulas [6]:

ℵ
[

1
X− ξn

]
= − i

X− ξn
, ℵ

[
1

X− ξ∗n

]
= − i

X− ξ∗n
,

Further, we obtain

ℵ( f ) = −
(

wX
w

+
w
′
X

w′

)
= − ∂

∂X
ln
(

w
′ · w

)
. (46)

Substituting Equations (42) and (46) into Equation (41) and using the following prop-
erties of the bilinear operators, we obtain

∂

∂X
ln
( a

b

)
=

DXa · b
ab

,
∂2

∂X2 ln
( a

b

)
=

D2
Xa · a
2a2 −

D2
Xb · b
2b2 ,

∂3

∂X3 ln
( a

b

)
=

D3
Xa · b
ab

− 3
D2

Xa · b
ab

DXa · b
ab

+ 2

(
D2

Xa · b
ab

)3

,

∂2

∂X2 ln(ab) =
D2

Xa · b
ab

−
(

DXa · b
ab

)2
,

where the D operator is defined as

Dn
T Dm

X a(X, T)b(X, T) =
(

∂

∂T
− ∂

∂T′

)n( ∂

∂X
− ∂

∂X′

)m
a(X, T)b

(
X
′
, T
′)∣∣∣∣

X′=X,T′=T
.

Consequently, the bilinear forms of Equation (41) can be expressed as

i
DTw

′ · w
w′ · w

+ b1i

D3
Xw

′ · w
w′ · w

− 3
D2

Xw
′ · w

w′ · w
DXw

′ · w
w′ · w

+ 2

(
DXw

′ · w
w′ · w

)3
+

b2

3

(
i
DXw

′ · w
w′ · w

)3

+ b3i
DXw

′ · w
w′ · w

·

−D2
Xw

′ · w
w′ · w

+

(
DXw

′ · w
w′ · w

)2
+ b6

(DXw
′ · w

w′ · w

)2

−
D2

Xw
′ · w

w′ · w


+ b5i

DXw
′ · w

w′ · w
·

−D3
Xw

′ · w
w′ · w

+ 3

(
D2

Xw
′ · w

w′ · w

)(
DXw

′ · w
w′ · w

)
+ 2

(
DXw

′ · w
w′ · w

)3
 = 0.

(47)
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The N-soliton solutions can then be expressed as

wN = det L, (48)

where L represents a matrix of order N × N that can be expressed as follows:

Ljk =


im(n−2)

j

[
X− n− 1

2n−2

(
mn−2

j

)n−2
T −

n−3

∑
l=1

l + 1
2l

(
mn−2

j

)l
Tl − δn−2

j

]
+ 1, j = k,

2
[
mn−2

j mn−2
k

] 1
2

mn−2
j −mn−2

k

, j 6= k,

(49)

where mn−2
j and δn−2

j (j = 1, 2, · · · , N) are the arbitrary constants.
Based on the obtained soliton solution of Equation (49) of the model, we studied the

interaction between solitons when n = 5. Two solitons with the same amplitude were
symmetrically placed, and the oblique interaction of the soliton was studied. The Crank–
Nicholson method of iterative technique is used in time, and the pseudo-spectral method is
used in space [48,49]. The coefficients of Equation (41) are taken as constants. Note that in
the ideal state without considering friction dissipation, the calculation result of the collision
of two solitary waves with the same amplitude is equivalent to the reflection of a solitary
wave incident on a rigid vertical wall.

When n = 5, the interaction between the two solitons can be expressed as

F =
2m3

1

1 + m6
1

[
X− 1

2 (m
3
1)

3T − δ3
1

]2 +
2m3

1

1 + m6
1

[
−X− 1

2 (m
3
1)

3T − δ3
1

]2 . (50)

We plotted the front, side, and top views of the interaction between the two solitons
when m1 = 0.9 (see Figure 2). As shown in Figure 2, owing to the interaction of two
symmetrically placed solitary waves, a hump appeared and grew along the x-axis with
time; however, it stopped growing after a period of time. This is a typical Mach-reflection
phenomenon. Therefore, the hump is referred to as a Mach stem.

Figure 2. Front, side, and top views of the solution to Equation (50) with m1 = 0.9, δ1 = 0.

Further, we plot the interaction of the two solitons for different values δ1, as shown in
Figure 3. From Figure 3, we can observe that with a decrease in the δ1 value, the shape and
size of the Mach stem did not change, but its generation time was gradually delayed. This
shows that a change in the δ1 value will not change the shape of the Mach stem, but will
have an effect on the time when Mach reflection occurs, and as the δ1 value decreases, the
effect becomes increasingly significant.
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Figure 3. The interaction of the two solitons at different values δ1.

To further study the factors influencing the Mach stem, we drew soliton interaction
diagrams for different m1 values, as shown in Figure 4.

Figure 4. Interaction of the two solitons at different values m1, δ1 = 0.
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As shown in Figure 4, with an increase in m1, the amplitude of the Mach stem gradually
increases, but the wave width gradually decreases.

5. Conclusions

Using a multiscale analysis and perturbation method, the Benjamin–Ono equation
with variable coefficients describing the propagation of internal solitary waves in the
ocean is derived. To better describe the propagation characteristics of solitary waves, we
derived a higher-order variable-coefficient integral differential (Benjamin–Ono) equation.
Furthermore, based on Hirota’s bilinear method, we obtain the bilinear form and multi-
soliton solution of the model. Then, we studied the interaction of the soliton, which led to
the discovery of the Mach reflection. The results showed that δ1 only affected the production
time of the Mach stem; however, it did not affect its shape. m1 affects the shape of the Mach
stem; with an increase in m1, the amplitude of the Mach stem gradually increases, but the
wave width gradually decreases.
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