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Abstract: To address the complexity of daily problems, soft set theory has emerged as a valuable tool,
providing innovative mathematical techniques to manage vast amounts of data and ambiguity. The
study of soft topology involves the investigation of various properties of soft sets and functions, as
well as the development of new mathematical models and techniques for addressing uncertainty. The
main motivation of this paper is to delve deeper into the subject and devise new methodologies to
address real-world challenges more effectively and unlock the full potential of soft sets in various
applications. In this paper, we present a novel soft topology, which is constructed using soft single
points on a nonempty set V in relation to a topology on V. We investigate and study the behaviors
and properties associated with this particular type of soft topology. Furthermore, we shed light on
the soft separation axioms with this type of soft topology and investigate whether these axioms are
inherited from the corresponding ordinary topology or not. Our study is concerned with examining
the connection between ordinary topologies and the soft topologies generated that arise from them,
with the aim of identifying their interdependencies and potential implications. By studying the
connection between soft topologies and their corresponding ordinary topologies, researchers are able
to gain a deeper understanding of the properties and behaviors of these structures and develop new
modeling approaches for dealing with uncertainty and complexity in data.

Keywords: soft set; soft single point; soft topology; soft separation axioms; topological space; soft
continuity

MSC: 03E72; 47H10; 54A05; 54D10; 54D15

1. Introduction

Experts across various disciplines, including medical science, economics, systems
engineering, artificial intelligence, and other fields, regularly encounter the challenge of
molding complex systems that involve uncertainty. While classical probability theory,
fuzzy set theory [1], and rough set theory [2] are commonly used mathematical tools to
address such problems, they may not always yield satisfactory results due to limitations in
their parameterizations. In 1999, Molodtsov [3] explored a fresh strategy for dealing with
uncertainty, known as soft set theory, which overcomes the shortcomings of other methods.
The technique involves the use of soft sets, which are a parametrized family of subsets of a
universal set. Unlike other methods, soft set theory does not impose any specific conditions
for object illumination and parameters can be selected in various forms, such as sentences,
words, numbers, or mappings. As a result, the theory is highly flexible and convenient
to apply in practical settings. In addition, Molodtsov applied soft set theory to various
areas including the study of function smoothness, game theory, and more, demonstrating
its versatility and broad applicability. In [4], Maji et al. examined the role of soft sets in
decision-making problems and presented a technique for aggregating soft set parameters
to facilitate decision making. In this context, a soft set can be employed to represent each
option or alternative under consideration, with its parameters reflecting the various factors
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that are relevant to the decision, such as financial cost, danger, potential benefit, and other
quantitative or qualitative measures. By combining and analyzing these parameters, the
proposed method enables decision makers to arrive at informed and effective decisions. In
2003, Maji et al. [5] presented and analyzed the concept of soft operations between soft sets.
Yang [6] focused on rectifying certain properties in soft set theory that were introduced
in [5]. In [7], several researchers have sought to refine some soft operations or develop new
ones, in order to enhance their functionality and utility in soft set theory. Recently, in 2019,
Hussain et al. [8] defined soft single points and soft real points. They have found intriguing
and fundamental characteristics.

The exploration of general topology is a notable and significant area of mathematics
that focuses on the application of concepts from set theory and structures employed in the
field of topology. In 2011, Shabir and Naz [9] initiated a new area of study within topology
called soft topology, which combines the theories of soft sets and topology. They established
several fundamental concepts such as soft open (closed), soft neighborhood, soft closure,
soft separation axioms, soft regular spaces, and soft normal spaces. In 2012, Hussain and
Ahmad [10] furthered the study of soft topology by exploring the properties of soft open
(closed), soft neighborhood, and soft closure. In addition, they presented the concepts of
the soft interior, soft exterior, and soft boundary. Zarlutana et al. [11] explored and studied
the concept of soft mappings and soft continuous mapping between two collections of soft
sets. In 2015, Hussain [12] established further characterization of soft continuous mapping.

Numerous research studies have showcased practical applications of soft sets and their
topologies across diverse disciplines to address real-world issues. This underscores the
importance of studying and investigating these sets and their topologies, providing a strong
motivation for us to delve deeper into the subject and devise new methodologies to address
real-world challenges more effectively and unlock the full potential of soft sets in various
applications. This leads to improved solutions in the face of uncertainty and complexity.

This article aims to establish a cohesive perspective to advance the development of
soft topological spaces by building upon the findings of ordinary topology. Our paper
presents an innovative methodology to construct a soft topology by utilizing the set V
both as an initial universe set and as a set of parameters. Let κ be a topology on V, and
let B̃ = {L̃v,Q : for all v ∈ V and Q ∈ κ} ∪̃ Φ̃ be the collection of all soft single points
associated with κ, where Q is an open neighborhood of an element v in κ. We proceed to
construct a soft topology based on this collection B̃, which forms a base for this soft topology.
We will study the relationship between the soft closure (the soft interior) and the closure
(the interior) of any soft set, with respect to soft topology and its corresponding ordinary
topology. We will prove that two soft topologies that are generated by soft single points
are soft homeomorphic if their corresponding ordinary topologies are homeomorphic.
We will define a soft relative topology generated by soft single points with respect to an
ordinary relative topology. Furthermore, we will study the soft separation axioms that
were introduced in [9] of a soft topology generated by soft single points, with respect to an
ordinary topology. We will investigate whether these axioms are inherited from an ordinary
topology or not. Investigation methods of producing soft topology from classical topology
is an important and fruitful area of research in topology and related fields. Researchers are
able to gain a deeper understanding of the properties and behaviors of these structures and
develop new tools and techniques for studying these spaces, which can then be applied to
other areas of mathematics and science.

The organization of the paper is summarized in the following sections. This section
comprises an introduction and two subsections. The first subsection provides a comprehen-
sive literature review for constructing soft topology, while the second subsection points
out the related topics of soft sets and their applications. Section 2 provides a review of
important definitions and results from soft set theory and soft topological spaces that are
relevant to the present study. In Section 3, we introduce the generated soft topology by
soft single points on a nonempty set V with respect to any ordinary topology on V. We
prove that two soft topologies are soft homeomorphic if their corresponding ordinary
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topologies are homeomorphic. Also, we examine the soft relative topology generated by
soft single points with respect to a relative topology. In Section 4, we investigate the soft
separation axioms for this type of soft topology. We verify whether the soft separation
axioms of this type of soft topology are inherited from its corresponding ordinary topology
or not. In Section 5, we present our conclusion which supports our results and explains the
future work.

1.1. Literature Review of Studies of Constructing Soft Topology

Let us review the literature that examined the topology and different methods of
constructing soft topology. In [13], Milan conducted the study on soft topological space,
exploring their connection with a topological space defined on the Cartesian product of two
sets through a homeomorphism. In 2019, Terepeta [14] discussed a method of constructing
a soft topology from any ordinary topology on a nonempty set V while considering any
possible set of parameters. In [15], Al Ghour et al. explored a process of constructing a soft
topology by utilizing an indexed family of ordinary topologies on a nonempty set V while
considering any possible set of parameters. In 2020, Alcantud [16] thoroughly revisited the
standard method for deriving soft topology from ordinary topology, which was introduced
in [14]. Furthermore, they delved into the concepts of soft separability and soft countability
within the framework of this soft topology. In 2022, Azzam et al. [17] conducted an
exploration of six soft operators and employed them to construct soft topologies. They
inferred that all resulting soft topologies are equivalent and share identical properties with
their classical counterparts when considering enriched and extended conditions. Recently,
El-Atik and Azzam [18] conducted research on a method of transformation to depict the
complex networks of the human brain more simplistically. In addition, they explored a
topological model for simplicial complexes and utilized it to represent the brain as a union
of simplicial complexes. This approach potentially offers a way to diagnose brain cancer.

1.2. Related Topics to Soft Set Theory and Their Applications

In 1965, Zadeh [1] proposed a fuzzy set theory as a way to handle uncertainty in
data representation and reasoning. Maji et al. [19] presented the concept of fuzzy soft
sets. This concept combines the principles of fuzzy sets and soft sets, providing a more
comprehensive framework for handling uncertainty in decision making and data analysis.
The application of fuzzy sets and fuzzy soft sets has been studied by many researchers
across various domains.

In 1982, Pawlak [2] presented a rough set theory: a mathematical framework that
offers a systematic approach to address the challenges of uncertainty and imprecision in
data analysis. In 2011, Feng et al. [20] worked to generalize the rough sets model that
builds upon soft sets and proposed the concept of soft rough sets. The soft rough set
is characterized as a parametrized subset of a set, utilized for determining lower and
upper approximations of a subset, diverging from the traditional approach of equivalent
classes. This soft rough set has been applied in decision making by many researchers.
Several academic experts employed soft rough sets to address medical challenges, like
the diagnosis of Chikungunya disease, the diagnosis of Coronavirus disease, and many
medical applications. One of our plans is to conduct a comprehensive study and undertake
the construction of soft topology on these sets in the future.

2. Preliminaries

This section provides a summary of relevant definitions and results with soft sets
theory and soft topology that will be referenced later in the paper. In the rest of the paper,
we use V to denote an initial universe set and P(V) to denote its power set. The symbol ∅
is used to denote the empty set.
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2.1. Soft Sets Theory

Definition 1. [3] Suppose that D is a set of parameters and L is a mapping from D into P(V). A
soft set over V, symbolized by L̃D, is defined as:

L̃D = {(d, L(d)) : d ∈ D and L(d) ⊆ V}.

The collection of all soft sets over V with respect to the set of parameters D will be denoted by
S(V)D.

Definition 2. [5,7]

• A soft set L̃D over V is said to be a null soft set if L(d) = ∅ for all d ∈ D and is symbolized
by Φ̃D.

• A soft set L̃D over V is said to be an absolute soft set if L(d) = V for all d ∈ D and is
symbolized by ṼD.

• The relative complement of a soft set L̃D is the soft set

L̃c
D = {(d, L(d)c) : d ∈ D and Lc : D → P(V) such that Lc(d) = L(d)c},

where L(d)c is the complement of a subset L(d).

Definition 3. Suppose that L̃D and Q̃E are soft sets over V.

• Ref. [6] L̃D is a soft subset of Q̃E, symbolized by L̃D ⊆̃ Q̃E, if D ⊆ E and L(d) ⊆ Q(d) for
all d ∈ D. The soft sets L̃D and Q̃E are soft equal if L̃D ⊆̃ Q̃E and Q̃E ⊆̃ L̃D.

• Ref. [7] The restricted intersection of two soft sets L̃D and Q̃E, symbolized by L̃D ∩̃ Q̃E, is
the soft set T̃H , such that H = D ∩ E, and T represents a map from H into P(V) given by
T(h) = L(h) ∩Q(h) for all h ∈ H.

• Ref. [5] The union of two soft sets L̃D and Q̃E, symbolized by L̃D ∪̃ Q̃E, is the soft set T̃H ,
such that H = D ∪ E, and T represents a map from H into P(V) defined as:

T(h) =


L(h) if h ∈ D− E,
Q(h) if h ∈ E− D,
L(h) ∪Q(h) if h ∈ D ∩ E.

Definition 4. Suppose that L̃D, Q̃D ∈ S(V)D. We say that L̃D and Q̃D are soft disjoint if L(d) ∩
Q(d) = ∅ for all d ∈ D.

Definition 5. [9] Suppose that L̃D is a soft set over V and v ∈ V. We say that v belongs to the
soft set L̃D if v ∈ L(d) for all d ∈ D. If v does not belong to L(d) for some d ∈ D, then v /∈ L̃D.

Now, we recall the definition of soft mappings between two collections of soft sets.

Definition 6. [11] Suppose that D and E are sets of parameters and V and Z are initial universe
sets. We assume S(V)D and S(Z)E are two collections of soft sets and

λ : V → Z and µ : D → E

are mappings. Then a soft mapping

Υλ,µ : S(V)D → S(Z)E

is defined by :

1. The image of L̃D ∈ S(V)D is a soft set in S(Z)E such that for all e ∈ E,

Υλ,µ(L̃D)(e) =

 ∪
d∈µ−1(e)

λ(L(d)) if µ−1(e) 6= ∅,

∅ if µ−1(e) = ∅.
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2. The inverse image of Q̃E ∈ S(Z)E, symbolized by Υ−1
λ,µ(Q̃E), is the soft set L̃D such that

L(d) = λ−1(Q(µ(d))) for all d ∈ D.

Remark 1. The map Υλ,µ is injective (resp. surjective, bijective) if λ and µ in Definition 6 are
injective (resp. surjective, bijective) maps.

The following definitions and results center around the soft single points that were
presented in [8].

Definition 7. Suppose that V is a nonempty set. Then for each v ∈ V and M ⊆ V, we have a
function called a fixed point function,

L :{v} → P(V)

v 7−→ M.

The set {(v, L(v))} is called a soft single point on V. The function L varies uniquely for each
v ∈ V and M ⊆ V. The collection of all soft single points on V is symbolized by SV .

Remark 2.

• The set {(v, ∅)} is considered an empty soft single point for each v ∈ V.
• If V is a set containing n elements, then the total count of soft single points on V is equal to

|SV | = n2n.

Example 1. Consider the set V = {v1, v2, v3}. Then

SV = {{(v1, V)}, {(v2, V)}, {(v3, V)}, {(v1, {v1})}, {(v1, {v2})}, {(v1, {v3})},
{(v2, {v1})}, {(v2, {v2})}, {(v2, {v3})}, {(v3, {v1})}, {(v3, {v2})}, {(v3, {v3})},
{(v1, {v1, v2})}, {(v2, {v1, v2})}, {(v3, {v1, v2})}, {(v1, {v2, v3})}, {(v2, {v2, v3})},
{(v3, {v2, v3})}, {(v1, {v1, v3})}, {(v2, {v1, v3})}, {(v3, {v1, v3})}, {(v1, ∅)},
{(v2, ∅)}, {(v3, ∅)}}.

We observe that |SV | = 24 = 3× 23.

Definition 8. Two soft single points {(v1, M1)}, {(v2, M2)} on a nonempty set V are said to be
equal if and only if v1 = v2 and M1 = M2.

2.2. Soft Topology

Definition 9. [9] Let κ̃ be a collection of S(V)D. Then, (V, κ̃)D is called a soft topological space if
and only if the following requirements are met:

1. ṼD and Φ̃D belong to κ̃.
2. The union of any number of soft sets in κ̃ belongs to κ̃.
3. The restricted intersection of any two soft sets in κ̃ belongs to κ̃.

Every element of κ̃ is called a soft open set in V. The relative complement of the soft open set is
called a soft closed set in V.

Proposition 1. [9] Suppose that (V, κ̃)D is a soft topological space. Then, for all d ∈ D, we have
κd = {L(d) : L̃D ∈ κ̃} is a topology on V.

The validity of the converse of the above proposition is generally not true, as stated in
reference [9].

Definition 10. [9,10] Suppose that (V, κ̃)D is a soft topological space and L̃D ∈ S(V)D.
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1. The soft closure of L̃D is the restricted intersection of all soft closed sets which contain L̃D and
is symbolized by Clκ̃(L̃D).

2. The soft interior of L̃D is the union of all soft open sets which are contained in L̃D and is
symbolized by Intκ̃(L̃D).

Theorem 1. [9] Let (V, κ̃)D be a soft topological space and L̃D, Q̃D ∈ S(V)D.

1. Clκ̃(Φ̃D) = Φ̃D and Clκ̃(ṼD) = ṼD.
2. L̃D ⊆̃ Clκ̃(L̃D).
3. L̃D is a soft closed set if and only if L̃D = Clκ̃(L̃D).
4. Clκ̃(Clκ̃(L̃D)) = Clκ̃(L̃D).
5. L̃D ⊆̃ Q̃D ⇒ Clκ̃(L̃D) ⊆̃ Clκ̃(Q̃D).
6. Clκ̃(L̃D ∪̃ Q̃D) = Clκ̃(L̃D) ∪̃ Clκ̃(Q̃D).
7. Clκ̃(L̃D ∩̃ Q̃D) ⊆̃ Clκ̃(L̃D) ∩̃ Clκ̃(Q̃D).

Theorem 2. [10] Let (V, κ̃)D be a soft topological space and L̃D, Q̃D ∈ S(V)D.

1. Intκ̃(Φ̃D) = Φ̃D and Intκ̃(ṼD) = ṼD.
2. Intκ̃(L̃D) ⊆̃ L̃D.
3. L̃D is a soft open set if and only if L̃D = Intκ̃(L̃D).
4. Intκ̃(Intκ̃(L̃D)) = Intκ̃(L̃D).
5. L̃D ⊆̃ Q̃D ⇒ Intκ̃(L̃D) ⊆̃ Intκ̃(Q̃D).
6. Intκ̃(L̃D) ∩̃ Intκ̃(Q̃D) = Intκ̃(L̃D ∩̃ Q̃D).
7. Intκ̃(L̃D) ∪̃ Intκ̃(Q̃D) ⊆̃ Intκ̃(L̃D ∪̃ Q̃D).

Definition 11. [9] Suppose that (V, κ̃)D is a soft topological space and L̃D ∈ S(V)D. Then,
the closure of L̃D with respect to the topology κd is the soft set Clκd(L̃D), where Clκd(L̃D) =
{(v, Clκd(L(d))) : for all d ∈ D}.

Proposition 2. [9] For any soft topological space (V, κ̃)D and L̃D ∈ S(V)D, we have Clκd(L̃D)
⊆̃ Clκ̃(L̃D).

Proposition 3. [9] Suppose that (V, κ̃)D is a soft topological space and L̃D ∈ S(V)D. Then,
Clκd(L̃D) = Clκ̃(L̃D) if and only if Clκd(L̃D) is a soft closed set.

Theorem 3. [11] Suppose that (V, κ̃1)D and (Z, κ̃2)E are two soft topological spaces. Suppose that
λ : V → Z and µ : D → E are two mappings. Then, a map Υλ,µ : S(V)D → S(Z)E is said to be
soft continuous if and only if for all Q̃E ∈ κ̃2, Υ−1

λ,µ(Q̃E) ∈ κ̃1.

Definition 12. [12] Suppose that (V, κ̃1)D and (Z, κ̃2)E are two soft topological spaces. Suppose
that λ : V → Z and µ : D → E are two mappings. Then, a map Υλ,µ : S(V)D → S(Z)E is said to
be a soft homeomorphism if

1. Υλ,µ is soft continuous;
2. Υλ,µ is bijection;
3. Υ−1

λ,µ is soft continuous.

Definition 13. [9] Let (V, κ̃)D be a soft topological space and M be a nonempty subset of V. Then,
the soft relative topology on M is defined as:

κ̃M = {ÑD : N(d) = L(d) ∩M for all d ∈ D and L̃D ∈ κ̃}.

Now, we state the main definitions of soft separation axioms with respect to ordinary
points in V, which were introduced in [9].

Definition 14. Suppose that (V, κ̃)D is a soft topological space.
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1. (V, κ̃)D is said to be a soft T0-space if for any two distinct points v, w ∈ V, there exists a soft
open set L̃D such that either v ∈ L̃D and w /∈ L̃D or v /∈ L̃D and w ∈ L̃D.

2. (V, κ̃)D is said to be a soft T1-space if for any two distinct points v, w ∈ V, there exist two
soft open sets L̃D and Q̃D such that v ∈ L̃D, w /∈ L̃D and v /∈ Q̃D, w ∈ Q̃D.

3. (V, κ̃)D is said to be a soft T2-space if for any two distinct points v, w ∈ V, there exist two
soft open sets L̃D and Q̃D such that v ∈ L̃D, w ∈ Q̃D, and L̃D ∩̃ Q̃D = Φ̃D.

4. (V, κ̃)D is said to be a soft regular space if for any soft closed set T̃D and v /∈ T̃D, there exist
two soft open sets L̃D and Q̃D such that v ∈ L̃D, T̃D ⊆̃ Q̃D, and L̃D ∩̃ Q̃D = Φ̃D.

5. (V, κ̃)D is said to be a soft normal space if for any two soft disjoint closed sets R̃D and T̃D
in κ̃, there exist two soft open sets L̃D and Q̃D such that R̃D ⊆̃ L̃D, T̃D ⊆̃ Q̃D, and L̃D ∩̃
Q̃D = Φ̃D.

Definition 15. Suppose that (V, κ̃)D is a soft topological space.

1. (V, κ̃)D is said to be a soft T3-space if it is both soft T1-space and soft regular space.
2. (V, κ̃)D is said to be a soft T4-space if it is both soft T1-space and soft normal space.

3. A New Approach for Constructing a Soft Topology from an Ordinary Topology

This section is focused on introducing a soft topology that is generated by soft single
points on V in relation to any ordinary topology on V. Additionally, we examine several
properties pertaining to this particular type of soft topology.

Definition 16. Suppose that (V, κ) is a topological space. We define a fixed point function for each
v ∈ V and Q ∈ κ,

L :V → P(V)

v 7−→ Q

such that Q is an open neighborhood of v in κ and L(w) = ∅ for all w 6= v. The soft set

L̃v,Q ={(v, L(v)) : v ∈ V} ∈ S(V)V

={(v, Q), (w, ∅), for all w 6= v}

is called a soft single point on V with respect to κ. The set of all soft single points on V with respect
to κ is symbolized by B.

Definition 17. Suppose that (V, κ) is a topological space. Let

B̃ = B ∪̃ Φ̃ = {L̃v,Q : for all v ∈ V and Q ∈ κ} ∪̃ Φ̃,

where Φ̃ = {(v, ∅) : for all v ∈ V}. Then, the soft topology generated by soft single points on V
with respect to κ is as follows:

κ̃ = {∪̃ L̃v,Q : L̃v,Q ∈ B̃}

and is symbolized by (STGP)(V,κ).

To clarify our terminology, V will henceforth indicate both the initial universe set and
the set of parameters. We will use the notation S(V) to represent the collection of all soft
sets over V and any soft set over V will be symbolized by L̃ instead of L̃V .

The first thing we do is to prove that κ̃ in the above definition meets the soft topol-
ogy conditions.

Theorem 4. Suppose that (V, κ) is a topological space. Then, κ̃ in Definition 17 is a soft topology
on V.
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Proof.

1. Since V ∈ κ and V is an open neighborhood for each v ∈ V, L̃v,V ∈ B̃ for all v ∈ V.
Then, their union belongs to κ̃. Thus, Ṽ = {∪̃L̃v,V : for all v ∈ V} ∈ κ̃. Also, Φ̃ ∈ κ̃ by
Definition 17.

2. Let L̃, Q̃ ∈ κ̃. Then,
L̃ = {(v, L(v)) : v ∈ V, L(v) is either an open neighborhood of v in κ or L(v) = ∅},
Q̃ = {(v, Q(v)) : v ∈ V, Q(v) is either an open neighborhood of v in κ or Q(v) = ∅}.
If L(v) and Q(v) are two open neighborhoods of v ∈ V, then L(v) ∩Q(v) is an open
neighborhood of v and L(v) ∩Q(x) ∈ κ. Thus,
L̃ ∩̃ Q̃ = {(v, L(v) ∩ Q(v)) : v ∈ V, L(v) ∩ Q(v) is either an open neighborhood of v in κ or
L(v) ∩Q(v) = ∅} ∈ κ̃.

3. Let Q̃i ∈ κ̃. Then, we have for all i, Q̃i = {∪̃ L̃v,G : L̃v,G ∈ B̃}. Since κ̃ is the union of
an arbitrary number of elements in B̃, then ∪̃

i
Q̃i ∈ κ̃.

Hence, κ̃ is a soft topology on V.

Example 2. Let V = {v, w, x} and κ = {V, ∅, {w}} be a topology on V. Then,

B̃ = {L̃v,V , L̃w,V , L̃x,V , L̃w,{w}} ∪̃ Φ̃,

where L̃v,V = {(v, V), (w, ∅), (x, ∅)} and similarly for L̃w,V , L̃x,V , and L̃w,{w}. Thus,

κ̃ =



L̃1 = {(v, V), (w, ∅), (x, ∅)}, L̃2 = {(v, ∅), (w, V), (x, ∅)},
L̃3 = {(v, ∅), (w, ∅), (x, V)}, L̃4 = {(v, ∅), (w, {w}), (x, ∅)},

L̃5 = {(v, V), (w, V), (x, ∅)}, L̃6 = {(v, V), (w, ∅), (x, V)},
L̃7 = {(v, V), (w, {w}), (x, ∅)}, L̃8 = {(v, ∅), (w, V), (x, V)},

L̃9 = {(v, ∅), (w, {w}), (x, V)}, L̃10 = {(v, V), (w, {w}), (x, V)},
L̃11 = {(v, ∅), (w, ∅), (x, ∅)}, L̃12 = {(v, V), (w, V), (x, V)}


is a soft topology on V.

Definition 18. Suppose that κ̃ is an (STGP)(V,κ). Then, each element of κ̃ is called a soft single
point open set.

Remark 3. The set B̃ in Definition 17 is a soft base of κ̃ since every soft single open set is a union
of elements from B̃.

Example 3.

• Let V be an infinite set and κ be a co-finite topology on V. Then,

B̃ = {L̃v,Q : v ∈ V, Q is an open neighborhood of v in κ} ∪̃ Φ̃

is a soft base of κ̃. Thus, κ̃ is called a soft co-finite topology generated by soft single points on V
with respect to κ.

• Let R be the set of real numbers and U be the usual topology on R. Then,

B̃ = {L̃r,Q : r ∈ R, Q is an open neighborhood of r in U} ∪̃ Φ̃

is a soft base of Ũ . Thus, Ũ is called a soft usual topology generated by soft single points on R
with respect to U .

Theorem 5. Suppose that (V, κ) is a topological space and Q ⊆ V. We assume that κ̃ is an
(STGP)(V,κ). Then, Q is an open set in κ if and only if L̃v,Q is a soft single point open set in κ̃ for
all v ∈ Q.

Proof. Necessity. Suppose that Q is an open set in κ. Then, Q is an open neighborhood for
all v ∈ Q. Thus, L̃v,Q ∈ B̃ for all v ∈ Q. Hence, L̃v,Q ∈ κ̃ for all v ∈ Q.
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Sufficiency. We assume that L̃v,Q is a soft single point open set in κ̃ for all v ∈ Q. Then,
L̃v,Q ∈ B̃ for all v ∈ Q. By the definition of B̃, Q is an open set in κ.

Theorem 6. Let κ̃1 be an (STGP)(V,κ1)
and κ̃2 be an (STGP)(V,κ2)

. Then, their intersection is an
(STGP)(V,κ1∩κ2)

.

Proof. Suppose that B̃1 = {L̃v,Q1 : for all v ∈ V and Q1 ∈ κ1}∪̃ Φ̃ and B̃2 = {L̃v,Q2 : for all
v ∈ V and Q2 ∈ κ2}∪̃ Φ̃ are soft bases of κ̃1 and κ̃2, respectively. Then,

κ̃1 ∩ κ̃2 =
{

R̃ : R̃ ∈ κ̃1 ∩ κ̃2
}

=
{

R̃ : R̃ =
{
∪̃L̃v,Q : L̃v,Q ∈ B̃1 ∩ B̃2

}}
=
{

R̃ : R̃ =
{
∪̃L̃v,Q : v ∈ V, Q ∈ κ1 ∩ κ2

}}
.

Hence, κ̃1 ∩ κ̃2 is a soft topology generated by soft single points on V with respect to
κ1 ∩ κ2.

Remark 4. If κ̃1 is an (STGP)(V,κ1)
and κ̃2 is an (STGP)(V,κ2)

, then κ̃1∪ κ̃2 is an (STGP)(V,κ1∪κ2)

in a case that κ1 ∪ κ2 is a topology on V.

Theorem 7. Let κ̃1 be an (STGP)(V,κ1)
and κ̃2 be an (STGP)(V,κ2)

. If κ1 is finer or strictly finer
than κ2, then κ̃1 is finer or strictly finer than κ̃2. We say that κ̃2 is coarser or strictly coarser than κ̃1.

Proof. Suppose that κ1 is finer or strictly finer than κ2. We assume that B̃1 and B̃2 are soft
bases of κ̃1 and κ̃2, respectively. Let R̃ ∈ κ̃2. Then,

R̃ ={∪̃L̃v,Q : L̃v,Q ∈ B̃2}
={∪̃L̃v,Q : v ∈ V, Q ∈ κ2}
={∪̃L̃v,Q : v ∈ V, Q ∈ κ1}, since κ2 ⊆ κ1.

Hence, R̃ ∈ κ̃1. This proves the theorem.

Remark 5. If κ1 and κ2 are incomparable, then κ̃1 and κ̃2 are incomparable too.

Definition 19. The relative complement of a soft single point open set is called a soft single point
closed set.

The following lemma provides evidence that De-Morgan’s laws apply to all soft sets
over V with respect to the set of parameters. The proof can be found in ([9]).

Lemma 1. Let L̃, Q̃ ∈ S(V). Then,

1. (L̃ ∪̃ Q̃)c = L̃c ∩̃ Q̃c,
2. (L̃ ∩̃ Q̃)c = L̃c ∪̃ Q̃c.

Theorem 8. Let κ̃ be an (STGP)(V,κ), where κ is a topology on V. Then,

1. Φ̃ and Ṽ are soft single point closed sets;
2. The restricted intersection of any numbers of soft single point closed sets is a soft single point

closed set;
3. The union of any two soft single point closed sets is a soft single point closed set.

Proof. It is clear by applying Theorem 4 and Lemma 1.

While the converse of Proposition 1 may not hold (as noted in [9]), our subsequent
result confirms that the converse does indeed hold in the particular situation we are
considering.
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Theorem 9. Let (V, κ) be a topological space. Then, κ̃ is an (STGP)(V,κ) if and only if κv =

{L(v) : L̃ ∈ κ̃} is a topology on V for all v ∈ V.

Proof. Necessity. Suppose that κ̃ is an (STGP)(V,κ). Therefore, by Proposition 1, κv is a
topology on V for all v ∈ V.

Sufficiency. Suppose that κv = {L(v) : L̃ ∈ κ̃} is a topology on V for all v ∈ V. By the
definition of κ̃, κv = {∅ and Q, where Q is an open neighborhood of v in κ} for all v ∈ V.
For all v ∈ V, we define the soft sets L̃v,Q = {(v, Q): v ∈ Q and (w, ∅) for all w 6= v}.
Therefore, we have the set B̃ = {L̃v,Q : for all v ∈ V and Q ∈ κ} ∪̃ Φ̃. Thus, by Theorem 4,
κ̃ = {∪̃ L̃v,Q : L̃v,Q ∈ B̃} is an (STGP)(V,κ).

As Propositions 2 and 3 state, Clκd(L̃) ⊆̃ Clκ̃(L̃) for any L̃ ∈ S(V)D, and the equality
holds if and only if Clκd(L̃) is a soft closed set. However, the converse holds in general in
our specific case, as demonstrated by the following theorem.

Theorem 10. Suppose that κ̃ is an (STGP)(V,κ) and L̃ ∈ S(V). Then, Clκv(L̃) = Clκ̃(L̃).

Proof. Suppose that Clκ̃(L̃) = R̃. Then, R̃ is the smallest soft single point closed set which
contains L̃. For all v ∈ V, L(v) ⊆ R(v), and R(v) is a closed set which contains L(v) in κv.
By the definition of κ̃, we have for all closed set R(v) in κv,

{(v, R(v)) : R(v)c is an open neighborhood of v in κ and (w, ∅) for all w 6= v}

is a soft single point closed set in κ̃. Since R̃ is the smallest soft single point closed set which
contains L̃, then R(v) is the smallest closed set which contains L(v) in κv for all v ∈ V.
Therefore, Clκv(L̃) = R̃.

Now, we introduce the definition of the closure of any L̃ ∈ S(V) with respect to any
ordinary topology on V.

Definition 20. Let (V, κ) be a topological space. Let L̃ ∈ S(V). Then, the closure of L̃ with respect
to κ is defined as:

Clκ(L̃) = {(v, Clκ(L(v)) : v ∈ V},

where Clκ(L(v)) is the closure of L(v) in κ.

In the theorem that follows, we describe the relationship between Clκ(L̃) and Clκ̃(L̃)
for any L̃ ∈ S(V).

Theorem 11. Let κ̃ be an (STGP)(V,κ) and L̃ ∈ S(V). Then, Clκ(L̃) ⊆̃ Clκ̃(L̃).

Proof. We assume that Clκ(L̃) = R̃. Then, Clκ(L(v)) = R(v) for all v ∈ V. Therefore, for
all v ∈ V, R(v) is the smallest closed set which contains L(v) in κ. Now, if Clκv(L̃) = Q̃,
then L(v) ⊆ Q(v) for all v ∈ V, and Q(v) is a closed set which contains L(v) in κ. This
implies that R(v) ⊆ Q(v) since R(v) is the smallest closed set which contains L(v) in κ for
all v ∈ V. Thus, Clκ(L̃) ⊆̃ Clκv(L̃). Hence, by Theorem 10, Clκ(L̃) ⊆̃ Clκ̃(L̃).

Corollary 1. Let κ̃ be an (STGP)(V,κ) and L̃ ∈ S(V). Then Clκ̃(Clκ(L̃)) = Clκ̃(L̃).

Proof. We have by Theorem 11, L̃ ⊆̃ Clκ(L̃) ⊆̃ Clκ̃(L̃). Then,

Clκ̃(L̃) ⊆̃ Clκ̃(Clκ(L̃)) ⊆̃ Clκ̃(Clκ̃(L̃)) = Clκ̃(L̃).

Hence, Clκ̃(Clκ(L̃)) = Clκ̃(L̃).

In general, Theorem 11 cannot be reversed, as shown by the following example.
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Example 4. Let κ and κ̃ be the same as in Example 2.
Let L̃ = {(v, {v}), (w, {w}), (x, {w})} ∈ S(V). Then,

Clκ̃(L̃) = {(v, V), (w, V), (x, V)} and Clκ(L̃) = {(v, {v, x}), (w, V), (x, V)}.

Hence, Clκ(L̃) ⊂̃ Clκ̃(L̃) and Clκ(L̃) 6= Clκ̃(L̃).

Theorem 12. Let κ̃ be an (STGP)(V,κ) and L̃ ∈ S(V). Then, L̃ is a soft single point closed set if
and only if Clκ(L̃) = Clκ̃(L̃) = L̃.

Proof. Necessity. Suppose that L̃ is a soft single point closed set. Then, Clκ̃(L̃) = L̃. Since L̃
is soft single point closed set, L(v) is a closed set in κ for all v ∈ V by the definition of κ̃.
Thus, Clκ(L̃) = L̃ = Clκ̃(L̃).

Sufficiency. It is clear.

Corollary 2. Let κ̃ be an (STGP)(V,κ) and L̃ ∈ S(V). Then, Clκ(Clκ̃(L̃)) = Clκ̃(L̃).

Proof. Since Clκ̃(L̃) is a soft single point closed set, by Theorem 12, Clκ(Clκ̃(L̃)) = Clκ̃(L̃).

Theorem 13. Let κ̃ be an (STGP)(V,κ) and L̃ ∈ S(V). Then, Clκ(L̃) is a soft single point closed
set if and only if Clκ(L̃) = Clκ̃(L̃).

Proof. Necessity. Suppose that Clκ(L̃) = R̃ and R̃ is a soft single point closed set. Then, R̃
is a soft single point closed set which contains L̃. If Clκ̃(L̃) = Q̃, then Q̃ is the smallest soft
single point closed set which contains L̃. Thus, Q̃ ⊆ R̃ since Q̃ is the smallest soft single
point closed set which contains L̃. Therefore, Clκ̃(L̃) ⊆̃ Clκ(L̃). By Theorem 11, we obtain
Clκ(L̃) = Clκ̃(L̃).

Sufficiency. It is clear.

Now, we proceed to define the interior of any L̃ ∈ S(V) with respect to any ordinary
topology on V.

Definition 21. Suppose that (V, κ) is a topological space and L̃ ∈ S(V). Then, the interior of L̃
with respect to κ is defined as:

Intκ(L̃) = {(v, Intκ(L(v)) : v ∈ V},

where Intκ(L(v)) is the interior of L(v) in κ.

Theorem 14. Let κ̃ be an (STGP)(V,κ) and L̃ ∈ S(V). The interior of L̃ with respect to the
topology κv is the soft set Intκv(L̃), where Intκv(L̃)(v) = Intκ(L(v)) for all v ∈ V. Then,
Intκv(L̃) = Intκ̃(L̃).

Proof. Suppose that Intκ̃(L̃) = R̃. Then, R̃ is the largest soft single point open set which
contained in L̃. Therefore, R(v) ⊆ L(v) for all v ∈ V, and R(v) is an open set which
contained in L(v) in κv. By the definition of κ̃, we have for all open set R(v) in κv,

{(v, R(v)) : R(v) is an open neighborhood of v in κ and (w, ∅) for all w 6= v}

is a soft single point open set. Since R̃ is the largest soft single point open set which
contained in L̃, then R(v) is the largest open set which contained in L(v) in κv for all v ∈ V.
Therefore, Intκv(L̃) = R̃.

The relationship between Intκ(L̃) and Intκ̃(L̃) for any L̃ ∈ S(V) is explained in the
following theorem.

Theorem 15. Let κ̃ be an (STGP)(V,κ) and L̃ ∈ S(V). Then, Intκ̃(L̃) ⊆̃ Intκ(L̃).
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Proof. Suppose that Intκ̃(L̃) = R̃. Then R̃ is the largest soft single point open set which
contained in L̃. Therefore, R(v) ⊆ L(v) for all v ∈ V. By the definition of κ̃, R(v) is an open
neighborhood of v in κ which contained in L(v) for all v ∈ V. Now, if Intκ(L̃) = Q̃, then
Q(v) is the the largest open neighborhood of v in κ which is contained in L(v) for all v ∈ V.
Therefore, R(v) ⊆ Q(v) since Q(v) is the the largest open neighborhood of v in κ which
contained in L(v) for all v ∈ V. Hence, Intκ̃(L̃) ⊆̃ Intκ(L̃).

Corollary 3. Suppose that κ̃ is an (STGP)(V,κ) and L̃ ∈ S(V). Then, Intκ̃(Intκ(L̃)) = Intκ̃(L̃).

Proof. By Theorem 15, we have Intκ̃(L̃) ⊆̃ Intκ(L̃) ⊆̃ L̃. Then,

Intκ̃(Intκ̃(L̃)) = Intκ̃(L̃) ⊆̃ Intκ̃(Intκ(L̃)) ⊆̃ Intκ̃(L̃).

Thus, Intκ̃(Intκ(L̃)) = Intκ̃(L̃).

From the following example, it is evident that the converse of Theorem 15 is not true
in general.

Example 5. Let κ and κ̃ be the same as in Example 2.

Let L̃ = {(v, {v, w}), (w, {w}), (x, {w})} ∈ S(V). Then,

Intκ̃(L̃) = {(v, ∅), (w, {w}), (x, ∅)} and Intκ(L̃) = {(v, {w}), (w, {w}), (x, {w})}.

Hence, Intκ̃(L̃) ⊂̃ Intκ(L̃) and Intκ(L̃) 6= Intκ̃(L̃).

Theorem 16. Let κ̃ be an (STGP)(V,κ) and L̃ ∈ S(V). Then, L̃ is a soft single point open set if
and only if Intκ̃(L̃) = Intκ(L̃) = L̃.

Proof. Necessity. Suppose that L̃ is a soft single point open set. By the definition of κ̃, L(v)
is an open set in κ for all v ∈ V. Then, Intκ(L̃) = L̃ = Intκ̃(L̃).

Sufficiency. It is clear.

Corollary 4. Suppose that κ̃ is an (STGP)(V,κ) and L̃ ∈ S(V). Then Intκ(Intκ̃(L̃)) = Intκ̃(L̃).

Proof. Since Intκ̃(L̃) is a soft single point open set, by Theorem 16, Intκ(Intκ̃(L̃)) =
Intκ̃(L̃).

Theorem 17. Let κ̃ be an (STGP)(V,κ). Then, Intκ(L̃) is a soft single point open set if and only if
Intκ(L̃) = Intκ̃(L̃).

Proof. Necessity. Suppose that Intκ(L̃) = R̃ and R̃ is a soft single point open set. Then, R̃ is
a soft single point open set which is contained in L̃. If Intκ̃(L̃) = Q̃, then Q̃ is the largest
soft single point open set which is contained in L̃. Therefore, R̃ ⊆̃ Q̃ since Q̃ is the largest
soft single point open set which is contained in L̃. It follows that Intκ(L̃) ⊆̃ Intκ̃(L̃). Thus,
by Theorem 15, we obtain Intκ(L̃) = Intκ̃(L̃). Sufficiency. It is clear.

Suppose that κ1 is a topology on V and κ2 is a topology on Z. We assume that κ̃1 is an
(STGP)(V,κ1)

and κ̃2 is an (STGP)(Z,κ2)
. We study whether κ1 and κ2 being homeomorphic

as topological spaces implies that κ̃1 and κ̃2 are homeomorphic as soft topological spaces. In
our situation, where V and Z are treated as initial universe sets and the sets of parameters,
Definition 6 specifies that we should only consider the mapping λ =: µ : V → Z.

Theorem 18. Suppose that (V, κ1) and (Z, κ2) are two topological spaces. Let κ̃1 be an (STGP)(V,κ1)

and κ̃2 be an (STGP)(Z,κ2)
. Let λ : V → Z be a map and Υλ : S(V) → S(Z) be an associated

map. Then, Υλ is a soft continuous map if and only if the map λ is continuous.
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Proof. Necessity. Suppose that Υλ is a soft continuous map. Let Q be a nonempty open set in κ2,
L̃z,Q = {(z, Q) : Q is an open neighborhood of z in κ2 and L(w) = ∅ for all w 6= z} ∈ κ̃2.
Since Υλ is a soft continuous map, Υ−1

λ (L̃z,Q) ∈ κ̃1. By Remark 1, we have for all v ∈ V,

Υ−1
λ (L̃z,Q)(v) = λ−1(L(λ(v))) ∈ κ1, where λ(v) ∈ Z.

Then, we have two cases:

• If λ(v) = z, then λ−1(L(λ(v))) = λ−1(Q) ∈ κ1.
• If λ(v) 6= z, then λ−1(L(λ(v))) = λ−1(∅) ∈ κ1.

Since Q is an open neighborhood of z in κ2, then λ−1(L(λ(v))) = λ−1(Q) ∈ κ1. Hence,
λ is a continuous map.

Sufficiency. Suppose that λ is a continuous map. Then, for all Q ∈ κ2, λ−1(Q) ∈ κ1.
Let Q̃ be a soft single point open set in κ̃2. Then, we can write Q̃ as follows:

Q̃ = {(w, Q(w)) : Q(w) is either an open neighborhood of w in κ1 or Q(w) = ∅}.

By Remark 1, for all v ∈ V,

Υ−1
λ (Q̃)(v) = λ−1(Q(λ(v))), λ(v) ∈ Z.

Since λ is a continuous map, then λ−1(Q(λ(v))) ∈ κ1 for all v ∈ V. Then, we have
two cases:

• If λ(v) ∈ Q(λ(v)), then λ−1(Q(λ(v))) is an open neighborhood of v in κ1.
• If Q(λ(v)) = ∅, then λ−1(Q(λ(v))) = ∅.

Thus, Υ−1
λ (Q̃) ∈ κ̃1. Hence, Υλ is a soft continuous map.

Theorem 19. Suppose that κ̃1 is an (STGP)(V,κ1)
and κ̃2 is an (STGP)(Z,κ2)

. If κ1 and κ2 are
homeomorphic, then κ̃1 and κ̃2 are soft homeomorphic.

Proof. Suppose that κ1 and κ2 are homeomorphic. Then, we have a homeomorphism
map λ : V → Z. By Remark 1, Υλ : S(V) → S(Z) is a bijection map since λ is a bijection
map. By Theorem 18, Υλ : S(V) → S(Z) and Υ−1

λ : S(Z) → S(V) are soft continuous
maps since λ : V → Z and λ−1 : Z → V are continuous maps. Hence, κ̃1 and κ̃2 are soft
homeomorphic.

Suppose that M is a nonempty subset of V and κ̃ is an (STGP)(V,κ). By using Defini-
tion 13, we obtain a soft relative topology on M that has soft open sets L̃, and L(m) may
not be an open neighborhood of m in κ. So, we recast the definition of the soft relative
topology to obtain a soft relative topology generated by soft single points, with respect to
an ordinary relative topology, as follows:

Definition 22. Let κ̃ be an (STGP)(V,κ). Let M ⊆ V and κM be a relative topology on M. Then,

κ̃M = {∪̃L̃v,Q : L̃v,Q ∈ B̃M}

is called a soft relative topology generated by soft single points on M with respect to κM, where
B̃M = {L̃v,Q : v ∈ M, Q is an open neighborhood of v in κM} ∪̃ Φ̃M.

Theorem 20. Suppose that M ⊆ V. Let κ̃ be an (STGP)(V,κ) and κ̃M be a soft relative topology
generated by soft single points on M with respect to κM. Then, Q̃ is a soft single point open set in
κ̃M if and only if there exists a soft single point open set L̃ in κ̃ such that

Q̃ = L̃ ∩̃ M̃, M̃ = {(v, M) : for all v ∈ M}.

Proof. Necessity. Suppose that Q̃ is a soft single point open set in κ̃M. Then, we can write
Q̃ as follows:

Q̃ = {(v, Q(v)) : Q(v) is either an open neighborhood of v in κM or Q(v) = ∅, v ∈ M}.
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Since Q(v) is an open set in κM, there exists an open set L ∈ κ such that Q(v) = M ∩ L.
Therefore, Q̃ = {(v, M ∩ L) : v ∈ M ∩ L or M ∩ L = ∅, L ∈ κ}. Thus, Q̃ = L̃ ∩̃ M̃, where
L̃ = {(v, L) : v ∈ V, L is either an open neighborhood of v in κ or L = ∅}. Hence, L̃ is a
soft single point open set in κ̃.

Sufficiency. Suppose that Q̃ = L̃ ∩̃ M̃, where L̃ is a soft single point open set in κ̃. Since
L̃ ∈ κ̃, we can write L̃ as follows:

L̃ = {(v, L(v)) : v ∈ V, L(v) is either an open neighborhood of v in κ or L(v) = ∅}.

Then, Q̃ = {(v, L(v)) : v ∈ V, L(v) is either an open neighborhood of v in κ or
L(v) = ∅} ∩̃ {(v, M) : for all v ∈ M}. Since L(v) ∈ κ, then Q(v) = L(v) ∩ M ∈ κM. Thus,

Q̃ = {(v, Q(v)) : Q(v) is either an open neighborhood of v in κM or Q(v) = ∅}.

Hence, Q̃ is a soft single point open set in κ̃M.

Theorem 21. Suppose that M ⊆ V. Let κ̃ be an (STGP)(V,κ) and κ̃M be a soft relative topology
generated by soft single points on M with respect to κM. Then, Q̃ is a soft single point closed set in
κ̃M if and only if there exists a soft single point closed set L̃ in κ̃ such that

Q̃ = L̃ ∩̃ M̃, M̃ = {(v, M) for all v ∈ M}.

Proof. Necessity. Suppose that Q̃ is a soft single point closed set in κ̃M. Then, we can write
Q̃ as follows:

Q̃ = {(v, Q(v)) : Q(v)c is either an open neighborhood of v in κM or Q(v)c = ∅, v ∈ M}.

Since Q(v) is a closed set in κM, then there exists a closed set L ∈ κ such that Q(v) =
M ∩ L. Also, since Q(v)c = M−Q(v), Q(v)c = M ∩ (L ∩M)c = M ∩ Lc. Then,

Q̃ = {(v, M ∩ L) : v ∈ M ∩ Lc or M ∩ Lc = ∅, L ∈ κ}.

Thus, Q̃ = L̃ ∩̃ M̃, where L̃ = {(v, L) : v ∈ V, Lc is either an open neighborhood of v
in κ or Lc = ∅}. Hence, L̃ is a soft single point closed set in κ̃.

Sufficiency. Suppose that Q̃ = L̃ ∩̃ M̃, where L̃ is a soft single point closed set in κ̃. So,
we can write L̃ as follows:

L̃ = {(v, L(v)) : v ∈ V, L(v)c is either an open neighborhood of v in κ or L(v)c = ∅}.

Therefore, Q̃ = {(v, L(v)) : v ∈ V, L(v)c is either an open neighborhood of v in κ or
L(vc) = ∅} ∩̃ {(v, M) : for all v ∈ M}. Then Q(v) = L(v) ∩M for all v ∈ M. Since L(v) is
a closed set in κ, then Q(v) is a closed set in κM for all v ∈ M. Thus,

Q̃ = {(v, Q(v)) : Q(v)c is either an open neighborhood of v in κM or Q(v)c = ∅}.

Hence, Q̃ is a soft single point closed set in κ̃M.

4. Soft Separation Axioms

The focus of this section is on the soft separation axioms of a soft topology κ̃, which is
generated by soft single points on V with respect to a topology κ on V. We aim to analyze
whether the soft topology κ̃ inherits the soft separation axioms from κ and to examine the
conditions that must be met for κ̃ to satisfy these axioms.

Theorem 22. Let κ̃ be an (STGP)(V,κ). Then, κ̃ is a soft T0-space if and only if κ is a T0-space.

Proof. Necessity. Suppose that κ̃ is a soft T0-space. Then, for all w, x ∈ V such that w 6= x,
there exists a soft single point open set L̃ such that w ∈ L̃ and x /∈ L̃ or w /∈ L̃ and x ∈ L̃. We
assume that w ∈ L̃ and x /∈ L̃. Then, w ∈ L(v) for all v ∈ V and x /∈ L(v) for some v ∈ V,
say L(v) = Q. By the definition of κ̃, Q is an open set in κ. Therefore, we have the open set
Q in κ such that w ∈ Q and x /∈ Q. Hence, κ is a T0-space.
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Sufficiency. Suppose that κ is a T0-space. Then, for all w, x ∈ V such that w 6= x, there
exists an open set Q in κ such that w ∈ Q and x /∈ Q or w /∈ Q and x ∈ Q. We assume that
w ∈ Q and x /∈ Q. Therefore, L̃w,Q = {(w, Q) and (v, ∅) for all v 6= w} ∈ κ̃. Also, we have
R̃ = {(w, ∅) and (v, V) for all v 6= w} ∈ κ̃. Then, T̃ = L̃w,Q ∪̃ R̃ = {(w, Q) and (v, V) for
all v 6= w} ∈ κ̃. It follows that w ∈ T̃ since w ∈ Q and w ∈ V and x /∈ T̃ since x /∈ Q. Hence,
κ̃ is a soft T0-space.

Theorem 23. Let M be a nonempty subset of V. Let κ̃ be an (STGP)(V,κ) and κ̃M be an (STGP)(M,κM).
If κ̃ is a soft T0-space, then κ̃M is a soft T0-space.

Proof. It follows from Theorem 22 and the fact that a T0-separation axiom has a hereditary
property in the ordinary topology.

The subsequent theorem provides clarity that a T1-separation axiom yields identical
results.

Theorem 24. Let κ̃ be an (STGP)(V,κ). Then, κ is a T1-space if and only if κ̃ is a soft T1-space.

Proof. It is similar to the proof of Theorem 22.

Theorem 25. Let M be a nonempty subset of V. Let κ̃ be an (STGP)(V,κ) and κ̃M be an (STGP)(M,κM).
If κ̃ is a soft T1-space, then κ̃M is a soft T1-space.

Proof. It follows from Theorem 24 and the fact that a T1-separation axiom has a hereditary
property in the ordinary topology.

If V has more than one element, then κ̃ cannot be a soft T2-space even if κ is a T2-space,
as stated by the following theorem.

Theorem 26. Let V be a set with at least two elements and κ̃ be an (STGP)(V,κ). Then, κ̃ does not
meet the requirements of a soft axiom T2.

Proof. Let w, x be any two distinct elements in V. We assume that there exist two soft
single point open sets L̃ and Q̃ such that w ∈ L̃, x ∈ Q̃, and L̃ ∩̃ Q̃ = Φ̃. Since L̃, Q̃ ∈ κ̃, we
can write them as follows:

L̃ = {(v, L(v)) : v ∈ V, L(v) is either an open neighborhood of v in κ or L(v) = ∅},

Q̃ = {(v, Q(v)) : v ∈ V, Q(v) is either an open neighborhood of v in κ or Q(v) = ∅}.

Since w ∈ L̃ and x ∈ Q̃, L(v) and Q(v) cannot be empty sets for all v ∈ V. By
the definition of κ̃, we have Q(w) and L(w) are open neighborhoods of w in κ. Thus,
L(w) ∩ Q(w) 6= ∅ since it is the intersection of two open neighborhoods of w. It follows
that L̃ ∩̃ Q̃ 6= Φ̃. This is a contradiction. Hence, κ̃ is not a soft T2-space.

The following theorem presents the condition that establishes κ̃ as a soft regular space.

Theorem 27. Let κ̃ be an (STGP)(V,κ). Then, κ̃ is a soft regular space if and only if V is a singleton.

Proof. Necessity. Suppose that κ̃ is a soft regular space. We assume that V is not a singleton.
Let v ∈ V and v /∈ Q̃, where Q̃ is a nonempty soft single point closed set. Then, there exist
two soft single point open sets L̃ and R̃ such that v ∈ L̃, Q̃ ⊆̃ R̃, and L̃ ∩̃ R̃ = Φ̃. Since v ∈ L̃,
L(v) 6= ∅ for all v ∈ V. Also, since Q̃ ⊆̃ R̃, R(v) 6= ∅ for some v ∈ V. Then, there exists at
least one element v ∈ V such that R(v) 6= ∅ and L(v) 6= ∅. It follows that L(v)∩ R(v) 6= ∅
since it is intersection of two open neighborhoods of v in κ. Thus, L̃ ∩̃ R̃ 6= Φ̃. This is a
contradiction. Hence, V must be a singleton.

Sufficiency. Suppose that V is a singleton. Then, κ = {V, ∅} is the only topology on V.
Thus, κ̃ = {Ṽ, Φ̃} is an (STGP)(V,κ), and it is a soft regular space.
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In the case V has more than one element, the example that follows demonstrates that
κ is a regular space, while κ̃ fails to be considered a soft regular space.

Example 6. Let V = {v, w} and κ = {V, φ, {v}, {w}} be a topology on V. Then,

B̃ = {L̃v,V , L̃w,V , L̃v,{v}, L̃w,{w}} ∪̃ Φ̃,

is a soft base of κ̃. It is clear that κ is a regular space. We have Q̃ = {(v, {w}), (w, V)} is a
soft single point closed set in κ̃ and v /∈ Q̃. Then, there exist only two soft single point open sets
L̃ = {(v, {v}), (w, V)} and Ṽ such that v ∈ L̃ and v ∈ Ṽ. However, Ṽ is the only soft single point
open set which contains Q̃. We note that L̃ ∩̃ Ṽ 6= Φ̃. Thus, κ̃ is not a soft regular space.

Remark 6. We note that κ̃ is a soft T3-space if and only if V is a singleton.

Our investigation currently focuses on exploring the specific conditions or criteria that
determine whether κ̃ can be classified as a soft normal space.

Theorem 28. Let κ̃ be an (STGP)(V,κ). If κ̃ is a soft normal space, then κ is a normal space.

Proof. We assume that κ̃ is a soft normal space. Let Q1 and Q2 be two nonempty disjoint
closed sets in κ. Then,

Q̃1 = {(v, Q1) : Qc
1 is an open neighborhood of v in κ and (w, ∅) for all w 6= v} and

Q̃2 = {(v, Q2) : Qc
2 is an open neighborhood of v in κ and (w, ∅) for all w 6= v}

are two nonempty soft single point closed sets. Therefore, Q̃1 ∩̃ Q̃2 = Φ̃ since Q1 and Q2
are nonempty disjoint closed sets. Since κ̃ is soft normal space, there exist two soft single
point open sets L̃1 and L̃2 such that Q̃1 ⊆̃ L̃1, Q̃2 ⊆̃ L̃2, and L̃1 ∩̃ L̃2 = Φ̃. Thus,

Q1 ⊆ L1(v), Q2 ⊆ L2(v), and L1(v) ∩ L2(v) = ∅.

By the definition of κ̃, L1(v) and L2(v) are open sets in κ. Hence, κ is a normal
space.

The reversal of Theorem 28 is not generally valid, as evidenced by the following
instance.

Example 7. Let V = {v, w, x} and κ = {V, φ, {v}, {x}, {v, x}, {w, x}} is a topology on V. It is
clear that κ is a normal space. Then,

B̃ = {L̃v,V , L̃w,V , L̃x,V , L̃v,{v}, L̃v,{v,x}, L̃x,{x}, L̃x,{v,x}, L̃x,{w,x}, L̃x,{w,x}} ∪̃ Φ̃,

is a soft base of κ̃. Therefore,

Q̃1 = {(v, ∅), (w, {v}), (x, {w})} and Q̃2 = {(v, {w}), (w, ∅), (x, {v})}

are soft single point closed sets and Q̃1 ∩̃ Q̃2 = Φ̃. Thus,

L̃1 = {(v, ∅), (w, V), (x, {w, x})} and L̃2 = {(v, V), (w, ∅), (x, {v, x})},

are the smallest soft single point open sets which contain Q̃1 and Q̃2, respectively. Therefore,

Q̃1 ⊆̃ L̃1, Q̃2 ⊆̃ L̃2, and L̃1 ∩̃ L̃2 6= Φ̃.

Hence, κ̃ is not a soft normal space.

Definition 4 illustrates the concept of soft disjointness between two soft sets. Specifi-
cally, let L̃ = {(v, L(v)) : v ∈ V and L(v) ⊆ V} and Q̃ = {(v, G(v)) : v ∈ V and G(v) ⊆ V}
be two soft sets over V such that for all v ∈ V, either L(v) = ∅ while Q(v) 6= ∅ or the other
way around. In this case, we say that L̃ and Q̃ are soft absolutely disjoint sets.

Our attention shifts to a case where κ̃ is a soft normal space, as we explore in the
following theorem.
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Theorem 29. Let κ̃ be an (STGP)(V,κ). Then, all soft disjoint single point closed sets are soft
absolutely disjoint sets in κ̃ if and only if κ̃ is a soft normal space.

Proof. Necessity. Suppose that Q̃1 and Q̃2 are two soft disjoint single point closed sets. We
assume that they are soft absolutely disjoint sets. Then, we can write them as follows:

Q̃1 = {(v, Q1(v)) : v ∈ V and Q1(v) ⊆ V} and

Q̃2 = {(v, Q2(v)) : v ∈ V and if Q1(v) 6= ∅, then Q2(v) = ∅}.

Therefore, there exist two soft single point open sets L̃1 and L̃2 defined as:

L1(x) =

{
V if Q1(v) 6= ∅,
∅ if Q1(v) = ∅.

, L2(x) =

{
V if Q2(v) 6= ∅,
∅ if Q2(v) = ∅.

It is clear that Q̃1 ⊆̃ L̃1, Q̃2 ⊆̃ L̃2, and L̃1 ∩̃ L̃2 = Φ̃. Hence, κ̃ is a soft normal space.
Sufficiency. Suppose that κ̃ is a soft normal space. Then, for any two soft disjoint single

point closed sets Q̃1 and Q̃2, there exist two soft single point open sets L̃1 and L̃2 such that
Q̃1 ⊆̃ L̃1, Q̃2 ⊆̃ L̃2, and L̃1 ∩̃ L̃2 = Φ̃. Since Q̃1 and Q̃2 are soft single point closed sets, and
we can write them as follows:

Q̃1 = {(v, Q1(v)), Q1(v)c is either an open neighborhood of v in κ or Q1(v)c = ∅},

Q̃2 = {(v, Q2(v)), Q2(v)c is either an open neighborhood of v in κ or Q2(v)c = ∅}.

We assume that Q̃1 and Q̃2 are not soft absolutely disjoint sets. Then, for some v ∈ V,
we have Q1(v) 6= ∅ and Q2(v) 6= ∅. Since Q̃1 ⊆̃ L̃1 and Q̃2 ⊆̃ L̃2, then Q1(v) ⊆ L1(v) 6= ∅
and Q2(v) ⊆ L2(v) 6= ∅ for some v ∈ V. Thus, L1(v) ∩ L2(v) 6= ∅ for some v ∈ V since
it is intersection of two open neighborhoods of v in κ. Therefore, L̃1 ∩̃ L̃2 6= Φ̃. This is a
contradiction. Hence, Q̃1 and Q̃2 must be soft absolutely disjoint sets.

Remark 7. We note that κ̃ is a soft T4-space if and if κ̃ is a soft T1-space and all soft disjoint single
point closed sets are soft absolutely disjoint sets in κ̃.

The soft normality of κ̃ does not imply that κ̃M is also a soft normal space, as illustrated
in the following instance.

Example 8. Let V = {v, w, x, y} and κ = {V, φ, {y}, {x, y}, {w, x, y}, {w, y}} be a topology on
V. Then, B̃ = {L̃v,V , L̃w,V , L̃x,V , L̃y,V , L̃y,{y}, L̃y,{w,y}, L̃y,{x,y}, L̃y,{w,x,y}, L̃w,{w,y}, L̃w,{w,x,y}, L̃x,{x,y}, L̃x,{w,x,y}} ∪̃ Φ̃

is a soft base of κ̃. It is clear that all soft disjoint single point closed sets in κ̃ are soft absolutely
disjoint sets. By Theorem 29, κ̃ is a soft normal space. Let M = {w, x, y} ⊂ V. Therefore,
κM = {M, φ, {y}, {x, y}, {w, y}} is a relative topology on M. Thus,

B̃M = {L̃w,M, L̃x,M, L̃y,M, L̃y,{y}, L̃y,{w,y}, L̃y,{x,y}, L̃w,{w,y}, L̃x,{x,y}} ∪̃ Φ̃M

is a soft base of κ̃M. We have

Q̃1 = {(w, {x}), (x, {w}), (y, {x})} and Q̃2 = {(w, ∅), (x, ∅), (y, {w})}

are soft disjoint single point closed sets in κ̃M. Thus,

L̃1 = {(w, M), (x, M), (y, {x, y})} and L̃2 = {(w, ∅), (x, ∅), (y, {w, y})},

are the smallest soft single point open sets which contain Q̃1 and Q̃2, respectively. Then,

Q̃1 ⊆̃ L̃1, Q̃2 ⊆̃ L̃2, and L̃1 ∩̃ L̃2 6= Φ̃M.

Hence, κ̃M is not a soft normal space.
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5. Conclusions

In this paper, we have introduced a new technique for constructing a soft topology on
a nonempty set V by using soft single points with respect to an ordinary topology on V.
The relationship between the soft closure (the soft interior) and the closure (the interior)
of a soft set, under both the soft topology and the corresponding ordinary topology, has
been investigated. We have demonstrated that the soft topologies that are generated by
soft single points exhibit soft homeomorphism if their corresponding ordinary topologies
are homeomorphic. In addition, a soft relative topology that arises using soft single points
with respect to an ordinary relative topology has been studied. We have examined the
soft separation axioms of this type of soft topology, specifically determining whether these
axioms are inherited from the ordinary topology or not. We have observed that this soft
topology inherits the T0 and T1 axioms from its corresponding ordinary topology, while
also being recognized as non-hausdorff space (T2space) when the set V has more than one
element. Furthermore, the conditions that are necessary for this soft topology to satisfy
the requirements of a soft regular space and a soft normal space have been examined. The
construction of a soft topology from an ordinary topology provides a means of applying the
principles of the soft topology to real-world problems. It allows for the use of soft sets in a
way that is consistent with the existing framework of an ordinary topology, making it easier
to apply soft topology concepts in practical applications. Additionally, the relationship
between the soft topology and the corresponding ordinary topology can be explored,
leading to a better understanding of the connections between the two and the properties
that are shared or differ between them. This method of constructing a soft topology from an
ordinary topology is an important step in making these tools more widely applicable and
accessible in a variety of fields. To advance this area of research, we plan to investigate and
analyze further properties of this soft topology, like soft compactness, soft connectedness,
and others. In addition, we plan to extend the study into other directions, such as geometry
and algebraic topology, to gain fresh perspectives and expand the scope of knowledge in
this field.
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List of Symbols

Symbols Descriptions Symbols Descriptions

P(V) The set of all subsets of V L(d)c The complement of a subset L(d)
V, Z Initial universe sets Φ̃D A null soft set
D, E, H Sets of parameters ṼD An absolute soft set
L̃D A soft set over V relative to D L̃ A soft set over V relative to V
S(V)D The set of all soft sets over V relative to D S(V) The set of all soft sets over V relative to V
κ An ordinary topology κ̃ A soft topology
κM A relative topology κ̃M A soft relative topology
Υλ,µ A soft mappings L̃v,Q A soft single point on V relative to κ.
Clκ̃(L̃D) A soft closure of L̃D relative to κ̃ Intκ̃(L̃D) A soft interior of L̃D relative to κ̃

Clκ(L̃D) The closure of L̃D relative to κ Intκ(L̃D) The interior of L̃D relative to κ
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