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Abstract: The clustering coefficient of a vertex v, of a degree of at least 2, in a graph Γ is obtained
using the formula C(v) = 2t(v)

deg(v)(deg(v)−1) , where t(v) denotes the number of triangles of the graph
containing v as a vertex, and the clustering coefficient of Γ is defined as the average of the clustering
coefficient of all vertices of Γ, that is, C(Γ) = 1

|V| ∑v∈V C(v), where V is the vertex set of the graph.
In this paper, we give explicit expressions for the clustering coefficient of corona and lexicographic
products, as well as for the Cartesian sum; such expressions are given in terms of the order and size
of factors, and the degree and number of triangles of vertices in each factor.
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1. Introduction

Leonhard Euler introduced graph theory in his well-known discussion of the Königs-
berg Bridge Problem in 1736, when he gave a representation of the situation by means of a
graph (see reference [1]). However, such an article remained isolated for almost a century
until there was a revival of interest in the problems of graph theory, mainly in England. In
1857, Arthur Cayley used his knowledge of these topics to represent and study the structure
and properties of some alkanes and their isomers. In this way, his first contribution was
knowing the different isomers of the alkanes as a function of the number of carbons that
they contain. Moreover, his work allowed us to know exactly the number of isomers of
the alkane with n carbons once the number of isomers of the alkane with n− 1 carbons is
known (see references [2,3]). At present, the representation of some systems by means of
graphs has allowed us to analyze complex structures, both their structure and properties,
and summarize them in terms of some numerical parameters called (topological) indices
(see reference [4]); these indices, which are graph invariants, carry information on the struc-
ture of the graph. Thus, graphs are used as models for studying computer interconnections,
social networks, social structures, neural networks, and networks of interactions of species
in trophic networks, to name a few (see reference [5]).

It is precisely in social networks, in a story published in 1929, that the six degrees of
separation hypothesis arose, which says that any two people can be connected through a
chain of acquaintances with, at most, five intermediaries (see reference [6]). This hypothesis
led to the emergence of the small-world phenomenon, which is the notion that the world
can be seen as a somewhat “small” social network; that is, every person can be reached
through a small set of intermediaries from any other person (see reference [7]). One of
the best known studies was carried out in the 1960s by S. Milgram, who performed the
so-called Small-world experiment (see reference [8]). After this, the concept of small-world
was transferred, in a natural way, to graphs. Thus, in 1998, Watts and Strogatz proposed a
model to generate random graphs with the properties of a small-world, introducing the
clustering coefficient as a parameter for their model (see reference [9]).
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Clustering in graphs is a topic that has caught the attention of many people in recent
years, due to the fact that this invariant gives information about its local and global
structure. Depending on the situation, the clustering coefficient grants: the classification
of graphs that display interactions between elements (scale-free and small-world) (see
references [10,11]); and the identification of species in an ecosystem that are most relevant
or important from a biological viewpoint (see references [12,13]). Moreover, there are some
papers devoted to the clustering coefficient, for example, in reference [14] the authors
present some expressions for this parameter of the tensor product of arbitrary graphs,
regular graphs, and strongly regular graphs. In reference [15] it is shown that the global
clustering coefficient of the tensor and Cartesian product for two complete graphs with
m vertices approach 1 and 1/2, respectively, as m → ∞. It is worth mentioning that the
computation of this parameter is very hard when considering graphs with many vertices
and edges (see references [16,17]).

As other structures, graphs can also be operated in such a way from two, given a third
one is obtained (a graph product). Among these binary operations, there are some that
are well known and that have been studied and investigated from different perspectives,
for example: the total Roman domination number of the lexicographic product of graphs
is studied in reference [18]; the exact value of the edge irregularity strength of the corona
product of paths is determined in reference [19]; explicit expressions for the F-index of
different types of corona product are derived in reference [20]; the super fair dominating sets
of the corona and lexicographic product of two graphs are characterized in reference [21];
some tight bounds and closed formulas for the strong metric dimension of the Cartesian
sum of graphs, in terms of some parameters of the factors, are obtained in reference [22];
and explicit expressions for the Schultz index of the Cartesian, corona, and lexicographic
product, and the Cartesian sum, are given in reference [23].

In this work, we compute the number of triangles for the corona and lexicographic
products, as well as for the Cartesian sum. Such expressions are given in terms of the order
and size of factors, and the degree and number of triangles of vertices in each factor, and
we use them to give explicit expressions for their clustering coefficient.

2. Preliminaries

In this section, we establish some notation and recall some definitions used throughout
this paper.

By graph we mean a simple and finite graph Γ = (V, E); given two vertices u, v ∈ V,
we say that they are neighbors or adjacent if they form an edge, that is uv ∈ E. The set of
neighbors of v is denoted by N(v). The degree of v ∈ V is the number of vertices that are
its neighbors, that is,

deg(v) = |N(v)|.

A graph Γ is a tree if it is connected and contains no cycles. Γ is called bipartite if V
can be written as the disjoint union of two non-empty subsets such that every edge has one
endpoint in each subset. The cycle graph of order n ≥ 3, denoted by Cn, is the graph with
the vertex set V(Cn) = {v1, . . . , vn} and edge set

E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}.

The complete graph of order n ≥ 1, denoted by Kn, is the graph with the vertex set
V(Kn) = {v1, . . . , vn} and edge set

E(Kn) = {vivj : i, j = 1, . . . , n, and i 6= j}.

We say that three vertices, u, v, and w, of a graph Γ produce a triangle if the subgraph
induced by them is isomorphic to K3, the number of triangles of Γ that contain v is denoted
by t(v); thus,

t(v) =
∣∣{uw ∈ E : vu, vw ∈ E}

∣∣.
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For more concepts related to graphs, see reference [24].
Below, we state the definition of the graph invariant that concerns us in this paper.

Definition 1. Let Γ = (V, E) be a graph and v ∈ V. The clustering coefficient of v is defined
using the formula

C(v) =

{ 2t(v)
deg(v)(deg(v)−1) , if deg(v) ≥ 2;

0, otherwise.

And the clustering coefficient of Γ is defined by

C(Γ) =
1
|V| ∑

v∈V
C(v).

In the literature, it is common to refer to the clustering coefficient of a vertex as local
clustering and to that of the graph as global clustering.

Example 1. I. Let Γ be the graph shown in Figure 1. Observe that, for the vertex v, we have
deg(v) = 4 and t(v) = 3; thus, C(v) = 1

2 . Moreover, by doing the right calculations, we get
C(Γ) = 17

36 .

z y

xw

u

v

Figure 1. A representation of a graph Γ.

II. If Γ is a tree, a bipartite graph, or a cycle of order ≥ 4, it does not contain triangles; thus, for
any vertex v we have t(v) = 0 and, consequently, C(v) = 0, obtaining C(Γ) = 0.

III. For the complete graph Kn = (V, E) and v ∈ V, it is clear that it forms a triangle with any

pair of distinct vertices. Thus, t(v) = (n−1)(n−2)
2 , which implies C(v) = 1 and C(Γ) = 1.

And, reciprocally, if any vertex v of a graph Γ satisfies C(v) = 1, then Γ ∼= Kn.

3. The Clustering Coefficient for Graph Products

In this section, for some graph products, we compute the number of triangles contain-
ing a vertex in terms of some parameters associated with the vertices of each entry to give
an expression of the local and global clustering.

3.1. The Corona Product

Recall that, given two graphs, Γ1 = (V1, E1) and Γ2 = (V2, E2), the corona product
of Γ1 with Γ2 is defined as the graph Γ = (V, E) given by taking one copy of Γ1 and |V1|
copies of Γ2, joining the r-th vertex of Γ1 to every vertex in the r-th copy of Γ2. That is,

V =
(
V1 × {v0}

)
∪
(
V1 ×V2

)
and

E = E1 ∪ {(ur, vi)(ur, vj) : vivj ∈ E2} ∪ {(ur, v0)(ur, vi) : vi ∈ V2},

where V1 × {v0} are considered as the vertices of the copy of Γ1 and V1 ×V2 are those of
the |V1| copies of Γ2. This graph is denoted by Γ1 � Γ2. Figure 2 shows the corona product
of K5 with K4.
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Proposition 1. Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two graphs with |E2| = m2. If (u, v) is a
vertex of Γ1 � Γ2, then

t(u, v) =

{
t1(u) + m2, if v = v0;
t2(v) + deg(v), otherwise,

where t1(u) and t2(v) denote the number of triangles containing the vertices u and v in Γ1 and Γ2,
respectively.

Proof. Let (x, y), (w, z) ∈ V such that they form a triangle with (u, v). We proceed by cases.
If v = v0, then (u, v0)(x, y) ∈ E if and only if y = v0 and ux ∈ E1 or u = x, analogously
for (w, z). Moreover, (x, y)(w, z) ∈ E if and only if y = z = v0 and xw ∈ E1 or x = w and
yz ∈ E2. Thus, (u, v0), (x, y), (w, z) form a triangle when u, x, w create a triangle in Γ1 or
yz ∈ E2. In this way, the number of triangles for (u, v0) is t1(u) + m2.

Now suppose v 6= v0. Then, (u, v)(x, y) ∈ E if and only if u = x and vy ∈ E2 or
u = x and y = v0, analogously for (w, z). And (x, y)(w, z) ∈ E if and only if x = w = u
and yz ∈ E2 or y = v0 or z = v0, but not both. Thus, (u, v), (x, y), (w, z) form a triangle if
v, y, z do it in Γ2 or y = v0 and vz ∈ E2. Consequently, the number of triangles for (u, v) is
t2(v) + deg(v).

Under the conditions of the above proposition, the subsequent result follows immediately.

Theorem 1. Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two graphs with |V1| = n1, |E1| = m1,
|V2| = n2, and |E2| = m2. If Γ1 � Γ2 = (V, E) and (u, v) ∈ V, then

I. The local clustering of (u, v) is given by

C(u, v) =


2
(

t1(u)+m2

)
(deg(u)+n2)(deg(u)+n2−1) , if v = v0;

2
(

t2(v)+deg(v)
)

(deg(v)+1)deg(v) , otherwise,

II. And the global clustering by

C(Γ1 � Γ2) =
1

n1 + n1n2

(
∑

u∈V1

2
(
t1(u) + m2

)
(deg(u) + n2)(deg(u) + n2 − 1)

+n1 ∑
v∈V2

2
(
t2(v) + deg(v)

)
(deg(v) + 1)deg(v)

)
.

Example 2. Consider two complete graphs, Kr and Ks, of order r and s, respectively, and let
Γ = (V, E) be the corona product of Kr with Ks. For (u, v) ∈ V

deg(u, v) =

{
r + s− 1, if v = v0;
s, otherwise.

According to Proposition 1, we have that the number of triangles containing (u, v) is

t(u, v) =


(r−1)(r−2)+(s−1)s

2 , if v = v0;

(s−1)s
2 , otherwise.

The first part of the last theorem implies

C(u, v) =


(r−1)(r−2)+(s−1)s
(r+s−1)(r+s−2) , if v = v0;

1, otherwise,
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obtaining

C(Γ1 � Γ2) =
1

s + 1

(
(r− 1)(r− 2) + (s− 1)s
(r + s− 1)(r + s− 2)

+ s
)

.

It is worth noting that, even when the first graph is not complete, it is enough that the second
one is so that the value of the clustering coefficient of the vertices whose second entry is other than
v0 is 1. Figure 2 shows the corona product of K5 with K4.

Figure 2. A representation of the corona product of K5 with K4.

3.2. The Lexicographic Product

The lexicographic product of two graphs, Γ1 = (V1, E1) and Γ2 = (V2, E2), is defined
as the graph Γ = (V, E) with V = V1 ×V2 and

E = {(u, v)(x, y) : ux ∈ E1} ∪ {(x, v)(x, y) : vy ∈ E2}.

We denote this graph by Γ1 ◦ Γ2. Observe that Γ1 ◦ Γ2 can obtained by taking |V1|
copies of Γ2 and joining the vertices of Γ2,u with every vertex of Γ2,x (the corresponding
copies to vertices u and x, respectively) if ux ∈ E1. Figure 3 shows a representation of the
lexicographic product of S3 and P3.

Figure 3. A representation of the lexicographic product of S3 and P3.

Note that the edge set of the lexicographic product is precisely the union of two sets.
Assume that an edge of the first set is incident to one of the second ones, say (u, v)(x, y) to
(u, v)(u, z). Thus, ux ∈ E1 and vz ∈ E2. We may note that (x, y)(u, z) ∈ E is the only edge
incident to them, and it belongs to the first set. This implies that the only way of creating a
triangle with edges in both sets is that two of them belong to the first set and the other to
the second one. In this way, we consider triangles of three types.

◦ Type 1: the three edges belong to the first set.
◦ Type 2: two edges are in the first set and the other in the second one.
◦ Type 3: the three edges are in the second set.

In contrast to the corona product case, we compute the number of triangles of each
type separately to make our calculations clearer.
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Before starting with our computations, we present some of these triangles in an
example to illustrate some of our reasonings. The first graph of Figure 4 shows some
triangles of type 1 in the lexicographic product of K5 and K4, they are produced by vertices
whose first entries are adjacent in K4. The second one shows triangles of type 2, they are
formed by vertices such that two of them have the same first entry, the second entries are
adjacent in K5, and the first entry of these vertices form an edge with the first of the third
one. And the last one displays triangles of type 3; they are formed by vertices that have the
same first entry and the second entries are adjacent in K5.

Figure 4. Triangles of the three types in the lexicographic product of K5 and K4.

Throughout this subsection, n1 and n2 denote the order of Γ1 and Γ2, respectively, m1
and m2 the size of Γ1 and Γ2, respectively, and (u, v) a vertex of Γ1 ◦ Γ2.

Lemma 1. Under the above conditions, the number of triangles of type 1 containing (u, v) as a
vertex is given by t1(u)n2

2 .

Proof. Let (x, y) and (w, z) be two vertices such that they form a triangle of type 1 with
(u, v). Then, ux, uw, xw ∈ E1, that is, u, x, and w, produce a triangle in Γ1. Since y and z
can be any of the vertices of Γ2, there are n2

2 triangles of type 1 in Γ determined by this one
in Γ1. Therefore, there are n2

2t1(u) triangles of this type containing (u, v).

Following lemma gives the number of triangles of type 2.

Lemma 2. Under the initial conditions, there are deg(u)(n2 deg(v) + m2) triangles of type 2 in
Γ, having (u, v) as a vertex.

Proof. Let (x, y), (w, z) ∈ V such that they form a triangle of type 2 with (u, v). Then,
(u, v)(x, y) or (x, y)(w, z) belong to the second set of edges. If (u, v)(x, y) is in the second
set, then u = x and vy ∈ E2, that is, y ∈ N(v) and (u, v)(w, z) is an edge that belongs to
the first set, which implies uw ∈ E1. Thus, w can be taken as any neighbor of u and z any
vertex of Γ2. On the other hand, if (x, y)(w, z) is in the second set of edges, x = w and
yz ∈ E2, since (u, v)(x, y) and (u, v)(x, z) are edges in the first set, x can be any neighbor
of u; therefore, yz can be any edge of Γ2. Hence, the number of triangles of type 2 is
deg(u)(n2 deg(v) + m2).

Next, we characterize the triangles of type 3 by those in the second factor.

Lemma 3. The number of triangles of type 3 in Γ, containing (u, v) as a vertex, is t2(v).

Proof. Let (x, y), (w, z) ∈ V such that they form a triangle of type 3 with (u, v). Then
u = x = w and vy, vz, yz ∈ E2, that is, v, y, and z are the vertices of a triangle in Γ2. Thus,
the triangle with vertices (u, v), (u, y), and (u, z) is determined by the last one.
Therefore, there are t2(v) triangles of type 3 containing (u, v).

To summarize, we have the following proposition.
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Proposition 2. The number of triangles of Γ1 ◦ Γ2 having (u, v) as a vertex is given by

t(u, v) = n2
2t1(u) + deg(u)(n2 deg(v) + m2) + t2(v).

The next result follows immediately from the last one.

Theorem 2. Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two graphs with |V1| = n1, |E1| = m1,
|V2| = n2, and |E2| = m2. If Γ1 ◦ Γ2 = (V, E) and (u, v) ∈ V, then

I. The clustering coefficient of (u, v) is given by

C(u, v) =
2
(
n2

2t1(u) + deg(u)(n2 deg(v) + m2) + t2(v)
)

(deg(v) + n2 deg(u))(deg(v) + n2 deg(u)− 1)
,

II. And the clustering coefficient of Γ1 ◦ Γ2 by the formula

C(Γ1 ◦ Γ2) =
1

n1n2
∑

u∈V1

∑
v∈V2

2
(
n2

2t1(u) + deg(u)(n2 deg(v) + m2) + t2(v)
)

(deg(v) + n2 deg(u))(deg(v) + n2 deg(u)− 1)
.

Example 3. Again, we consider two complete graphs Kr and Ks. If (u, v) is a vertex of Kr ◦Ks,
Proposition 2 implies that

t(u, v) = s2 (r− 1)(r− 2)
2

+ (r− 1)
(

s(s− 1) +
s(s− 1)

2

)
+

(s− 1)(s− 2)
2

=
r2s2 − 3rs + 2

2
.

According to the above theorem, we obtain C(u, v) = 1, for every vertex. Therefore,

C(Kr ◦Ks) = 1,

which coincides with the fact that Kr ◦Ks is the complete graph of rs vertices.

3.3. The Cartesian Sum

Given two graphs Γ1 = (V1, E1) and Γ2 = (V2, E2), the Cartesian sum of them is
defined as the graph Γ = (V, E) with V = V1 ×V2 and

E = {(u, v)(x, y) : ux ∈ E1 or vy ∈ E2}.

This graph is denoted by Γ1 ⊕ Γ2. We may observe that Γ1 ◦ Γ2 is a subgraph of
Γ1 ⊕ Γ2. Thus, the Cartesian sum can be obtained with the lexicographic product plus the
edges obtained by joining the vertex v of the i-th copy with the vertex y of any other copy,
whenever vy ∈ E2. Figure 5 shows a representation of the Cartesian sum of S3 and P3.

Figure 5. The cartesian sum of S3 and P3.
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To compute the number of triangles of a vertex in the Cartesian sum, we observe that
two vertices form an edge if and only if there is an edge between the vertices of the first or
the second entries; thus, we consider four types of triangles.

◦ Type 1: there are three edges between the first entries.
◦ Type 2: two edges are formed with the first entries and one with the second.
◦ Type 3: one edge is formed with the first entries and two with the second.
◦ Type 4: the three edges are formed between the second entries.

In order to make clearer our calculations, we compute the number of triangles of each
type and those of the intersections between different types.

As in the lexicographic product, before starting our computations, we present exam-
ples of these triangles that help to illustrate some of our reasonings. Since Kr ◦Ks ∼= Krs,
then Kr ⊕Ks is also isomorphic to Krs. The first graph of Figure 6 shows some triangles
of type 1 in the Cartesian sum of K5 and K4; they are produced by vertices whose first
entries form a triangle in K4. The second one shows triangles of type 2; they are produced
by vertices such that their first entries form two edges in K4 and one edge is formed with
the second entries in K5. The third graph displays triangles of type 3; they are formed by
vertices such that their second entries form two edges in K5 and one edge is formed with
the first entries in K4. And the last one exhibits triangles of type 4 which are formed by
vertices such that their second entries are in a triangle in K5.

Figure 6. Triangles of the four types in the Cartesian sum of K5 and K4.

Throughout this subsection, n1 and n2 denote the order of Γ1 and Γ2, respectively, m1
and m2 the size of Γ1 and Γ2, respectively, and (u, v) a vertex of the Cartesian sum Γ1 ⊕ Γ2.

Lemma 4. For the vertex (u, v) there are n2
2t1(u) triangles of type 1 which contain it.

Proof. Let (x, y) and (w, z) be two vertices such that (u, v), (x, y), and (w, z) form a triangle
of type 1, so ux, uw, xw ∈ E1. Thus, this triangle is induced by a triangle of Γ1. Note that
a triangle in Γ1 given by u, x, and w induces the triangles (u, v), (x, y), and (w, z) for any
y, z ∈ V2. Consequently, the number of triangles induced is n2

2. Therefore, there are n2
2t1(u)

triangles of type 1 containing (u, v).

Analogous arguments can be used for triangles of type 4, obtaining the following.

Lemma 5. For the vertex (u, v) there are n2
1t2(v) triangles of type 4 which contain it.

Next, we compute the number of triangles of type 2.

Lemma 6. The number of triangles of type 2 containing (u, v) as a vertex is

m2 deg2(u) + n2 deg(v) ∑
x∈N(u)

deg(x)− t1(u)
[

deg2(v) + 2
(

∑
z∈N(v)

deg(z)− t2(v)
)]

.
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Proof. Consider two vertices (x, y) and (w, z) such that (u, v), (x, y), and (w, z) form a
triangle of type 2. We have the following two cases.

Case 1: ux, uw ∈ E1 and yz ∈ E2. Note that x and w can be any neighbor of u and they can
even coincide, since y 6= z. Moreover, yz can be any edge of Γ2, thus, there are m2 deg2(u)
of these triangles.
Case 2: ux, xw ∈ E1 and vz ∈ E2. Notice that x can be any neighbor of u, and for
each x any of its neighbors can be w, even the same u, since vz ∈ E2. In addition, z
can be any vertex adjacent to v and y any vertex of Γ2, but when u, x, and w form a
triangle in Γ1, there are triangles counted twice for each y ∈ N(v), and since z is also any
neighbor of v, the number of the triangles counted two times is t1(u)deg2(v). Thus, we get
n2 deg(v)∑x∈N(u) deg(x)− t1(u)deg2(v) triangles.

Observe that these cases may occur simultaneously; when this happens we have
ux, uw ∈ E1 and xw ∈ E1, then u, x, w produce a triangle in Γ1. Furthermore, yz, vz ∈ E2
or yz, vy ∈ E2, which can be read into 2-walks starting at v, but when v, y, and z form a
triangle in Γ2, such walks are counted twice; this implies that the number of these triangles
is t1(u)2(∑z∈N(v) deg(z)− t2(v)). Hence, the number of triangles of type 2 is

m2 deg2(u) + n2 deg(v) ∑
x∈N(u)

deg(x)− t1(u)
[

deg2(v) + 2
(

∑
z∈N(v)

deg(z)− t2(v)
)]

.

A similar analysis can be done for triangles of type 3, obtaining the next result.

Lemma 7. The number of triangles of type 3 containing (u, v) as a vertex is

m1 deg2(v) + n1 deg(u) ∑
y∈N(v)

deg(y)− t2(v)
[

deg2(u) + 2
(

∑
w∈N(u)

deg(w)− t1(u)
)]

.

Now, before starting to count triangles that have been considered in two or more cases,
we present examples of these. The first graph of Figure 7 shows some triangles that are, at
the same time, of type 1 and type 2 in the Cartesian sum of K5 and K4; they are produced
by vertices whose first entries form a triangle in K4 and their second entries form at least
one edge in K5. The second one shows triangles of type 1 and type 3; they are produced by
vertices such that their first entries form a triangle in K4 and at least two edges are formed
by the second entries in K5. The third graph displays triangles of type 1 and type 4; they are
formed by vertices such that their first entries form a triangle in K4 and the second entries
form also a triangle in K5. The fourth one shows triangles of type 2 and type 3; they are
produced by vertices such that the first entries of two of them form an edge in K4 and the
second entries form another in K5, and the other two edges are formed by one between
the first entries and another between the second ones. The fifth graph displays triangles of
type 2 and type 4 that are formed by vertices, such that their first entries form at least two
edges in K4 and the second ones are in a triangle in K5. And the last one shows triangles of
type 3 and type 4 which are produced by vertices, such that their first entries form at least
one edge in K4 and the second ones are in a triangle in K5.

Lemma 8. The number of triangles of type 1 and 2 that contain (u, v) is

t1(u)
[

2m2 + 2n2 deg(v)− deg2(v)− 2
(

∑
z∈N(v)

deg(z)− t2(v)
)]

.
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Figure 7. Triangles that are of two types at the same time in the Cartesian sum of K5 and K4.

Proof. Suppose that (x, y) and (w, z) form a triangle with (u, v), which is both types 1 and
2. Then, ux, uw, xw ∈ E1, that is, u, x, and w are vertices of a triangle in Γ1. Moreover,
yz ∈ E2, vy ∈ E2 or vz ∈ E2. We proceed by cases.

Case 1: if yz ∈ E2, there is no restriction for y and z, so that yz can be any edge of Γ2,
counted twice, since it can be considered yz or zy.
Case 2: if vy ∈ E2, y can be any neighbor of v and z any vertex of Γ2.
Case 3: if vz ∈ E2, the reasoning is analogous to the last case.

Note that, if y and z are both adjacent to v, they are counted in both cases deg(v)
times. In addition, if yz, vz ∈ E2, the first and third situations happen at the same time,
or if yz, vy ∈ E2 the first and second happen; this can be interpreted as a 2-walk starting
at v. But if v, y, and z form a triangle in Γ2, these walks are counted twice. Therefore, the
number of triangles that are of type 1 and 2 is

t1(u)
[

2m2 + 2n2 deg(v)− deg2(v)− 2
(

∑
z∈N(v)

deg(z)− t2(v)
)]

.

Analogous arguments lead to the next result.

Lemma 9. The number of triangles of type 3 and 4 that contain (u, v) is

t2(v)
[

2m1 + 2n1 deg(u)− deg2(u)− 2
(

∑
w∈N(u)

deg(w)− t1(u)
)]

.

Next, we state the correspondent result for triangles of types 1 and 3.

Lemma 10. For the vertex (u, v), the number of triangles of types 1 and 3 which contain it is

t1(u)
[

deg2(v) + 2
(

∑
y∈N(v)

deg(y)− 2t2(v)
)]

.

Proof. Suppose that (u, v), (x, y), and (w, z) form a triangle of type 1, then ux, uw, xw ∈ E1
and the vertices u, x, and w produce a triangle in Γ1. Since the triangle of the former vertices
is also of type 3, we have that vy, vz ∈ E2, vy, yz ∈ E2, or vz, yz ∈ E2, again by cases.

Case 1: if vy, vz ∈ E2; then y and z can be any neighbor of v, they may even be the same.
Case 2: if vy, yz ∈ E2, this can be treated as a 2-walk starting at v.
Case 3: if vz, yz ∈ E2, the reasoning is analogous to the last one.
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In addition, if vy, vz, and yz occur at the same time, then v, y, and z create a triangle in
Γ2, and since the triangle given by the edges vy, yz, and vz is the same as that formed by
vz, zy, and vy, such a triangle is counted twice. Hence, the number of triangles of types 1
and 3 is

t1(u)
(

deg2(v) + 2
(

∑
y∈N(v)

deg(y)− 2t2(v)
))

.

A similar reasoning shows the following result.

Lemma 11. For the vertex (u, v), the number of triangles of types 2 and 4 which contain it is

t2(v)
[

deg2(u) + 2
(

∑
x∈N(u)

deg(x)− 2t1(u)
)]

.

Now, we formulate the statement for triangles of types 1 and 4.

Lemma 12. The number of triangles of types 1 and 4 that have (u, v) as a vertex is 2t1(u)t2(v).

Proof. Suppose that the vertices (u, v), (x, y), and (w, z) give rise to a triangle of type 1
and 4, then ux, uw, xw ∈ E1 and vy, vz, yz ∈ E2, that is, u, x, and w form a triangle in Γ1 and
v, y, and z form the same in Γ2. Note that (u, v), (x, z), and (w, y) is also a triangle of both
types 1 and 4 and it is induced by the same triangles in Γ1 and Γ2; thus, for each triangle
in Γ1 and each triangle in Γ2, there are two triangles of type 1 and 4 in Γ. Therefore, the
number of these triangles is 2t1(u)t2(v).

We continue with triangles of types 2 and 3.

Lemma 13. The number of triangles of type 2 and 3 that have (u, v) as a vertex is

deg2(u)
(

∑
y∈N(v)

deg(y)− tΓ2(v)
)
+ deg2(v)

(
∑

x∈N(u)
deg(x)− t1(u)

)

+ ∑
x∈N(u)

deg(x) ∑
z∈N(v)

deg(z)− 2
[

t1(u)t2(v)

+t1(u)
(

∑
y∈N(v)

deg(y)− t2(v)
)
+ t2(v)

(
∑

x∈N(u)
deg(x)− t1(u)

)]
.

Proof. Let (x, y) and (w, z) be two vertices such that they form a triangle of types 2 and
3 with (u, v). Since such a triangle is of type 2, we have: ux, uw ∈ E1 and yz ∈ E2,
ux, xw ∈ E1 and vz ∈ E2, or uw, xw ∈ E1 and vy ∈ E2, and, for type 3: vy, vz ∈ E2 and
xw ∈ E1, vy, yz ∈ E2 and uw ∈ E1, or vz, yz ∈ E2 and ux ∈ E1. In this way, we obtain nine
cases from which we analyze just three of them, since the others are contained in one of
these. The cases are as follows.

Case 1: ux, uw ∈ E1 and vy, yz ∈ E2. For this case, note that x and w can be any neighbor
of u, while z is any neighbor of y which, in turn, can be any neighbor of v; this situation can
be interpreted as the 2-walk v− y− z, but if v, y, and z form a triangle in Γ2, the triangle
produced by (u, v), (x, y), and (w, z), considering such a 2-walk, is counted twice, since it is
the same as the triangle formed by (u, v), (w, z), and (x, y) with the 2-walk v− z− y. Thus,
there are deg2(u)

(
∑y∈N(v) deg(y)− t2(v)

)
triangles.

Case 2: ux, xw ∈ E1 and vy, vz ∈ E2. Here, the reasoning is analogous to the last one,
obtaining deg2(v)

(
∑x∈N(u) deg(x)− t1(u)

)
triangles.
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Case 3: ux, xw ∈ E1 and vz, yz ∈ E2. In this case, observe that w can be any neigh-
bor of x which, in turn, can be any neighbor of u, which is considered as the 2-walk
u − x − w, while y can be any neighbor of z which, in turn, can be any neighbor of v,
obtaining the 2-walk v − z − y, but, as in the first case, when u, x, and w form a trian-
gle in Γ1 and when v, y, and z form a triangle in Γ2, the 2-walks u − x − w, u − w − x,
v − y − z, and v − z − y determine the two triangles counted twice. Thus, there are
∑x∈N(u) deg(x)∑y∈N(v) deg(y)− 2t1(u)t2(v) triangles.

Now, we count the triangles when the first and second cases happen at the same time;
in this situation, u, x, and w form a triangle in Γ1, as well as v, y, and z forming it in Γ2; thus,
there are 2t1(u)t2(v) triangles.

When the second and third cases occur simultaneously, v, y, and z create a triangle in
Γ2, while w can be any neighbor of x which, in turn, can be any neighbor of u, obtaining the
2-walk u− x− w, and again, when u, x, and w form a triangle in Γ1, the 2-walks u− x− w
and u− w− x determine the same triangle in Γ, which must be counted twice, since the
cases uw, xw ∈ E1 and vy, vz ∈ E2, and uw, xw ∈ E1 and vz, yz ∈ E2 are then the same as the
second and third cases, respectively, obtaining 2t2(v)

(
∑x∈N(u) deg(x)− t1(u)

)
triangles.

When the first and third cases take place at the same time, an analogous reasoning
shows that there are 2t2(v)

(
∑y∈N(v) deg(y)− t2(v)

)
triangles.

Finally, if the three cases happen at the same time, u, x, and w form a triangle in Γ1
and v, y, and z form it in Γ2, counting 2t1(u)t2(v) triangles.

Therefore, the number of triangles of type 2 and 3 which contain (u, v) as a vertex is

deg2(u)
(

∑
y∈N(v)

deg(y)− t2(v)
)
+ deg2(v)

(
∑

x∈N(u)
deg(x)− t1(u)

)

+ ∑
x∈N(u)

deg(x) ∑
z∈N(v)

deg(z)− 2
[

t1(u)t2(v)

+t1(u)
(

∑
y∈N(v)

deg(y)− t2(v)
)
+ t2(v)

(
∑

x∈N(u)
deg(x)− t1(u)

)]
.

Now, we count considered triangles of three types.

Lemma 14. For the vertex (u, v), the number of triangles of type 1, 2, and 3 which contain it is

t1(u)
[

deg2(v) + 2
(

∑
y∈N(v)

deg(y)− 2t2(v)
)]

.

Proof. We may note that, if a triangle is of type 1 and 3, it is automatically of type 2; thus,
the number of these triangles is given by

t1(u)
[

deg2(v) + 2
(

∑
y∈N(v)

deg(y)− 2t2(v)
)]

.

Similar considerations can be carried out in order to obtain the next result.

Lemma 15. For the vertex (u, v), the number of triangles of type 2, 3, and 4 which contain it is

t2(v)
[

deg2(u) + 2
(

∑
x∈N(u)

deg(x)− 2t1(u)
)]

.

The results of the next lemma follow from the subsequent reasoning: a triangle that is
of type 1 and 4, is automatically of types 2 and 3.
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Lemma 16. For the vertex (u, v), the number of triangles of type 1, 2, and 4; 1, 3, and 4; and 1, 2,
3, and 4 which contain it is 2t1(u)t2(v).

To sum up, we have the next result.

Proposition 3. The number of triangles in Γ1 ⊕ Γ2 that contain the vertex (u, v) is

t(u, v) =t1(u)
[

n2
2 + 2

(
∑

y∈N(v)
deg(y)−m2

)]
+ deg2(u)

(
m2 + t2(v)− ∑

y∈N(v)
deg(y)

)

+ n1 deg(u)
(

∑
y∈N(v)

deg(y)− 2t2(v)
)
+ t2(v)

[
n2

1 + 2
(

∑
x∈N(u)

deg(x)−m1

)]

+ deg2(v)
(

m1 + t1(u)− ∑
x∈N(u)

deg(x)
)
+ n2 deg(v)

(
∑

x∈N(u)
deg(x)− 2t1(u)

)
− ∑

x∈N(u)
deg(x) ∑

y∈N(v)
deg(y)− 2t1(u)t2(v).

The following theorem is an immediate consequence of the aforementioned.

Theorem 3. Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two graphs, with |V1| = n1, |E1| = m1,
|V2| = n2, and |E2| = m2. If Γ = (V, E) denotes the Cartesian sum of Γ1 ◦ Γ2 and (u, v) ∈ V,
then
I. The local clustering of (u, v) is given by

C(u, v) =
2t(u, v)(

n1 deg(v) + n2 deg(u)− deg(u) deg(v)
)(

n1 deg(v) + n2 deg(u)− deg(u) deg(v)− 1
) ;

II. And the global clustering of Γ1 ⊕ Γ2 is given by the formula

1
n1n2

n1

∑
i=1

n2

∑
j=1

2t(u, v)(
n1 deg(v) + n2 deg(u)− deg(u) deg(v)

)(
n1 deg(v) + n2 deg(u)− deg(u) deg(v)− 1

) ,

where t(u, v) is given as in the above proposition.

Example 4. Consider the two complete graphs Kr and Ks. Our computations in Proposition 3
show that, for every vertex of Γ1 ⊕ Γ2, we obtain

t(u, v) =
(r− 1)(r− 2)

2

[
s2 + 2

(
(s− 1)2 − s(s− 1)

2

)]
+ (r− 1)2

[
s(s− 1)

2
+

(s− 1)(s− 2)
2

− (s− 1)2
]

+ r(r− 1)
(
(s− 1)2 − 2

(s− 1)(s− 2)
2

)
+

(s− 1)(s− 2)
2

[
r2 + 2

(
(r− 1)2 − r(r− 1)

2

)]
+ (s− 1)2

(
r(r− 1)

2
+

(r− 1)(r− 2)
2

− (r− 1)2
)

+ s(s− 1)
(
(r− 1)2 − 2

(r− 1)(r− 2)
2

)
− (r− 1)2(s− 1)2 − 2

(r− 1)(r− 2)
2

(s− 1)(s− 2)
2

=
r2s2 − 3rs + 2

2
,

according to the first part of the above theorem, we obtain C(u, v) = 1 for every vertex. Hence,

C(Kr ⊕Ks) = 1,
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which obviously coincides with the observation we have already made that Kr ⊕Ks is isomorphic
to Krs.

4. Conclusions

In this work, we study the clustering coefficient of some graph products (corona,
lexicographic, and Cartesian sum) by computing the number of triangles formed in a vertex
in each product. For the lexicographic product and Cartesian sum, we observe that these
triangles can be classified into three or four types, respectively, and the computation of this
number is carried out by counting the number of triangles of each type. We note that this
calculation can be easier or harder, depending on the product considered and the specific
type of triangle.

As mentioned in the introduction, this invariant (C(Γ)) has a lot of applications in
areas as diverse as biology, sociology, or computer science, to name a few. Thus, the results
obtained in this paper may be used in problems in these fields or in other areas that involve
these concepts.
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