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Abstract: The Dirichlet distribution as a multivariate generalization of the beta distribution is espe-
cially important for modeling categorical distributions. Hence, its applications vary within a wide
range from modeling cell probabilities of contingency tables to modeling income inequalities. Thus,
it is commonly used as the conjugate prior of the multinomial distribution in Bayesian statistics. In
this study, the parameters of a bivariate Dirichlet distribution are estimated by entropy formalism.
As an alternative to maximum likelihood and the method of moments, two methods based on the
principle of maximum entropy are used, namely the ordinary entropy method and the parameter
space expansion method. It is shown that in estimating the parameters of the bivariate Dirichlet
distribution, the ordinary entropy method and the parameter space expansion method give the same
results as the method of maximum likelihood. Thus, we emphasize that these two methods can be
used alternatively in modeling bivariate and multinomial Dirichlet distributions.

Keywords: Dirichlet distribution; principle of maximum entropy; ordinary entropy method;
parameter space expansion method; method of moments; maximum likelihood estimation

MSC: 62H12; 94A17; 1F66; 54C70

1. Introduction

In statistics, the method of moments and maximum likelihood are used frequently,
details of which can be found in [1,2]. For a long time, their asymptotic properties
have been studied in detail [3]. Since the asymptotic distributions of estimators found
by these two methods are normal, they have been proven to be very powerful tools for
parameter estimation. However, nowadays, alternative estimation methods based on
entropy maximization are applied increasingly frequently.

In 1948, [4] defined entropy as a numerical measure of uncertainty, or conversely the
information content, associated with a probability distribution f (x; θ) with parameter θ. It
is used to describe a random variable X and is mathematically expressed as

I[ f ] = −
∫ ∞

−∞
f (x; θ)ln f (x; θ)dx,

∫ ∞

−∞
f (x; θ)dx = 1 (1)

for continuous X, where I[ f ] can be considered the mean value of ln f (x; θ). For discrete
probability distributions, the integration operator in (1) is simply replaced by the sum-
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mation operator. Rényi (1961) provided a generalization of Shannon entropy [5]. Rényi
entropy is also called α-class entropy. For a discrete case, it is defined as

HR =
ln(∑K

i=1 pα
i )

1− α
f or α > 0 and α 6= 1 (2)

By L’Hôspital’s rule

lim
α→1

d
dα (ln(∑

K
i=1 pα

i ))
d

dα (1− α)
= lim

α→1

∑K
i=1 pα

i lnpi

∑K
i=1 pα

i

−1
= −

K

∑
i=1

pilnpi = HS (3)

Therefore, Shannon entropy can be evaluated as a special case of Rényi entropy.
Another generalization of Shannon entropy was realized by Constantino Tsallis (1988) [5].
Tsallis entropy is also known as β-class entropy [6]. It is defined as

HT =
1−∑K

i=1 pα
i

α− 1
f or α > 0 and α 6= 1 (4)

By L’Hôspital’s rule,

lim
α→1

1−∑K
i=1 pα

i
α− 1

= lim
α→1

d
dα (1−∑K

i=1 pα
i )

d
dα (α− 1)

= lim
α→1

−∑K
i=1 pα

i lnpi

1
= −

K

∑
i=1

pilnpi (5)

In other words, Tsallis entropy approaches Shannon entropy as α→ 1 as well as Rényi
entropy. Note that for continuous distributions, the summation signs in defining equations
are replaced by integration signs.

Kullback (1959) used entropy and relative entropy as the two key concepts in multi-
variate statistical analysis [7]. Asymptotic distributions of various entropy measures can be
found in [8]. Pardo emphasizes that entropy and relative entropy formulas can be derived
as special cases of divergence measures [9].

Entropy-Based Parameter Estimation in Hydrology is the first book to focus on parameter
estimation using entropy for a number of distributions frequently used in hydrology [10],
including uniform, exponential, normal, two-parameter lognormal, extreme value type I,
Weibull, gamma, Pearson, and two-parameter Pareto distributions, among others. Singh
also applies entropy theory to some problems of hydraulic and environmental engineer-
ing [11–13].

The principle of maximum entropy (POME), described by Jaynes as “the least biased
estimate possible on the given information”, can be stated mathematically as follows [14]:
Given m linearly independent constraints Ci in the form

Ci =
∫ b

a
yi(x) f (x)dx, i = 1, 2, . . . , m, (6)

where yi(x) are some functions whose averages over f (x) are specified, the maximum of I,
subject to the conditions in Equation (6), is given by the distribution

f (x) = exp
[
− λ0 −

m

∑
i=1

λiyi(x)
]
, (7)

where λi, i = 0, 1, . . . , m are Lagrange multipliers and can be determined from Equations (6)
and (7) along with the normalization condition in Equation (1).

The general procedure for entropy-based parameter estimation involves (1) defining
given information in terms of constraints, (2) maximizing entropy subject to given infor-
mation, and (3) relating parameters to the given information. In this procedure, Lagrange
multipliers are related to the constraints on one hand and to the distribution parameters on
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the other. One can eliminate the Lagrange multipliers and obtain parameter estimations
as well.

The parameter space expansion method was developed by Singh and Rajogopal
(1986). This method is different from the previous entropy method in that it employs
enlarged parameter space and maximizes entropy subject to both the parameters and the
Lagrange multipliers [15]. The method works as follows: for the given distribution, first the
constraints are defined, and the POME formulation is obtained in terms of the parameters
to be estimated and the Lagrange multipliers. After the maximization procedure, the
parameter estimations can be obtained.

Entropy-based models have been intensively used for determining parameter estima-
tions in recent years. For example, Song and Kang examined two entropy-based methods
that both use the POME for the estimation of the parameters of the four-parameter ex-
ponential gamma distribution [16]. Hao and Singh applied two entropy-based methods,
also using the POME, for the estimation of the parameters of the extended Burr XII distri-
bution [17]. Singh and Deng revisited the four-parameter kappa distribution, presented
an entropy-based method for estimating its parameters, and compared its performance
with that of maximum likelihood estimation, methods of moments, and L moments [18].
Gao and Han used the maximum entropy method to apply a concrete solution to a special
nonlinear expectation problem in a special parameter space and analyzed the convergence
for the maximum entropy solution [19].

The objective of the present paper is to apply ordinary entropy and parameter space
expansion to estimate the parameters of a bivariate Dirichlet distribution as an alternative
to the known methods, and then to compare them with those estimated by the maximum
likelihood method and method of moments.

2. Dirichlet Distribution

The beta distribution plays an important role in Bayesian statistics, especially in
modeling the parameters of the Bernoulli distribution [20]. The Dirichlet distribution is a
multivariate generalization of the beta distribution. Thus, the Dirichlet distribution and the
generalized Dirichlet distribution can both be used as a conjugate prior for a multinomial
distribution [21].

Let Xk = [X1, X2, . . . , Xk] be a vector with k components, Xi ≥ 0 for i = 1, 2, . . . , k and
∑k

i=1 xi = 1. Also, ak = [a1, a2, . . . , ak], where ai > 0 for each i. The probability density
function (pdf) of the Dirichlet distribution is given as

f (xk) =
Γ(a0)

∏k
i=1 Γ(ai)

k

∏
i=1

xai−1
i , (8)

where a0 = ∑k
i=1 ai, xi > 0, x1 + x2 + · · ·+ xk−1 < 1, and xk = 1− x1 − · · · − xk−1 and Γ

is the Euler’s gamma function, which is denoted by the formula Γ(x) =
∫ ∞

0 tx−1e−tdt or
Γ(x) = (x− 1)!.

It can be noted that marginals of this Dirichlet distribution are beta distributions [22],

namely Xi ∼ Beta
(

ai, (∑k
j=1 aj)− ai

)
. The moments are given by

E[Xi] =
ai
a0

(9)

Var[Xi] =
ai(a0 − ai)

a2
0(a0 + 1)

(10)

Cov(Xi, Xj) = −
aiaj

a2
0(a0 + 1)

(11)
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Cor(Xi, Xj) =

√
aiaj

(a0 − ai)(a0 − aj)
(12)

For further properties, one may refer to [22–24].

3. Ordinary Entropy Method

In the ordinary entropy method, there are three steps in parameter estimation: (1) spec-
ification of appropriate constraints, (2) derivation of the entropy function of the distribution,
and (3) derivation of the relations between parameters and constraints.

3.1. Specification of Constraints

Taking the natural logarithm of Equation (8), we obtain

ln f (xk) = lnΓ(a0)− ln
( k

∏
i=1

Γ(ai)

)
+

k

∑
i=1

ln(xai−1
i ) (13)

Multiplying Equation (13) by [− f (xk)] and integrating between [0, 1] and [0, 1− xi],
we obtain the entropy function

I[ f ] = −
∫
· · ·

∫
f (xk)ln f (xk)dx1 . . . dxk−1 =

[
− ln

Γ(a0)

∏k
i=1 Γ(ai)

] ∫
· · ·

∫
f (xk)dx1 . . . dxk−1

−
∫
· · ·

∫ k

∑
i=1

ln(xai−1
i ) f (xk)dx1 . . . dxk−1 (14)

To maximize I[ f ] in Equation (14), the following constraints should be satisfied:∫
· · ·

∫
f (xk)dx1 . . . dxk−1 = 1 (15)

∫
· · ·

∫
lnxi f (xk)dx1 . . . dxk−1 = E[lnxi], i = 1, . . . , k− 1 (16)

∫
· · ·

∫
ln(1− x1 − · · · − xk−1) f (xk)dx1 . . . dxk−1 = E[1− x1 − · · · − xk−1] (17)

3.2. Construction of the Partition Function and Zeroth Lagrange Multiplier

The least biased pdf, f (xk) consistent with equations from (15) to (17) and by POME,
takes the following form:

f (xk) = exp[−λ0 −
k−1

∑
i=1

λilnxi − λkln(1− x1 − · · · − xk−1)], (18)

where λ0, λ1, . . . , λk are Lagrange multipliers. Substituting (18) in (15) yields

∫
· · ·

∫
exp[−λ0 −

k−1

∑
i=1

λilnxi − λkln(1− x1 − · · · − xk−1)]dx1 . . . dxk−1 = 1 (19)

Equation (19) gives the partition function as

exp(λ0) =
∫
· · ·

∫
exp[−

k−1

∑
i=1

λilnxi − λkln(1− x1 − · · · − xk−1)]dx1 . . . dxk−1, (20)
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which may be further simplified as follows:

exp(λ0) =
∫
· · ·

∫ k−1

∏
i=1

x−λi
i (1− x1 − · · · − xk−1)

−λk dx1 . . . dxk =
∏k

i=1 Γ(1− λi)

Γ(k− λ1 − . . . λk)
(21)

The zeroth Lagrange multiplier λ0 is obtained from Equation (21) as

λ0 =
k

∑
i=1

lnΓ(1− λi)− lnΓ(k− λ1 − . . . λk) (22)

The zeroth Lagrange multiplier is also obtained from (20) as

λ0 = ln
∫
· · ·

∫
exp[−

k−1

∑
i=1

λilnxi − λkln(1− x1 − · · · − xk−1)]dx1 . . . dxk−1 (23)

3.3. Relation between Lagrange Multipliers and Constraints

Differentiating Equation (23) with respect to λ1, . . . , λk, we obtain the derivatives of
λ0 with respect to λ1, . . . , λk:

∂λ0
∂λ1

= −
∫
· · ·
∫

lnx1 exp[−∑k−1
i=1 λilnxi − λkln(1− x1 − · · · − xk−1)]dx1 . . . dxk−1∫

· · ·
∫

exp[−∑k−1
i=1 λilnxi − λkln(1− x1 − · · · − xk−1)]dx1 . . . dxk−1

= −
∫
· · ·

∫
lnx1 exp[−λ0 −

k−1

∑
i=1
−λilnxi − λkln(1− x1 − · · · − xk−1)]dx1 . . . dxk−1

= −E[lnX1] (24)

∂λ0
∂λ2

= −
∫
· · ·
∫

lnx2 exp[−∑k−1
i=1 λilnxi − λkln(1− x1 − · · · − xk−1)]dx1 . . . dxk−1∫

· · ·
∫

exp[−∑k−1
i=1 λilnxi − λkln(1− x1 − · · · − xk−1)]dx1 . . . dxk−1

= −
∫
· · ·

∫
lnx2 exp[−λ0 −

k−1

∑
i=1

λilnxi − λkln(1− x1 − · · · − xk−1)]dx1 . . . dxk−1

= −E[lnX2] (25)

If it continues like this until k− 1,

∂λ0
∂λk−1

= −
∫
· · ·
∫

lnxk−1 exp[−∑k−1
i=1 λilnxi − λkln(1− x1 − · · · − xk−1)]dx1 . . . dxk−1∫

· · ·
∫

exp[−∑k−1
i=1 λilnxi − λkln(1− x1 − · · · − xk−1)]dx1 . . . dxk−1

= −
∫
· · ·

∫
lnxk−1 exp[−λ0 −

k−1

∑
i=1

λilnxi − λkln(1− x1 − · · · − xk−1)]dx1 . . . dxk−1

= −E[lnXk−1] (26)

Furthermore,

∂λ0
∂λk

= −
∫
· · ·
∫

ln(1− (∑k−1
i=1 xi)) exp[−∑k−1

i=1 λilnxi − λkln(1− (∑k−1
i=1 xi))]dx1 . . . dxk−1∫

· · ·
∫

exp[−∑k−1
i=1 λilnxi − λkln(1− (∑k−1

i=1 xi))]dx1 . . . dxk−1

=
∫
· · ·

∫
ln(1− x1 − · · · − xk−1) exp[−

k−1

∑
i=1

λilnxi − λkln(1− (
k−1

∑
i=1

xi))]dx1 . . . dxk−1

= −E[ln(1− x1 − · · · − xk−1)] (27)
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Differentiating Equation (22) with respect to λ1, λ2, . . . , λk, we obtain

∂λ0

∂λ1
=

∂(∑k
i=1 lnΓ(1− λi)− lnΓ(k− λ1 − . . . λk))

∂λ1
= −ψ(1− λ1) + ψ(k− λ1 − . . . λk) (28)

∂λ0

∂λ2
=

∂(∑k
i=1 lnΓ(1− λi)− lnΓ(k− λ1 − . . . λ2))

∂λ2
= −ψ(1− λ2) + ψ(k− λ1 − . . . λk) (29)

Similarly, for the k term,

∂λ0

∂λk
=

∂(∑k
i=1 lnΓ(1− λi)− lnΓ(k− λ1 − . . . λk))

∂λk
= −ψ(1− λk) + ψ(k− λ1 − . . . λk), (30)

where ψ(x) is the digamma function, which is defined as ψ(x) = d
dx ln(Γ(x)) [25].

By equating (24) and (28), we obtain

E[lnX1] = ψ(1− λ1)− ψ(k− λ1 − . . . λk) (31)

Secondly , by equating (25) and (29), we obtain

E[lnX2] = ψ(1− λ2)− ψ(k− λ1 − . . . λk) (32)

If we go on until the (k− 1) term

E[lnXk−1] = ψ(1− λk−1)− ψ(k− λ1 − . . . λk) (33)

Next, by (27) and (30), we obtain

E[ln(1− x1 − · · · − xk−1)] = ψ(1− λk)− ψ(k− λ1 − . . . λk) (34)

3.4. Relation between Lagrange Multipliers and Parameters

Substituting (22) into (18) yields

f (xk) = exp[−
k

∑
i=1

lnΓ(1− λi) + lnΓ(k− λ1 − . . . λk)−
k−1

∑
i=1

λilnxi − λkln(1− (
k−1

∑
i=1

xi))] (35)

=
Γ(k− λ1 − . . . λk)

∏k
i=1 Γ(1− λi)

k

∏
i=1

x−λi
i

A comparison of Equation (35) with Equation (8) shows that

ai = 1− λi (36)

3.5. Relation between Parameters and Constraints

The parameters of the Dirichlet distribution are related to the Lagrange multipliers.
In turn, these parameters are related to the known constraints by equations from (31)
to (34). By eliminating Lagrange multipliers from these sets of equations, we can obtain an
alternative way of presentation as shown below:

E[lnX1] = ψ(a1)− ψ(a0) (37)

E[lnX2] = ψ(a2)− ψ(a0) (38)

...
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E[lnXk−1] = ψ(ak−1)− ψ(a0) (39)

E[ln(1− x1 − · · · − xk−1)] = ψ(ak)− ψ(a0) (40)

3.6. Distribution Entropy

From (14),

I[ f ] = −
∫
· · ·

∫
f (xk)ln f (xk)dx1 . . . dxk−1

=

[
− ln

Γ(a0)

∏k
i=1 Γ(ai)

]
−
∫
· · ·

∫ k

∑
i=1

ln(xai−1
i ) f (xk)dx1 . . . dxk−1 (41)

=

[
ln ∏k

i=1 Γ(ai)

Γ(a0)

]
−

k

∑
i=1

(ai − 1)lnxi

4. Parameter Space Expansion Method
4.1. Specification of Constraints

Following [15], the constraints for this method are Equation (15) and∫
· · ·

∫
lnxai−1

i f (xk)dx1 . . . dxk−1 = E[lnXai−1
i ], i = 1, . . . , k− 1 (42)

∫
· · ·

∫
ln(1− x1− · · · − xk−1)

ak−1 f (xk)dx1 . . . dxk−1 = E[(1− x1− · · · − xk−1)
ak−1] (43)

4.2. Derivation of the Entropy Function

The pdf that corresponds to the POME and that is consistent with Equation (15), (42),
and (43) takes the form

f (xk) = exp[−λ0 −
k−1

∑
i=1

λilnxai−1
i − λkln(1− x1 − · · · − xk−1)

ak−1], (44)

where λ0, λ1, . . . , λk are Lagrange multipliers. Substituting (44) into Equation (15) yields

exp(λ0) =
∫
· · ·

∫
exp[−

k−1

∑
i=1

λilnxai−1
i − λkln(1− x1 − · · · − xk−1)

ak−1dx1 . . . dxk−1]

=
∏k

i=1 Γ(1− λi(ai − 1))
Γ(k− λ1(a1 − 1)− . . . λk(ak − 1))

(45)

Substitution of Equation (45) into (44) gives

f (xk) =
Γ(k− λ1(a1 − 1)− . . . λk(ak − 1))

∏k
i=1 Γ(1− λi(ai − 1))

exp[−
k−1

∑
i=1

λilnxai−1
i − λkln(1− (

k−1

∑
i=1

xi))
ak−1] (46)

A comparison of Equation (46) with Equation (15) shows that λ1 = . . . λk = −1 and
taking the logarithm of (46) and multiplying by [− f (xk)]and integrating between [0, 1] and
[0, 1− xi], we obtain the entropy function

I[ f ] = −lnΓ(k−λ1(a1− 1)− . . . λk(ak− 1))+
k

∑
i=1

Γ(1−λi(ai− 1))+
k

∑
i=1

λiE[lnxai−1
i ] (47)
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4.3. Relation between Parameters and Constraints

Equating the partial derivatives of (47) with respect to λ1, . . . , λk, a1, . . . , ak to zero, one
obtains

∂ I[ f ]
∂λ1

= 0 = (a1 − 1)ψ(K1)− (a1 − 1)ψ(K2) + E[lnX(a1−1)
1 ] (48)

K1 = (k− λ1(a1 − 1)− . . . λk(ak − 1)), K2 = (1− λ1(a1 − 1))

...

∂ I[ f ]
∂λk

= 0 = (ak − 1)ψ(K1)− (ak − 1)ψ(Kk) + E[lnX(ak−1)
k ] (49)

Kk = (k− λk(ak − 1))

∂ I[ f ]
∂a1

= 0 = λ1ψ(K1)− λ1ψ(K2) + λ1E[lnX1] (50)

...

∂ I[ f ]
∂ak

= 0 = λkψ(K1)− λkψ(Kk) + λkE[lnXk] (51)

The simplification of equations from (48) to (51) yields

E[lnX1] = ψ(K2)− ψ(K1) (52)

...

E[lnXk] = ψ(Kk)− ψ(K1) (53)

These equations provide the parameter estimators of the Dirichlet distribution.

5. Two Other Parameter Estimation Methods
5.1. Method of Moments

The Dirichlet distribution has k parameters like ai , i = 1, . . . , k. Therefore, i moments
are needed for the parameter estimation. We have the moments, variances, and covariance
formula in (9), (10), and (11). Because of (11),

E(XiXj) = Cov(Xi, Xj) + E(Xi)E(Xj) =
aiaj

ao(a0 + 1)
(54)

E(XiXj)

Cov(Xi, Xj)
= −a0 (55)

If we multiply (55) by the negative of (9),

âi = −E(Xi)
E(XiXj)

Cov(Xi, Xj)
(56)

Due to (55) and (56), the last parameter estimation is

âk =
−E(XiXj)(1− E(X1)− . . . E(Xk−1)

Cov(Xi, Xj)
(57)
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5.2. Method of Maximum Likelihood Estimation

The likelihood function L, where n is the sample size, is

L =

[
Γ(a0)

∏k
i=1 Γ(ai)

]n n

∏
j=1

( k

∏
i=1

xai−1
ij

)
(58)

Then the log likelihood function, lnL, is

lnL = nlnΓ(a0)− n
k

∑
i=1

lnΓ(ai) +
n

∑
j=1

ln
[ k

∏
i=1

xai−1
ij

]
(59)

Differentiating Equation (59) with respect to parameters a1, . . . , ak, respectively, and equat-
ing each derivative to zero yield the following equations:

E[lnX1] = ψ(a1)− ψ(a0) (60)

E[lnX2] = ψ(a2)− ψ(a0) (61)

...

E[lnXk−1] = ψ(ak−1)− ψ(a0) (62)

E[ln(1− x1 − · · · − xk−1)] = ψ(ak)− ψ(a0) (63)

These results are the same as those found by the ordinary entropy method and param-
eter space expansion method.

The maximum likelihood (ML) estimation method provides singular point estimates
for model parameters while overlooking the residual uncertainty inherent in the estima-
tion process. Conversely, the Bayesian estimation method adopts a different approach,
yielding posterior probability distributions encompassing the entire spectrum of model
parameters. This is achieved by integrating the observed data with prior distributions [26].
Broadly speaking, when contrasted with ML estimation, Bayesian parameter estimation
within a statistical model has the potential to yield a robust and stable estimate. This is
primarily due to its ability to incorporate the accompanying uncertainty into the estimation
process, a particularly valuable attribute when dealing with limited amounts of observed
data [27]. The Dirichlet distribution, being a constituent of the exponential family, possesses
a corresponding conjugate prior. Nevertheless, due to the intricate nature of the posterior
distribution, its practical utility in problem-solving scenarios is limited. Consequently,
the task of Bayesian estimation for the Dirichlet distribution, in a general context, lacks
analytical tractability. To achieve this objective, Zao employed an approximation approach
to model the parameter distribution within the Dirichlet distribution. Specifically, they
approximated it with a multivariate Gaussian distribution, leveraging the expectation prop-
agation (EP) framework [28]. Furthermore, there are some studies in reliability engineering
which estimate parameters with the determination of quantiles by the application of the
maximum likelihood method, such as [29].

6. Simulation and Comparison of Parameter Estimation Methods

Simulation from the Dirichlet distribution can be performed in two steps: the probabil-
ity integral theorem states that the distribution function of any continuous distribution is
uniform on (0, 1). Then, by the inverse distribution function of gamma, one may simulate a
number of independent gamma variates as needed. In other words, first one may simulate
k independent gamma variates X1, X2, . . . , Xn such that Xi ∼ Gamma(αi, 1), i = 1, 2, . . . , k
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and calculate Yj =
Xj

∑k
i=1 Xi

; j = 1, 2, . . . , k. Then the random vector (Y1, Y2 . . . , Yk) fits the

Dirichlet distribution, having parameter vector (α1, α2, . . . , αk) [30]. This procedure can
easily be realized even by Microsoft Excel.

In the present study, we first simulated 1000 (X, Y) pairs from the Dirichlet distribution
for some arbitrary parameters α1, α2 and α3. We obtained estimates obtained by four meth-
ods but since the maximum likelihood estimators and estimators obtained by the ordinary
entropy method and parameter space expansion method are all the same, the comparison
is between moment estimates and the rest. Then we repeated this experiment 5000 times.
The summarizing statistics are as shown in Table 1:

Table 1. Results of some simulations (1000 runs, 5000 runs).

1000 runs/5000 runs α1 = 3 α2 = 2 α3 = 4

MOM 2.79/2.92 1.86/1.94 3.81/3.88
APE 6.75/2.35 6.99/2.9 4.73/2.94
MLE 3.06/3.23 2.21/2.11 4.64/4.32
APE 2.07/7.85 10.5/5.98 16.24/8.1

1000 runs/5000 runs α1 = 4 α2 = 0.25 α3 = 2

MOM 3.96/3.94 0.25/0.24 1.96/1.97
APE 0.99/1.26 2.82/0.05 1.53/1.18
MLE 4.28/4.02 0.26/0.22 2.03/1.96
APE 7.01/0.57 4.27/9.69 1.85/1.79

1000 runs/5000 runs α1 = 0.5 α2 = 3 α3 = 2

MOM 0.48/0.5 3.1/3.09 2.09/2.04
APE 3.91/1.94 3.36/3.13 4.67/2.09
MLE 0.61/0.5 3.39/3.1 1 2.32/2.06
APE 22.48/0.58 13.01/3.92 16.1/3.34

1000 runs/5000 runs α1 = 3 α2 = 3 α3 = 4

MOM 3.01/3.04 3.05/2.99 4.13/4.04
APE 0.49/1.63 1.82/0.36 3.38/1.04
MLE 3.22/2.86 3.41/2.88 4.61/3.61
APE 7.57/4.38 13.67/3.71 15.48/9.64

1000 runs/5000 runs α1 = 13 α2 = 2 α3 = 0.75

MOM 14.04/12.99 2.1/1.98 0.83/0.73
APE 8/0.02 5.34/0.56 11/1.45
MLE 12.52/13.11 1.96/2.02 0.75/0.69
APE 3.64/0.87 1.89/1.34 0.72/7.85

Note that the maximum likelihood estimates (MLEs) are obtained by Excel Solver.
In general, moment estimates and MLEs are close to each other. Absolute percentage errors
(APEs) are calculated by the following formula:

APE =
100 ∗ |parameter− estimate|

parameter
(64)

Then, it can be inferred that one measure does not dominate all the time, i.e., there
are some instances in which moment estimators perform better than the others, and there
are other instances in which maximum likelihood estimators do it better. In any case, it
is definite from the table that increasing the number of simulations increases precision
considerably.

Note that, by the central limit theorem, moment estimators are expected to be dis-
tributed normally for a large number of observations (or simulations) since a moment
estimator considers a sum of random observations (or the sum of some power of these
random observations). Maximum likelihood estimators also have the asymptotic normality
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property with lower variances. For the Dirichlet distribution, we found that the entropy
estimators mentioned above and maximum likelihood estimators are identical. Therefore,
entropy estimators also have the asymptotic normality property.

Finally, we note that the selection of (α1, α2, α3) is quite arbitrary just for addressing
the fact that maximum likelihood estimators (and maximum entropy estimators) are better
(i.e., show lower sampling variability as compared to moment estimators). Actually, this
was not the case all the time in the simulations. Since, in our study, the initial estimates of
maximum likelihood (and maximum entropy) are provided by the method of moments and
since the initial estimates provided by moments are close enough to the actual parameters,
a great improvement in sampling variability may not be achieved. This is probably due to
the nature of nonlinear estimation. To have a better picture, first simulating a random vector
(α1, α2, α3) several times, then trying to calculate moment estimates and then, based on these
initial estimates, moving forward to maximum likelihood estimates may be meaningful.

7. Conclusions

In the present study, parameter estimations of the Dirichlet distribution are obtained
by four methods. For a Dirichlet distribution with three parameters, parameter estimates
found by entropy methods (that we considered here) and by maximum likelihood are
almost the same. Maximum likelihood estimators are consistent, most efficient, sufficient,
tend to normality (as the sample size increases), and are invariant under functional transfor-
mations [31]. Therefore, parameter estimators found by the entropy methodology have the
same appealing properties as the maximum likelihood estimators. Based on the fact that
the sample moment will tend to be more concentrated for the corresponding population
moment for larger samples, a sample moment can also be used to estimate population
moments [1]. In general, moment estimators are asymptotically normally distributed and
consistent. However, their variance may be larger than that of estimators derived by other
methods [32]. Yet, it may be a good idea to start nonlinear estimation either for maximum
likelihood or entropy maximization methods with initial moment estimates. In the present
study, we started with moment estimates of a Dirichlet distribution with arbitrarily se-
lected parameters to demonstrate that better parameter estimates (i.e., estimates both with
lower bias and lower sampling variability) can be achieved. The simulation part of this
work can be enlarged by determining parameters randomly by further simulations for
further generalizations.
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