
Citation: Maluleka, R.; Ugwunnadi,

G.C.; Aphane, M. Inertial Method for

Solving Pseudomonotone Variational

Inequality and Fixed Point Problems

in Banach Spaces. Axioms 2023, 12,

960. https://doi.org/10.3390/

axioms12100960

Academic Editors: Shuechin Huang

and Yasunori Kimura

Received: 25 August 2023

Revised: 20 September 2023

Accepted: 8 October 2023

Published: 11 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Inertial Method for Solving Pseudomonotone Variational
Inequality and Fixed Point Problems in Banach Spaces
Rose Maluleka 1,2, Godwin Chidi Ugwunnadi 1,3,* and Maggie Aphane 1

1 Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University,
P.O. Box 94, Pretoria 0204, South Africa; malulekar@tut.ac.za (R.M.); maggie.aphane@smu.ac.za (M.A.)

2 Department of Mathematics and Statistics, Tshwane University of Technology, Staatsartillerie Rd,
Pretoria West, Pretoria 0183, South Africa

3 Department of Mathematics, Faculty of Science and Engineering, University of Eswatini, Private Bag 4,
Kwaluseni M201, Eswatini

* Correspondence: gcugwunnadi@uniswa.sz

Abstract: In this paper, we introduce a new iterative method that combines the inertial subgradient
extragradient method and the modified Mann method for solving the pseudomonotone variational
inequality problem and the fixed point of quasi-Bregman nonexpansive mapping in p-uniformly
convex and uniformly smooth real Banach spaces. Under some standard assumptions imposed on
cost operators, we prove a strong convergence theorem for our proposed method. Finally, we perform
numerical experiments to validate the efficiency of our proposed method.
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1. Introduction

Let C be a nonempty subset of a real Banach space E with the norm ||.|| and the duality
space E∗. We denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. For any nonlinear operator
A : C → E∗, According to Stampacchia [1], the variational inequality problem (VIP) is
defined as follows:

Find d ∈ C such that 〈A(d), e− d〉 ≥ 0 ∀ e ∈ C. (1)

We use VI(C, A) to represent the solution set of (1). The study of VIP originates from
solving a minimization problem involving infinite-dimensional functions and variational
calculus. As an analytical application of mechanics to the solution of partial differential
equations in infinite-dimensional spaces, Hartman and Stampacchia [2] initiated the system-
atic study of VIP in 1964. In 1966, Stampacchia [1] demonstrated the first VIP existence and
uniqueness solution. In 1979, Smith [3] originally used VIP to solve variational inequality
problems in finite-dimensional spaces when he formulated the traffic assignment problem.
He was unaware that his formulation was an exact variational inequality problem before
Dafermos [4] realized it in 1980 while working on traffic and equilibrium problems. Since
then, a variety of VIP models have been used in real-world settings. These models have
a rich theoretical mathematics, some intriguing crossovers between various fields, and
several significant applications in engineering and economics. Furthermore, variational
inequalities give us a tool for a wide range of issues in mathematical programming, such as
nonlinear systems of equation, issues with optimization, and fixed point theorems. Nu-
merous real-world “equilibrium” problems systematically employ variational inequalities
(see [5]).
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There are a number of well-known techniques for resolving variational inequalities.
The regularized method and the projection method are two prominent and general ap-
proaches to solving VIPs. Numerous methods have been considered and put forth to solve
the VIP (1) problem based on these directives. The extragradient method, which Korpele-
vich [6] first proposed and which was later expanded upon due to the strong assumption
of his result, uses two projections on the underlying feasible closed and convex set over
each iteration. This can have an impact on the computational effectiveness of the method.
There are ways to circumvent these problems. The first is the subgradient extragradient
technique, Algorithm 1, first proposed by Censor et al. [7]. This method substitutes a
projection onto a particular constructible half-space for the second projection onto C. They
use the following approach:

Algorithm 1: Subgradient Extragradient Technique
fn = PC(en − τAen),
Tn = {d ∈ H : 〈en − τAen − fn, d− en〉 ≤ 0},
en+1 = PTn(en − τA fn), ∀ n ≥ 0,

where τ ∈ (0, 1
L ). We are aware that several authors have studied iterative methods

for solving variational inequality problems and fixed points of nonexpansive and quasi-
nonexpansive mappings, as well as their generalizations, in real Hilbert spaces (see, for
instance [7,8] and the references therein). Bregman [9] developed methods using the Breg-
man distance function D f in (2) rather than the norm when constructing and investigating
feasibility and optimization problems. This approach was used to navigate problems that
arise when the useful illustrations of nonexpansive operators in Hilbert spaces H, such as
the metric projection PC onto a nonempty, closed, and convex subset C of H, are no longer
nonexpansive in Banach spaces. This led to the development of a growing body of research
on approximating solutions to problems involving variational inequality, fixed points, and
other issues (see, e.g., [10,11] and the references therein).

Recently, Ma et al. [12] developed the following Algorithm 2, known as the modi-
fied subgradient extragradient method, for solving variational inequality and fixed point
problems in the context of Banach space:

Algorithm 2: Modified Subgradient Extragradient Method

Let λ0 > 0, µ ∈ (0, 1). For any e0 ∈ C. Choose a nonnegative real sequence {θn}

such that
∞

∑
n=1

θn < ∞.

(Step1) Calculate fn = PC(Jen − λA(en)). If en ≡ fn and Ten = en, then stop:
en ∈ VI(C, A) ∩ F(T); otherwise, go to next step.

(Step2) Construct Tn = {e ∈ E : 〈Jen − λn A(en)− J fn, e− fn〉 ≤ 0} and compute
an = PTn(Jen − λn A fn),
bn = J−1(αn Je0 + (1− αn)an)

en+1 = J−1(βn Jan + (1− βn)J(Tbn)), ∀ n ≥ 0,

(Step3) Compute

λn+1 =

min
{

µ(||en− fn ||2+||an− fn ||2)
2〈A(en)−A( fn),an− fn〉 , λn + θn

}
, if 〈A(en)− A( fn), an − fn〉 > 0

λn + θn, otherwise.

Let n := n + 1 and return to Step 1.
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where PC is the generalized projection on E, J is the duality mapping, A : E → E∗

is the pseudomonotone mapping, and T is the nonexpansive mapping. It was proven
that the sequence {xn} generated by Algorithm 2 converges strongly to a point x∗ ∈
VI(C, A) ∩ F(T), where x∗ = PVI(C,A)∩F(T)x0, under some mild conditions, in 2-uniformly
convex real Banach spaces. For more information on the common solution of VIP and fixed
point problems in real Banach spaces, which is more general than Hilbert spaces, the reader
may refer to any of the following recent papers: [13,14].

Motivated by the above results, this paper investigates the strong convergence of the
inertial subgradient extragradient method for solving the pseudomonotone variational
inequality problem and the fixed point problem of quasi-Bregman nonexpansive mapping
in p-uniformly convex and uniformly smooth real spaces. We demonstrate that, under a
number of suitable conditions placed on the parameters, the suggested method strongly
converges to a point in VI(C, A) ∩ (F(T)). Finally, we offer a few numerical experiments
that support our main finding in comparison to previous published papers.

2. Preliminaries

Let 1 < q ≤ 2 ≤ p < ∞, where 1
p + 1

q = 1 . Consider E to be a real normed space with
dual E∗ and S := {x ∈ E : ||x|| = 1}. If for any x, y in S with x 6= y, λ ∈ (0, 1); then E is (i)
strictly convex space, if ||λx + (1− λ)y|| < 1 exists; (ii) smooth space if lim

t→0

||x+ty||−||x||
t exists

for each x, y ∈ S.
A function δE : (0, 2]→ [0, 1] defined by

δE(ε) = inf
{

1− ||x + y||
2

: x, y ∈ S(E), ||x− y|| ≥ ε
}

,

is known as the modulus of convexity. For any ε ∈ (0, 2], the space E is uniformly convex if
and only if δE(ε) > 0; additionally, E is p-uniformly convex (1 < p < ∞) if there exists a
positive constant cp such that δE(ε) ≥ cpεp, for all ε ∈ (0, 2]. As a result, each p-uniformly
convex space is also uniformly convex. The function ρE : [0, ∞)→ [0, ∞) defined by

ρE(τ) = sup
{ ||x + τy||+ ||x− y||

2
− 1 : x, y ∈ S

}
is the formula for the modulus of smoothness of E. Additionally, E is referred to as
uniformly smooth if lim

τ→0

ρE(τ)
τ = 0; if a positive real integer Cq exits such that ρE(τ) ≤ Cqτq

for any τ > 0, E is referred to as being q-uniformly smooth. As a result, each and every
q-uniformly smooth space is uniformly smooth. If and only if the dual, E∗, is p-uniformly
convex, then E is q-uniformly smooth, see [15]. It is widely known that Lp, `p, and Wm

p
are 2-uniformly convex and q-uniformly smooth for 1 ≤ q < 2; 2-uniformly smooth and
p-uniformly convex for 2 ≤ p < ∞ (see [16]). The expression,

Jp
E(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||p; ||x∗|| = ||x||p−1 ∀x ∈ E},

defines the generalized duality mapping Jp
E from E to 2E∗ . The mapping J2

E = J is frequently
referred to as the normalized duality mapping in the case where p = 2. It is common
knowledge that on bounded subsets of E, Jp

E is norm-to-norm uniformly continuous if
E is uniformly smooth. It follows that Jp

E is single-valued if E is smooth. It is well-
known that if the duality mapping Jq

E∗ from E∗ to E is injective and sujective, then E
is reflexive and strictly convex with a strictly convex dual, and Jp

E Jq
E∗ = IE∗ (identity map

in E∗) (see [17]), thus, Jp
E = (Jq

E∗)
−1. For examples of generalized duality mapping, let

a = (a1, a2, · · · ) ∈ `p(1 < p < ∞). The generalized duality mapping Jp
E in `p is therefore

defined by
Jp
E(a) = (|a1|p−1sgn(a1), |a2|p−1sgn(a2), · · · ).
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Additionally, if E = Lp[α, β](1 < p < ∞), we have the generalized duality mapping
Jp
E for any f ∈ Lp[α, β] expressed as

Jp
E(g)(s) = |g(s)|p−1sgn(g(s)), s ∈ [α, β].

We recall the following definitions, which were introduced in [18]. For any closed unit
ball B in E with radius r > 0, we have rB = {u ∈ E : ||u|| ≤ r}. If ρr(t) > 0 for every r,
t > 0, and ρr : [0, ∞)→ [0, ∞) express as

ρr(t) = inf
x,y∈rB,||x−y||=t,δ∈(0,1)

δ f (x) + (1− δ) f (y)− f (δx + (1− δ)y)
(δ(1− δ))

,

for all t ≥ 0 then, a function f : E→ R is said to be uniformly convex on bounded sets. The
ρr function is also known as the gauge of uniform convexity of f , and is well known and
nondecreasing. The following lemma, which is widely known, if f is uniformly convex, is
crucial for the verification of our main result.

Lemma 1 ([19]). Let E be a Banach spance and f : E → R a uniformly convex function on
bounded subsets of E. If r > 0 and δj ∈ (0, 1) for each i = 0, 1, 2, · · · , s with ∑s

i=0 δi = 1, we have

f
( s

∑
i=0

δixi

)
≤

s

∑
i=0

δi f (xi)− δjδkρr(||xj − xk||)

where ρr is its gauge of uniform convexity of f , for each j, k ∈ {0, 1, 2, · · · , s}, xi ∈ rB.

The Bregman distance in relation to f is given by

∆ f (x, y) = f (x)− f (y)− 〈 f ′(y), x− y〉, for every x, y ∈ E. (2)

Let fp(x) := 1
p ||x|| in particular. The derivative of the function fp is the generalized

duality mapping Jp
E from E to 2E∗ . Consequently, the Bregman distance with regard to fp is

described by

∆p(x, y) =
1
p
||x||p − 〈Jp

E(y), x〉+ 1
q
||y||p. (3)

The three-point identity, a crucial property of the Bregman distance, is defined as:

∆p(x, y) = ∆p(x, z) + ∆p(z, y) + 〈Jp
E(z)− Jp

E(y), x− z〉, ∀ x, y, z ∈ E. (4)

Due to the lack of symmetry, the Bregman distance is not a metric in the traditional
sense, but it does possess some distance-like characteristics. If E is a p-uniformly convex
space, then the Bregman distance function ∆p and the metric function satisfy the relation
shown below (see [20]), which proves to be extremely helpful in the demonstration of our
result: let τp > 0 be any fixed constant.

τp||x− y||p ≤ ∆p(x, y) ≤ 〈Jp
E(x)− Jp

E(y), x− y〉 (5)

for all x, y ∈ E. Additionally, for q > 1 and 1
p + 1

q = 1, recall from Young’s inequality, that

〈Jp
E(x), y〉 ≤ ||Jp

E(x)||||y|| ≤ 1
q
||x||p + 1

p
||y||p. (6)
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Let E be a smooth and strictly convex real Banach space and C a nonempty, closed,
and convex subset of E. The Bregman projection operator in the sense of Bregman [9] is
ΠC : E→ C defined by

ΠCx = arg min
y∈C

∆p(y, x), x ∈ E. (7)

The Bregman projection is described in the following way [21]:

〈Jp
E(x)− Jp

E(ΠCx), z−ΠCx〉 ≤ 0, ∀z ∈ C. (8)

With respect to Bregman function ∆p, we obtain

∆p(ΠCx, z) ≤ ∆p(x, z)− ∆p(x, ΠCx), ∀z ∈ C. (9)

The Bregman projection in terms of f2 and the metric projection are identical in Hilbert
spaces, but otherwise they are different. More significantly, in Banach spaces, the metric
projection cannot share the same property, (9), as the Bregman projection.

If E is smooth, strictly convex, and reflexive Banach space. We defined the function
Vp : E× E

∗ → R in relation to fp, as follows:

Vp(x, x̄) =
1
p
||x||p + 1

q
||x̄||q − 〈x, x̄〉, ∀x ∈ E, x̄ ∈ E∗, (10)

with 1
p + 1

q = 1 (see [22]). It is well known that Vp is nonnegative, and with respect to the
Bregman function, we also have

Vp(x, x̄) = ∆p(x, Jq
E∗(x̄)), ∀x ∈ E, x̄ ∈ E∗. (11)

Furthermore, Vp satisfies the following inequality:

Vp(x, x̄) ≤ Vp(x, x̄ + ȳ)− 〈ȳ, Jq
E∗(x)− x〉, ∀x ∈ E and x̄, ȳ ∈ E∗. (12)

Additionally, in the second variable and for all z ∈ E; Vp is convex, that is

∆p

(
z, Jq

E∗

( N

∑
i=1

ti J
p
E(xi)

))
≤ Vp

(
z,
( N

∑
i=1

ti J
p
E(xi)

))
=

N

∑
i=1

∆p(z, xi), (13)

where {xi}N
i=1 ⊂ E, {ti}N

i=1 ⊂ (0, 1) and ∑N
i=1 ti = 1 (see [23–25]).

We also need the nonlinear operators, which are introduced below.
If C is a nonempty subset of E, a Banach space, and T : C → E is a mapping, then

T is nonexpansive, if ||Tx − Ty|| ≤ ||x − y|| for all x, y ∈ C, and T is said to be quasi-
nonexpansive if F(T) 6= ∅ and ||Tx − q|| ≤ ||x − q|| for all x ∈ C and q ∈ F(T), where
F(T) := {x ∈ C : T(x) = x} denotes the set of fixed point of T. An element q in C is
asymptotic fixed point of T, if for any sequence {xn} in C, converges weakly to q such that
lim

n→∞
||Txn − xn|| = 0. We describe the set set of asymptotic fixed point of T by ˆF(T).

Definition 1 ([26]). Let C be a nonempty subset of a real Banach space E that is uniformly smooth
and p-uniformly convex ((0 < p < ∞)). Let T : C → E be a mapping with F(T) 6= ∅, then T is
said to be:

(n1) quasi-Bregman nonexpansive if

∆p(q, Tx) ≤ ∆p(q, x), ∀ x ∈ C, q ∈ F(T);



Axioms 2023, 12, 960 6 of 21

(n2) Bregman nonexpansive if

∆p(q, Tx) ≤ ∆p(q, x), ∀ x ∈ C, q ∈ F(T), F̂(T) = F(T);

(n3) Bregman firmly nonexpansive if, for all x, y ∈ C

〈Jp
E(Tx)− Jp

E(Ty), Tx− Ty〉 ≤ 〈Jp
E(x)− Jp

E(y), Tx− Ty〉

or equivalently,

∆p(Tx, Ty) + ∆p(Ty, Tx) + ∆p(Tx, x) + ∆p(Ty, y) ≤ ∆p(Tx, y) + ∆p(Ty, x).

The well known demiclosedness principle plays an important role in our main result.

Definition 2. Assume that C is a nonempty, closed, convex subset of a uniformly convex Banach
space E and that T : C → C is a nonlinear mapping. Then, T is called demiclosed at 0; if {xn} is a
sequence in C such that xn ⇀ x and lim

n→∞
||xn − Txn|| = 0, then x = Tx.

Next, we outline a few ideas about the monotonicity of an operator.

Definition 3. Let E be a Banach space that has E∗ as its dual. The operator A : E→ E∗ is referred
to as:

(m1) p− L-Lipschitz, if
||Ax− Ay|| ≤ L||x− y||p ∀ x, y ∈ E,

where L ≥ 0 and p ∈ [1, ∞) are two constants.
(m2) monotone, if 〈Ax− Ay, x− y〉 ≥ 0 for all x, y ∈ E;

(m3) pseudomonotone, if for all x, y ∈ E, 〈Ax, y− x〉 ≥ 0 =⇒ 〈Ay, y− x〉 ≥ 0;

(m4) weakly sequentially continuous if for any {xn} in E such that xn ⇀ x implies Axn ⇀ Ax.

It is clear that (m2)⇒ (m3); the example that follows demonstrates that the implica-
tion’s converse is not generally true. Let A(x) = 1− x for all x ∈ E := [0, 1]. Then, A is
pseudomonotone but not monotone.

When demonstrating the strong convergence of our sequence, the following result is
helpful:

Lemma 2 ([27]). Let {an} be a nonnegative sequence of real numbers, and {αn} a real sequence of
numbers in (0, 1), with

∞

∑
n=1

αn = ∞

and {bn} is a real sequence of numbers. Suppose that

an+1 ≤ (1− αn)an + αnbn, ∀n ≥ 1.

If lim sup
k→∞

bnk ≤ 0 for every subsequence {ank} of {an} satisfying the condition

lim inf
k→∞

(ank+1 − ank ) ≥ 0,

then lim
n→∞

an = 0.
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3. Main Results

For the purpose of solving pseudomonotone variational inequality and fixed point
problems, in this section, we formulate Algorithm 3, combining a modified inertial Mann-
type method with a subgradient extragradient algorithm. For the convergence of the
method, we require the following conditions:

Assumption 1. (C1) E is a p−uniformly convex real Banach space which is also uniformly smooth
and C is a nonempty, closed, and convex subset of E.

(C2) A : C → E∗ is pseudomonotone and (p− 1)− L−Lipschitz continuous on E.
(C3) A is weakly sequentially continuous; that is, for any {xn} ⊂ E, we have xn ⇀ x∗, which

implies Axn ⇀ Ax∗.

(C4) {δn} be a sequence in (a, b) for some 0 < a < b; {µn} is a positive sequence in
(

0, pτp

2p−1

)
,

where τp is defined in (5), µn = ◦(αn), where αn is a sequence in (0, 1) such that lim
n→∞

αn = 0

and ∑∞
n=1 αn = ∞.

(C5) T : E→ E is a quasi-Bregman nonexpansive mapping with F(T) 6= ∅.
(C6) Denote the set of solutions by Γ := VI(A, C) ∩ F(T) and is assumed to be nonempty. Then Γ

is closed and convex.

Now, we describe the modified inertial Mann-type subgradient extragradient methods
for finding a common solution for the fixed point problem and the pseudomonotone
variational inequality problem:

Algorithm 3: Modified Inertial Mann-type Subgradient Extragradient Method

Initialization: Choose x0, x1 ∈ E to be arbitrary, θ ∈ (0, τp), µ ∈ (0, τp) and
λ1 > 0.

Iterative Steps: Calculate xn+1 as follows:
(Step1) Given the iterates xn−1 and xn for each n ≥ 1, θ > 0, choose θn such that

0 ≤ θn ≤ θ̄n, where

θ̄n =


min{θ, µn

‖Jp
E(xn)−Jp

E(xn−1)‖
}, i f xn 6= xn−1,

θ, otherwise
(14)

(Step2) Compute{
yn = Jq

E∗ [(1− αn)[J
p
E(xn) + θn(Jp

E(xn)− Jp
E(xn−1))]],

wn = PC(Jq
E∗ [J

p
E(yn)− λn A(yn)]),

(15)

If xn = wn = yn for some n ≥ 1, then stop. Otherwise
(Step3) Construct

Tn = {y ∈ E : 〈Jp
E(yn)− λn A(yn))− wn, y− wn〉 ≤ 0}

and Compute{
vn = PTn(Jq

E∗ [J
p
E(yn)− λn A(wn)]),

xn+1 = Jq
E∗((1− δn)Jp

E(vn) + δn Jp
E(Tvn)).

(16)

where

λn+1 =


min{ µ(||yn−wn ||p+||vn−wn ||p)

min{p,q}〈A(yn)−A(wn),vn−wn〉 , λn}, if 〈A(yn)− A(wn), vn − wn〉 > 0,

λn, otherwise
(17)

Set n := n + 1 and return to Step 1.
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Lemma 3. The sequence {λn} generated by (17) is monotonically decreasing and bounded from
below by min{λ1, µ

L}.

Proof. Let x∗ ∈ Γ and un := Jq
E∗(Jp

Exn + θn(Jp
Exn − Jp

Exn−1)), then it follows from (5), (6)
and (14) that

〈Jp
Eun − Jp

Exn, un − x∗〉 ≤ ‖un − x∗‖‖Jp
Eun − Jp

Exn‖
= θn‖Jp

Exn − Jp
Exn−1‖ ‖un − x∗‖

≤ θn‖Jp
Exn − Jp

Exn−1‖
[ 1

p
‖un − x∗‖p +

1
q
]

≤ θn

p
‖Jp

Exn − Jp
Exn−1‖

[
2p−1(‖xn − un‖p + ‖xn − x∗‖p)

]
+

θn

q
‖Jp

Exn − Jp
Exn−1‖

≤ 2p−1µn

pτp

(
∆p(xn, un) + ∆p(xn, x∗)

)
+

µn

q
.

Using (4), we obtain

∆p(un, x∗)) = ∆p(xn, x∗)− ∆p(xn, un) + 〈Jp
Eun − Jp

Exn, un − x∗〉

≤
(

1 +
2p−1µn

pτp

)
∆p(xn, x∗)−

(
1− 2p−1µn

pτp

)
∆p(xn, un) +

µn

q
. (18)

Observe from (C5) that for any ε ∈
(

0, pτp

2p−1

)
, there exists a natural number N such

that for all n ≥ N
µn

αn
< ε2 which implies

µn2p−1

pτp
< αnε,

then for some M > 0, by letting σ denotes the zero vector in E, then from (13), (15) and (18),
we obtain

∆p(yn, x∗) = ∆p(Jq
E∗ [(1− αn)Jp

E(un)], x∗)

≤ (1− αn)∆p(un, x∗) + αn∆p(σ, x∗)

≤ (1− αn[1− ε])∆p(xn, x∗)− (1− αnε)∆p(xn, un)

+αn[∆p(σ, x∗) + M]. (19)

Using (8), (10) and (16), we obtain

∆p(vn, x∗) = ∆p(PTn [J
q
E∗(Jp

E(yn)− λn A(wn))], x∗)

≤ ∆p(Jq
E∗(Jp

E(yn)− λn Awn), x∗)− ∆p(Jq
E∗(Jp

E(yn)− λn A(wn)), vn)

= Vp(Jp
E(yn)− λn Awn), x∗)−Vp(Jp

E(yn)− λn A(wn)), vn)

=
1
p
||x∗||p − 〈Jp

E(yn), x∗〉+ λn〈A(wn), x∗〉+ 〈Jp
E(yn), vn〉

−λn〈A(wn), vn〉 −
1
p
||vn||p

+
1
p
||vn||p] + λn〈Jp

E(yn), x∗ − vn〉

= ∆p(yn, x∗)− ∆p(yn, vn) + λn〈A(wn), x∗ − vn〉
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Since wn = PC(Jq
E∗ [J

p
E(yn)− λn A(wn)]) is in C and A is pseudomonotone, then

〈A(wn), wn − x∗〉 ≥ 0. Thus

〈A(wn), x∗ − vn〉 ≤ 〈A(wn), wn − vn〉.

By using definition of Tn, we have

〈Jp
E(yn)− λn A(yn)− Jp

E(wn), vn − wn〉 ≤ 0

hence

〈Jp
E(yn)− λn A(wn)− Jp

E(wn), vn − wn〉
≤ λn〈A(yn)− A(wn), vn − wn〉.

Using (4), (5), (10) and (17), we obtain

∆p(vn, x∗) ≤ ∆p(yn, x∗)− ∆p(yn, vn) + λn〈A(wn), x∗ − vn〉
≤ ∆p(yn, x∗)− ∆p(yn, wn)− ∆p(wn, vn)

+λn〈A(yn)− A(wn), vn − wn〉
≤ ∆p(yn, x∗)− ∆p(yn, wn)− ∆p(wn, vn)

+
µλn

min{p, q}λn+1

(
||yn − wn||p + ||vn − wn||p

)
≤ ∆p(yn, x∗)− ∆p(yn, wn)− ∆p(wn, vn)

+
µλn

τp min{p, q}λn+1

(
∆p(yn, wn) + ∆p(wn, vn)

)
= ∆p(yn, x∗)−

(
1− µλn

τp min{p, q}λn+1

)
∆p(yn, wn)

−
(

1− µλn

τp min{p, q}λn+1

)
∆p(wn, vn) (20)

Since lim
n→∞

λn exists and µ ∈ (0, τp), then lim
n→∞

(
1− µλn

τp min{p,q}λn+1

)
= 1− µ

τp min{p,q} >

0, then for all n ≥ N, using Lemma 1 and (10), it then follows from the definition of (xn+1)
in (16), (19) and (20) that

∆p(xn+1, x∗) = Vp((1− δn)Jp
E(vn) + δn Jp

E(Tvn), x∗)

≤ 1
p
||x∗||p − (1− δn)〈Jp

E(vn), x∗〉 − δn〈Jp
E(Tvn), x∗〉+ (1− δn)

q
||Jp

E(vn)||q

+
δn

q
||Jp

E(Tvn)||q − (1− δn)δnρr(||Jp
E(vn)− Jp

E(Tvn)||)

≤ ∆p(vn, x∗)− (1− δn)δnρr(||Jp
E(vn)− Jp

E(Tvn)||) (21)

≤ (1− αn[1− ε])∆p(xn, x∗) + αn[∆p(σ, x∗) + M]

−
(

1− µλn

τp min{p, q}λn+1

)
[∆p(yn, wn) + ∆p(wn, vn)]

−(1− αnε)∆p(xn, un)− (1− δn)δnρr(||Jp
E(vn)− Jp

E(Tvn)||)
≤ (1− αn[1− ε])∆p(xn, x∗) + αn[∆p(σ, x∗) + M]

≤ max
{

∆p(xn, x∗),
[∆p(σ, x∗) + M]

1− ε

}
...

...

≤ max
{

∆p(xN , x∗),
[∆p(σ, x∗) + M]

1− ε

}
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By induction

∆p(xn, x∗) ≤ max
{

∆p(xN , x∗),
[∆p(σ, x∗) + M]

1− ε

}
n ≥ N.

Thus, {∆p(xn, x∗)} is bounded and from (5), we know that τp||xn − x∗||p ≤ ∆p(xn, x∗)
then we conclude that {xn} is bounded. This means that {vn}, {wn}, and {yn} are also
bounded.

We know the following lemma, which was essentially proved in [13], is important and
crucial in the proof of our main result.

Lemma 4 ([13], Lemma 3.4). Let {yn} and {wn} be two sequences formulated in Algorithm 3. If
there exists a subsequence {yns} of {yn} that converges weakly to a point z ∈ E and lim

s→∞
||yns −

wns || = 0, then z ∈ VI(C, A).

We demonstrate that the Algorithm 3 converges strongly under the assumptions
(C1)–(C6) based on the analysis described above and Lemma 4.

Theorem 1. Suppose that Assumption 1 holds. Then, the sequence {xn} defined by Algorithm 3
converges strongly to the unique solution of the Γ.

Proof. Let x∗ ∈ Γ, letting un := Jq
E∗(Jp

Exn + θn(Jp
Exn − Jp

Exn−1)), then using (11), (12), (15)
and (18), we obtain

∆p(yn, x∗) = Vp((1− αn)Jp
E(un), x∗)

≤ Vp(αn Jp
E(x∗) + (1− αn)Jp

E(un), x∗) + αn〈yn − x∗, Jp
E(x∗)〉

≤ (1− αn)∆p(un, x∗) + αn〈yn − x∗, Jp
E(x∗)〉

≤ (1− αn)
(

1 +
2p−1µn

pτp

)
∆p(xn, x∗) + αn〈yn − x∗, Jp

E(x∗)〉+ µn

q

−(1− αn)
(

1− 2p−1µn

pτp

)
∆p(xn, un).

For any ε > 0 such that ε ∈
(

0, pτp

2p−1

)
, there exists a natural number N such that for all

n ≥ N, we obtain

∆p(yn, x∗) ≤ (1− αn(1− ε))∆p(xn, x∗) + αn[〈yn − x∗, Jp
E〉+

µn

αnq
]

−(1− αnε)∆p(xn, un).

Using (20) and (21), it follows that

∆p(xn+1, x∗) ≤ (1− αn[1− ε])∆p(xn, x∗) + αn[〈yn − x∗, Jp
E(x∗)〉+ µn

αnq
]

−
(

1− µλn

τp min{p, q}λn+1

)
[∆p(yn, wn) + ∆p(wn, vn)]

−(1− αnε)∆p(xn, un)− (1− δn)δnρr(||Jp
E(vn)− Jp

E(Tvn)||) (22)

≤ (1− αn[1− ε])∆p(xn, x∗) + αn[〈yn − x∗, Jp
E(x∗)〉+ µn

αnq
]. (23)

Next, using Lemma 2 and (23), it remains to show that

lim sup
s→∞

〈yns − x∗, Jp
E(x∗)〉 ≤ 0
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for every subsequence {∆p(xns , x∗)} of {∆p(xn, x∗)} satisfying

lim inf
s→∞

(∆n(xns+1, x∗)− ∆p(xns , x∗)) ≥ 0.

Now, let {∆p(xns , x∗)} be a subsequence of {∆p(xn, x∗)} such that

lim inf
s→∞

(∆p(xns+1, x∗)− ∆p(xns , x∗)) ≥ 0

holds and, from (22), we denotes {Υns} as follows:

Υns := (1− αns ε)∆p(xns , uns) + (1− δns)δns ρr(||Jp
E(vns)− Jp

E(Tvns)||)

+
(

1− µλns

τp min{p, q}λns+1

)
[∆p(yns , wns) + ∆p(wns , vns)] (24)

thus, from (22), we obtain

lim sup
s→∞

Υns ≤ lim sup
s→∞

(
∆p(xns , x∗)− ∆p(xns+1, x∗)

)
+lim sup

s→∞
αns

(
||yns − x∗||||Jp

E(x∗)||+ µns

αns q
− (1− ε)∆p(xns , x∗)

)
≤ lim sup

s→∞

(
∆p(xns , x∗)− ∆p(xns+1, x∗)

)
= −lim inf

s→∞

(
∆p(xns+1, x∗)− ∆p(xns , x∗)

)
≤ 0.

Hence, lim sup
s→∞

Υns ≤ 0, which implies that lim
s→∞

Υns = 0. It follows from (24) that

lim
s→∞

∆p(xns , uns) = 0 = lim
s→∞

∆p(yns , wns) = lim
s→∞

∆p(wns , vns) (25)

and

lim
s→∞

ρr(||Jp
E(vns)− Jp

E(Tvns)||) = 0.

By the property of ρr, we obtain

lim
s→∞
||Jp

E(vns)− Jp
E(Tvns)|| = 0 (26)

and, since Jq
E∗ is uniformly continuous on a bounded subset of E∗, we obtain

lim
s→∞
||vns − Tvns || = 0. (27)

Additionally, using (5) and (25), we obtain

lim
s→∞
||xns − uns || = 0 = lim

s→∞
||yns − wns || = lim

s→∞
||wns − vns || = 0. (28)

With Jp
E being uniformly norm-to-norm continuous on bounded sets, we also have

lim
s→∞
||Jp

Exns − Jp
Euns || = 0 = lim

s→∞
||Jp

Eyns − Jp
Ewns || = lim

s→∞
||Jp

Ewns − Jp
Evns || = 0. (29)

However, we understand from the definition that yn := Jq
E∗(1 − αn)Jp

Eun, where
un = Jq

E∗ [J
p
Exn − (Jp

Exn − Jp
Exn−1)], then

||Jp
Eyn − Jp

Eun|| = αn||Jp
Eun||
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which implies from the fact lim
n→∞

αn = 0 and the boundedness of {Jp
Eun} that

lim
s→∞
||Jp

Eyns − Jp
Euns || = 0 (30)

with

||Jp
Evns − Jp

Exns || ≤ ||J
p
Evns − Jp

Ewns ||+ ||J
p
Ewns − Jp

Eyns ||+ ||J
p
Eyns − Jp

Euns ||+ ||J
p
Euns − Jp

Exns ||

it follows from (29) and (30) that

lim
s→∞
||Jp

Evns − Jp
Exns || = 0 (31)

Moreover, from (28) and (30), since Jq
E∗ is also uniformly continuous, we obtain from

(30) that

lim
s→∞
||yns − xns || = 0 (32)

and from (16), we obtain ||Jp
Exn+1 − Jp

Evn|| = δn||Jp
ETvn − Jp

Evn|| and with (26), since δn in
(0, 1) for all n ≥ 1, we obtain

lim
s→∞
||Jp

Exns+1 − Jp
Evns || = 0.

Thus, from (31), we obtain

lim
s→∞
||Jp

Exns+1 − Jp
Exns || = 0.

By uniform continuity of Jq
E∗ on a bounded subset of E∗, we conclude, respectively,

from (31),we obtain

lim
s→∞
||vns − xns || = 0 (33)

and

lim
s→∞
||xns+1 − xns || = 0.

Since {xns} is bounded, it follows that there exists a subsequence {xnsk
} of {xns}

that converges weakly to some point z in E. By using (33), we obtain vns ⇀ z; from (27)
and Definition 2, we conclude that z ∈ F(T). Furthermore, from (32), we obtain that
yns ⇀ z. This together with lim

s→∞
||yns − wns || = 0 in (28) and Lemma 4, we conclude that

z ∈ VI(C, A), therefore z ∈ Γ. Finally, using σ as a zero point in C, it follows from the
definition of the Bregman projection that

lim sup
s→∞

〈yns − x∗, Jp
E(x∗)〉 = lim

k→∞
〈ynsk

− x∗, Jp
E(x∗)〉

= 〈z− x∗, Jp
E(x∗)〉

= 〈x∗ − z, Jp
E(σ)− Jp

E(x∗)〉
≤ 0 (34)

We know from (23), that

∆p(xns+1, x∗) ≤ (1− αns [1− ε])∆p(xns , x∗) + αns [〈yns − x∗, Jp
E(x∗)〉+ µns

αns q
]. (35)
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Hence, combining (34), (35), and together with Lemma 2, we conclude that lim
n→∞

∆p(xn,

x∗) = 0, and together with the fact that τp||xn − x∗||p ≤ ∆p(xn, x∗), we obtain xn → x∗ as
n→ ∞. This complete the proof.

We obtain the following corollary from Theorem 1 by setting T = 0 in Algorithm 3.

Corollary 1. Let (C1)-(C3) of Assumption 1 hold. Choose x0, x1 ∈ E to be arbitrary, θ ∈ (0, τp),
µ ∈ (0, τp), and λ1 > 0. Calculate xn+1 as follows:

(Step1) Given the iterates xn−1 and xn for each n ≥ 1, θ > 0, choose θn such that 0 ≤ θn ≤
θ̄n, where

θ̄n =


min{θ, µn

‖Jp
E(xn)−Jp

E(xn−1)‖
}, i f xn 6= xn−1,

θ, otherwise

(Step2) Compute {
yn = Jq

E∗ [(1− αn)[J
p
E(xn) + θn(Jp

E(xn)− Jp
E(xn−1))]],

wn = PC(Jq
E∗ [J

p
E(yn)− λn A(yn)]),

If xx = wn = yn for some n ≥ 1, then stop. Otherwise
(Step3) Construct

Tn = {y ∈ E : 〈Jp
E(yn)− λn A(yn))− wn, y− wn〉 ≤ 0}

and Compute
xn+1 = PTn(Jq

E∗ [J
p
E(yn)− λn A(wn)]),

where

λn+1 =


min{ µ(||yn−wn ||p+||vn−wn ||p)

min{p,q}〈A(yn)−A(wn),vn−wn〉 , λn}, i f 〈A(yn)− A(wn), vn − wn〉 > 0,

λn, otherwise

Set n := n + 1 and return to Step 1.

Then, {xn}∞
n=0 converges strongly to a point p ∈ VI(C, A).

Next, if, in Algorithm 3, we assume that A = 0, we obtain the following corollary:

Corollary 2. Let E be a p-uniformly convex and uniformly smooth real Banach space with sequen-
tially continuous duality mapping Jp

E∗ . Let T : E→ E be a quasi-Bregman nonexpansive mapping
such that F(T) 6= ∅. Suppose {δn} is a sequence in (a, b) for some 0 < a < b and {µn} is a

positive sequence in
(

0, pτp

2p−1

)
, where τp is defined in (5), µn = ◦(αn), where αn is a sequence in

(0, 1) such that lim
n→∞

αn = 0 and ∑∞
n=1 αn = ∞. Let {xn}∞

n=0 be a sequence generated in Algorithm
4 as follows:
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Algorithm 4: First Modified Inertial Mann-type Method

Initialization: Choose x0, x1 ∈ E to be arbitrary, θ ∈ (0, τp), µ ∈ (0, τp) and λ1 > 0.
Iterative Steps: Calculate xn+1 as follows:
(Step1) Given the iterates xn−1 and xn for each n ≥ 1, θ > 0, choose θn such that

0 ≤ θn ≤ θ̄n, where

θ̄n =


min{θ, µn

‖Jp
E(xn)−Jp

E(xn−1)‖
}, i f xn 6= xn−1,

θ, otherwise

(Step2) Compute {
yn = Jq

E∗ [(1− αn)[J
p
E(xn) + θn(Jp

E(xn)− Jp
E(xn−1))]],

xn+1 = Jq
E∗((1− δn)Jp

E(vn) + δn Jp
E1
(Tyn)).

Then, {xn}∞
n=0 converges strongly to a point p ∈ F(T).

Proof. We observe that the necessary assertion is provided by the method of proof of
Theorem 1.

Let B : E → E∗ be a set-valued mapping with domain D(B) = {x ∈ E : B(x) 6= ∅}
and range R(B) = {x∗ ∈ E∗ : x∗ ∈ B(x)}, and the graph of B is given as Gra(B) :=
{(x, x∗) ∈ E × E∗ : x∗ ∈ Bx}. Then B is said to be monotone if 〈x∗ − y∗, x − y〉 ≥ 0
whenever (x, x∗), (y, y∗) ∈ Gra(B), and B is said to be maximal monotone if its graph is
not contained in the graph of any other monotone operator on E. Let B : E → 2E∗ be a
mapping. Additionally, B is called a monotone mapping if, for any x, y ∈ domB, we have

u ∈ Bx and v ∈ By⇒ 〈u− v, x− y〉 ≥ 0.

B is called maximal if B is monotone and the graph of B is not properly contained
in the graph of any other monotone operator. It is known that if B is maximal monotone,
then the set B−1(0) := {u ∈ E : 0 ∈ B(u)} is closed, and convex. The resolvent of B is the
operator ResB

σ : E→ 2E defined by

ResB
σ = (Jp

E + σB)−1 ◦ Jp
E.

It is known that ResB
σ is single-valued, Bregman firmly nonexpansive, and F̂(ResB

σ ) =
F(ResB

σ ) = B−1(0) (see [28,29]). Since every Bregman firmly nonexpansive is quasi-
Bregman nonexpansive, from Corollary 2, we obtain the following result as a special
case:

Corollary 3. Let E be a p-uniformly convex and uniformly smooth real Banach space with sequen-
tially continuous duality mapping Jp

E. Let B : E→ 2E∗ be a maximal monotone with B−1(0) 6= 0.
Suppose {δn} be a sequence in (a, b) for some 0 < a < b and {µn} is a positive sequence in(

0, pτp

2p−1

)
, where τp is defined in (5), µn = ◦(αn), where αn is a sequence in (0, 1) such that

lim
n→∞

αn = 0 and ∑∞
n=1 αn = ∞. Let {xn}∞

n=0 be a sequence generated in Algorithm 5 as follows:
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Algorithm 5: Second Modified Inertial Mann-type Method

Initialization: Choose x0, x1 ∈ E to be arbitrary, θ ∈ (0, τp), µ ∈ (0, τp) and λ1 > 0.
Iterative Steps: Calculate xn+1 as follows:
(Step1) Given the iterates xn−1 and xn for each n ≥ 1, θ > 0, choose θn such that

0 ≤ θn ≤ θ̄n, where

θ̄n =


min{θ, µn

‖Jp
E(xn)−Jp

E(xn−1)‖
}, i f xn 6= xn−1,

θ, otherwise

(Step2) Compute {
yn = Jq

E∗ [(1− αn)[J
p
E(xn) + θn(Jp

E(xn)− Jp
E(xn−1))]],

xn+1 = Jq
E∗((1− δn)Jp

E(vn) + δn Jp
E1
(ResB

σ yn)).

Then, {xn}∞
n=0 converges strongly to a point p ∈ B−1(0).

Remark 1. The following are considered:

(a) Theorem 1 improves, extends, and generalizes the corresponding results [12,13,30–33] in the
sense that either our method requires an inertial term to improve the convergence rate and/or
the space considered is more general.

(b) We observe that the result in Corollary 1 improves, and extends the results in [7,34–36] from
Hilbert space to a p-uniformly convex and uniformly smooth real Banach space as well as
from solving the monotone variational inequality problem to the pseudomonotone variational
inequality problem.

(c) Corollary 3 improves, and extends the corresponding results of Wei et al. [37], Ibaraki [38],
and Tianchai [39] in the sense that our iterative method does not require computation of Cn+1
for each n ≥ 1 or the class of mappings considered in our corollary is more general and inertial
in our method, which aids in increasing the convergence rate of the sequence generated by
the method.

4. Numerical Example

In this section, we intend to demonstrate the efficiency of our Algorithm 3 with the
aid of numerical experiments. Furthermore, we compare our iterative method with the
methods of Censor et al. [7] (Algorithm 1) and Ma et al. [12] (Algorithm 2).

Example 1. Let E = L2[0, 1] and C = {x ∈ L2[0, 1] : 〈a, x〉 ≤ b}, where a = t2 + 1 and

b = 1, with norm ||x|| =
√∫ 1

0 |x(t)|2dt and inner product 〈x, y〉 =
∫ t

0 x(t)y(t)dt, for all
x, y ∈ L2([0, 1]), t ∈ [0, 1]. Define metric projection PC as follows:

PC(x) =


x, if x ∈ C

b−〈a,x〉
||a||L2

a + x, otherwise.
(36)

Let A : L2[0, 1] → L2[0, 1] be defined by A(x(t)) = e−||x||
∫ t

0 x(s)ds, for all x ∈ L2[0, 1],
t, s ∈ [0, 1], then, A is pseudomonotone and uniformly continuous mapping (see [40]) and let
T(x(t)) =

∫ t
0 x(s)ds, for all x ∈ L2[0, 1], t ∈ [0, 1], then T is nonexpansive mapping. For the

control parameters, we use αn = 1
5n+2 , δn = 1

2 − αn, µn = αn
n0.01 and θn = θ̄n. We define the

sequence TOLn := ||xn+1 − xn||2 and apply the stopping criterion TOLn < ε for the iterative
processes because the solution to the problem is unknown. ε is the predetermined error. Here, the
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terminating condition is set to ε = 10−5. For the numerical experiments illustrated in Figure 1 and
Table 1 below, we take into consideration the resulting cases.

Case 1: x0 = t3 and x1 = t2 + t.
Case 2: x0 = t3 and x1 = t.
Case 3: x0 = (t2/2) + t and x1 = 2t3 + t.
Case 4: x0 = t2 and x1 = (t/5)3 + t.

Table 1. Comparison of Algorithm 3, Algorithm 2, and Algorithm 1.

Cases Algorithm 3 Algorithm 2 Algorithm 1

1 Iter.
CPU (time)

16
4.2781

38
5.7812

89
7.7115

2 Iter.
CPU (time)

13
3.3712

45
6.7367

104
10.3962

3 Iter.
CPU (time)

15
3.8396

46
7.0305

116
10.5921

4 Iter.
CPU (time)

15
3.7721

40
6.2475

94
7.9981
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Figure 1. (Top Left): Case 1; (Top Right): Case 2; (Bottom Left): Case 3; (Bottom Right): Case 4, the
error plotting of comparison of Algorithm 3, Algorithm 2, and Algorithm 1 for Example 1.

Example 2. Let E = RN . Define A : RN → RN by A(x) = Mx + q, where the matrix
M is formed as: M = V ∑ V′, where V = I − 2vv′

‖v‖2 and ∑ = diag(σ11, σ12, · · · , σ1N) are the
householder and the diagonal matrix, and

σ1j = cos
jπ

N + 1
+ 1 +

cos π
N+1 + 1− Ĉ(cos Nπ

N+1 + 1)

Ĉ− 1
, j = 1, 2, · · · , N,
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with Ĉ been the present condition number of M ([41], Example 5.2). In the numerical computation,
we choose Ĉ = 104, q = 0 and uniformly take the vector v ∈ RN in (−1, 1). Thus, A is
pseudomonotone and Lipschitz continuous with K = ||M|| (see [41]). By setting C = {x ∈ RN :
||x|| ≤ 1}, Matlab is used to efficiently compute the projection onto C. Moreover, we examine
various instances of the problem’s dimension. That is, N = 20, 30, 40, 60, with starting points
x1 = (1, 1, . . . , 1)′ and x0 = (0, 0, . . . , 0)′. In this example, we take the stopping criterion to be
ε = 10−5 and obtain the numerical results shown in Table 2 and Figure 2.

Table 2. Numerical results for Example 2 with ε = 10−5.

N Algorithm 3 Algorithm 2 Algorithm 1

20 Iter. CPU 57
0.0293

698
0.1414

2802
0.1593

30 Iter. CPU 57
0.0256

698
0.1405

2802
0.1472

40 Iter. CPU 84
0.0171

530
0.1081

2651
0.1259

60 Iter. CPU 104
0.0358

692
0.1379

2810
0.1537
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Figure 2. The behavior of TOLn with ε = 10−5 for Example 2: (Top Left): N = 20; (Top Right): N = 30;
(Bottom Left): N = 40; (Bottom Right): N = 60.
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Example 3. Let E =
(
l2(R), ||.||l2

)
, where l2(R) := {x = (x1, x2, x3, . . . ), xi ∈ R :

∞
∑

i=1
|xi|2 <

∞} and ||x||l2 :=
(

∞
∑

i=1
|xi|2

) 1
2
, ∀x ∈ l2(R). Let C = {x ∈ l2(R) : |xi| ≤ 1

i , i = 1, 2, 3, . . . }.

Thus, we have an explicit formula for PC. Now, define the operator A : l2(R)→ l2(R) by

Ax =

(
||x||+ 1

||x||+ α

)
α,

for some α > 0. Then, A is pseudomonotone on l2(R) (see [42]). In this experiment, the stopping
criterion is ε = 10−8, and the starting points are selected as follows:
Case 1: Take x1 = (1, 1

2 , 1
3 , · · · ) and x0 = ( 1

2 , 1
5 , 1

10 , · · · ).
Case 2: Take x1 = ( 1

2 , 1
5 , 1

10 , · · · ) and x0 = (1, 1
2 , 1

3 , · · · ).
Case 3: Take x1 = (1, 1

4 , 1
9 , · · · ) and x0 = ( 1

2 , 1
4 , 1

8 , · · · ).
Case 4: Take x1 = ( 1

2 , 1
4 , 1

8 , · · · ) and x0 = (1, 1
4 , 1

9 , · · · ).
The numerical results are reported in Table 3 and Figure 3.

Table 3. Numerical results for Example 3 with ε = 10−8.

Cases Algorithm 3 Algorithm 2 Algorithm 1

1 Iter. CPU 21
0.0907

597
0.1926

8017
0.8535

2 Iter. CPU 22
0.0286

539
0.0506

2644
0.1519

3 Iter. CPU 21
0.0671

639
0.2695

10221
1.1225

4 Iter. CPU 21
0.0197

707
0.0609

19870
3.9870
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Figure 3. The behavior of TOLn with ε = 10−8 for Example 3: (Top Left): Case 1; (Top Right): Case 2;
(Bottom Left): Case 3; (Bottom Right): Case 4.

5. Conclusions

The paper has proposed a new inertial subgradient extragradient method with the
modified Mann algorithm for solving the Lipschitz pseudomonotone variational inequality
problem and the fixed point of quasi-Bregman nonexpansive mapping in p-uniformly
convex and uniformly smooth real Banach spaces. Under some suitable conditions imposed
on parameters, we have proved the strong convergence of the algorithms. The efficiency of
the proposed algorithm has also been illustrated by numerical experiments in comparison
with other existing methods.

Author Contributions: All the authors contributed equally in the development of this work. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: Authors are grateful to Department of Mathematics and Applied Mathematics,
Sefako Makgato Health Science University South Africa, and Department of Mathematics and
Statistics, Tshwane University of Technology, South Africa for supporting this research work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stampacchia, G. Formes bilinearieres coercitivities sur les ensembles convexes. Comptes Rendus Acad. Sci. Paris 1964, 258,

4413–4416.
2. Hartman, P.; Stampacchia, G. On some nonlinear elliptic differential functional equations. Acta Math. 1966, 115, 271–310.

[CrossRef]
3. Smith, M.J. The existence, uniqueness and stability of traffic equilibria. Transpn. Res. 1979, 13B, 295–304. [CrossRef]
4. Dafermos, S. Traffic equilibria and variational inequalities. Transp. Sci. 1980, 14, 42–54. [CrossRef]
5. Isac, G.; Cojocaru, M.G. Variational inequalities, complementarity problems and pseudo-monotonicity. dynamical aspects. Semin.

Fixed Point Theory Cluj-Napoca 2002, 3, 41–62.
6. Korpelevich, G.M. The extragradient method for finding saddle points and other problems. Matecon 1976, 12, 747–756.
7. Censor, Y.; Gibali, A.; Reich, S. The subgradient extragradient method for solving variational inequalities in Hilbert space. J.

Optim. Theory Appl. 2001, 148, 318–335. [CrossRef] [PubMed]
8. Ali, B.; Ugwunnadi, G.C. Convergence of implicit and explicit schemes for common fixed points for finite families of asymptotically

nonexpansive mappings. Nonlinear Anal. Hybrid Syst. 2011, 5, 492–501. [CrossRef]
9. Bregman, L.M. A Relazation method for finding the common point of convex set and its application to solution of convex

programming. USSR Comput. Math. Phys. 1967, 7, 200–217. [CrossRef]

http://doi.org/10.1007/BF02392210
http://dx.doi.org/10.1016/0191-2615(79)90022-5
http://dx.doi.org/10.1287/trsc.14.1.42
http://dx.doi.org/10.1007/s10957-010-9757-3
http://www.ncbi.nlm.nih.gov/pubmed/21490879
http://dx.doi.org/10.1016/j.nahs.2010.10.007
http://dx.doi.org/10.1016/0041-5553(67)90040-7


Axioms 2023, 12, 960 20 of 21

10. Khan, A.R.; Ugwunnadi, G.C.; Makukula, Z.G.; Abbas, M. Strong convergence of inertial subgradient extragradient method for
solving variational inequality in Banach space. Carpathian J. Math. 2019, 35, 327–338. [CrossRef]

11. Ku, L.W.; Sahu, D.R. Bregman distance and strong convergence of proximal-type algorithms. Abstr. Appl. Anal. 2013, 2013 ,
590519. [CrossRef]

12. Ma, F.; Yang, J.; Yin, M. A strong convergence theorem for solving pseudo-monotone variational inequalities and fixed point
problems using subgradient extragradient method in Banach spaces. AIMS Math. 2021, 7, 5015–5028. [CrossRef]

13. Ceng, L.-C.; Liou, Y.-C.; Yin, T.-C. On Mann-type accelerated projection methods for pseudomonotone variational inequalities
and common fixed points in Banach spaces. AIMS Math. 2023, 8, 21138–21160. [CrossRef]

14. Ugwunnadi, G.C.; Ali, B.; Minjibir, M.S.; Idris, I. Strong convergence theorem for quasi-Bregman strictly pseudocontractive
mappings and equilibrium problems in reflexive Banach spaces. Fixed Point Theory Appl. 2014, 2014, 231. [CrossRef]

15. Lindenstrauss, J.; Tzafriri, L. Class. Banach Spaces II; Springer: Berlin, Germany, 1979.
16. Xu, H.K. Inequalities in Banach spaces with applications. Nonlinear Anal. 1991, 16, 1127–1138. [CrossRef]
17. Cioranescu, I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems; Kluwer Academic: Dordrecht, The Netherlands,

1990.
18. Zalinescu, C. Convex Analysis in General Vector Spaces; World Scientific Publishing: Singapore, 2002.
19. Naraghirad, E.; Yao, J.C. Bregman weak relatively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2013, 2013,

141. [CrossRef]
20. Schöpfer, F.; Schuster, T.; Louis, A.K. An iterative regularization method for the solution of the split feasibility problem in Banach

spaces. Inverse Probl. 2008, 24, 055008. [CrossRef]
21. Takahashi, W. Nonlinear Functional Analysis-Fixed Point Theory and Application; Yokohama Publishers: Yokohama, Japan, 2000.
22. Alber, Y. I. Metric and generalized projection operators in Banach spaces: Properties and applications. In Theory and Applications

of Nonlinear Operators of Accretive and Monotone Type; Lecture Notes in Pure and Appl. Math.; Dekker: New York, NY, USA, 1996;
Volume 178, pp. 15–50.

23. Kohsaka, F.; Takahashi, W. Proximal point algorithm with Bregman function in Banach spaces. J. Nonlinear Convex Anal. 2005,
6, 505–523.

24. Martin-Martiquez, V.; Reich, S.; Sabach, S. Iterative methods for approximating fixed points of Bregman nonexpansive operators.
Discr. Contin Dyn. Syst. Ser. S 2013, 6, 1043–1063.

25. Phelps, R.P. Convex Functions, Monotone Operators and Differentiability, 2nd ed.; Lecture Notes in Mathematics; Springer: Berlin,
Germany, 1993.

26. Reich, S.; Sabach, S. Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Opt.
2010, 31, 22–44. [CrossRef]

27. Saejung, S.; Yotkaew, P. Approximation of zeroes of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 2012,
75, 742–750. [CrossRef]

28. Bauschke, H.H.; Borwein, J.M.; Combettes, P.L. Bregman monotone optimization algorithms. SIAM J. Control Optim. 2003,
42, 596–636. [CrossRef]

29. Reich, S.; Sabach, S. Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach
spaces. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications; Springer:
New York, NY, USA, 2011; pp. 301–316.

30. Chang, S.S.; Wen, C.F.; Yao, J.C. Zero point problem of accretive operators in Banach spaces. Bull. Malays. Math. Sci. Soc. 2019,
42, 105–118. [CrossRef]

31. Liu, Y.; Kong, H. Strong convergence theorems for relatively nonexpansive mappings and Lipschitz continuous monotone
mapping in Banach spaces. Indian J. Pure Appl. Math. 2019, 50, 1049–1065. [CrossRef]

32. Ma, F. A subgradient extragradient algorithm for solving monotone variational inequalities in Banach spaces. J. Inequal. Appl.
2020, 2020, 26. [CrossRef]

33. Thong, D.V. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality
problems and fixed point problems. Numer. Alg. 2019, 80, 1283–1307. [CrossRef]

34. Tan, B.; Li, S.; Qin, X. On modified subgradient extragradient methods for pseudomonotone variational inequality problems with
applications. Comp. Appl. Math. 2021, 40, 253 [CrossRef]

35. Thong, D.V.; Hieu, D.V. Strong convergence of extragradient methods with a new step size for solving variational inequality
problems. Comp. Appl. Math. 2019, 38, 136. [CrossRef]

36. Thong, D.V.; Vinh, N.T.; Cho, Y.J. A strong convergence theorem for Tseng’s extragradient method for solving variational
inequality problems. Optim Lett. 2020, 14, 1157–1175. [CrossRef]

37. Wei, L.; Su, Y.-F.; Zhou, H.-Y. Iterative convergence theorems for maximal monotone operators and relatively nonexpansive
mappings. Appl. Math. J. Chin. Univ. 2008, 23, 319–325 [CrossRef]

38. Ibaraki, T. Approximation of a zero point of monotone operators with nonsummable errors. Fixed Point Theory Appl. 2016, 2016,
48. [CrossRef]

39. Tianchai, P. The zeros of monotone operators for the variational inclusion problem in Hilbert spaces. J. Inequal Appl. 2021, 2021,
126. [CrossRef]

http://dx.doi.org/10.37193/CJM.2019.03.07
http://dx.doi.org/10.1155/2013/590519
http://dx.doi.org/10.3934/math.2022279
http://dx.doi.org/10.3934/math.20231077
http://dx.doi.org/10.1186/1687-1812-2014-231
http://dx.doi.org/10.1016/0362-546X(91)90200-K
http://dx.doi.org/10.1186/1687-1812-2013-141
http://dx.doi.org/10.1088/0266-5611/24/5/055008
http://dx.doi.org/10.1080/01630560903499852
http://dx.doi.org/10.1016/j.na.2011.09.005
http://dx.doi.org/10.1137/S0363012902407120
http://dx.doi.org/10.1007/s40840-017-0470-3
http://dx.doi.org/10.1007/s13226-019-0373-0
http://dx.doi.org/10.1186/s13660-020-2295-0
http://dx.doi.org/10.1007/s11075-018-0527-x
http://dx.doi.org/10.1007/s40314-021-01642-z
http://dx.doi.org/10.1007/s40314-019-0899-0
http://dx.doi.org/10.1007/s11590-019-01391-3
http://dx.doi.org/10.1007/s11766-008-1951-9
http://dx.doi.org/10.1186/s13663-016-0535-2
http://dx.doi.org/10.1186/s13660-021-02663-2


Axioms 2023, 12, 960 21 of 21

40. Thong, D.V.; Shehu, Y.; Iyiola, O.S. Weak and strong convergence theorems for solving pseudo-monotone variational inequalities
with non-Lipschitz mappings. Numer. Algor. 2019, 84, 795–823. [CrossRef]

41. He, H.; Ling, C.; Xu, H.K. A relaxed projection method for split variational inequalities. J. Optim. Theory Appl. 2015, 166, 213–233.
[CrossRef]

42. Thong, D.V.; Vuong, P.T. Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities, Opti-
mization. Optimization 2019, 68, 2207–2226. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11075-019-00780-0
http://dx.doi.org/10.1007/s10957-014-0598-3
http://dx.doi.org/10.1080/02331934.2019.1616191

	Introduction
	Preliminaries
	Main Results
	Numerical Example
	Conclusions
	References

