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Abstract: This article is concerned with the convergence properties of the Strang splitting method for
the Degasperis-Procesi equation, which models shallow water dynamics. The challenges of analyzing
splitting methods for this equation lie in the fact that the involved suboperators are both nonlinear. In
this paper, instead of building the second order convergence in L2 for the proposed method directly,
we first show that the Strang splitting method has first order convergence in H2. In the analysis, the
Lie derivative bounds for the local errors are crucial. The obtained first order convergence result
provides the H2 boundedness of the approximate solutions, thereby enabling us to subsequently
establish the second order convergence in L2 for the Strang splitting method.
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1. Introduction

Operator splitting methods are widely used for the numerical solution of both ordinary
differential equations (ODEs) and partial differential equations (PDEs) by decomposing
the complicated problems into simpler subequations. These subequations can be solved
individually using algorithms that are more efficient. Amounts of research has been
conducted on this topic. A comprehensive investigation of operator splitting methods is
presented in [1,2], covering their construction, implementation, and theoretical analysis.
Notably, these studies primarily focus on ODEs.

Additionally, the work by [3] is dedicated to the application of the operator splitting
method for solving PDEs, specifically those that are convection dominated. However,
this theory is limited to scalar and weakly coupled systems of equations. Previous stud-
ies have investigated the use of operator splitting for various equations, including the
Korteweg-de Vries equation [4], the Schrödinger equation [5], partial differential equations
with Burgers nonlinearity [6], the Burgers–Huxley equation [7], the Vlasov-Poisson equa-
tions [8,9], Fisher’s equation and Benjamin-Bono-Mahony equations [10], the Allen-Cahn
equation [11,12] and the Cahn-Hilliard equation [13–15].

The effectiveness of the operator splitting method relies on the interconnection be-
tween different subequations and the dynamics of the evolution problem. Specifically, a
particular type of partial differential equations involving the Burgers term tends to intro-
duce singularities, even when the initial data is smooth. When applying operator splitting
methods to these equations, determining the appropriate time step becomes a delicate
task. By introducing a new auxiliary time variable, the convergence of operator splitting
method for KdV equation is analyzed in [4]. Further, based on the Lie-commutator bounds
for the local error and conditional stability of error propagation, authors in [16] establish
the second order convergence of the Strang splitting for Schrödinger-Poisson and cubic
nonlinear Schrödinger equation. They identify the principal error terms of the local error
as quadrature errors. This result is then extended to a type of partial differential equations
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with Burgers nonlinearity in [6]. In these equations, one subequation is Burgers equation,
while the other subequation is linear. However, there exist very few results available when
both suboperators of the equations are nonlinear.

Inspired by the growing interest in operator splitting techniques applied to PDEs,
Ref. [17] has proposed the implementation of the Strang splitting method specifically for
the Degasperis-Procesi (DP) equations. This equation, serving as a model for capturing the
behavior of shallow water dynamics, can be expressed in the following form [18]

ut − uxxt + 3k3ux + 4uux = 3uxuxx + uuxxx, u(t, x)|t=0 = u0(x), (1)

here k is a real constant.
To design the temporal discretization of this equation based on the splitting strategy,

we rewrite it as

(1− ∂xx)(ut + uux) + 3k3ux + 3uux = 0, u(t, x)|t=0 = u0(x).

Note that the inverse Helmholtz operator (1− ∂xx)−1 can be expressed as a convolution

(1− ∂xx)
−1 f = P ∗ f , for all f ∈ L2(R) (2)

with P(x) := 1
2 e−|x|. Here the symbol f ∗ g denotes convolution of f and g, i.e.,

( f ∗ g)(t) =
∫ ∞

−∞
f (τ)g(t− τ)dτ, f , g ∈ L2(R).

Thus the DP Equation (1) can be transformed into

ut = C(u), u(t, x)|t=0 = u0(x) (3)

with
C(u) = −uux − 3P ∗

(
k3ux + uux

)
.

Let u(t) = Φt
C(u0) denote the exact solution of the initial value problem (3). Evidently, opera-

tor C can be split into two suboperators C = A + B. Thus, we consider the following subsystems

vt = A(v) = −vvx, v|t=0 = v0, (4)

ωt = B(ω) = −3P ∗ (k3ωx + ωωx), ω|t=0 = ω0. (5)

The first equation is known as the Burgers equation and the latter one is referred to as
the Benjamin-Bona-Mahony (BBM) equation. Let us denote the exact solution operators
of (4) and (5) by Φt

A and Φt
B respectively. Then, the operator splitting method, in its most

basic form reads as follows:

un+1 = Φτ
A ◦Φτ

B(un), n = 0, 1, 2 . . . ,

where un is the approximation of u(t) at t = tn = nτ, τ is the time step size. This method
is called Lie splitting method. In this paper, we focus on another more refined operator
splitting, known as Strang splitting, which is read as

un+1 = Ψτ(un) = Φ
τ
2
A ◦Φτ

B ◦Φ
τ
2
A(un), n = 0, 1, 2 . . . (6)

In [17] the efficiency of the Strang splitting method for the DP equation is demonstrated
numerically. However, to our knowledge, there is as yet no rigorous convergence result in
the literature for the splitting method for the DP equation. In the present study, we intend
to analyze the convergence properties of the Strang splitting method for the DP equation.

The major difficulty in the numerical analysis of the splitting scheme above lies in
the fact that both suboperators are nonlinear. The classical techniques suitable for only
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one nonlinear operator are not directly applicable here. In this paper, instead of building
second order convergence in the L2-norm for the proposed method directly, we first show
that the Strang splitting method has first order convergence in H2. While this result may
not seem attractive, it serves as the cornerstone for the H2 boundedness of the approximate
solutions. In the analysis, the Lie derivative bounds for the local errors are crucial. Finally,
by applying the Lady Windermere’s fan to estimate the global error, we prove second order
convergence in L2. A similar approach has been used by [16] when considering only a
nonlinear suboperator of the Burgers type. We strive further and extend the analysis to the
DP equation, where both suboperators are nonlinear.

The rest of the paper is organized as follows: Section 2 is devoted to the prelimi-
naries, where the assumptions are made and the regularity properties of the DP equa-
tion and the two subequations are derived. The first order convergence is analyzed in
Section 3. Furthermore, the approximate solutions are proven to be bounded, which plays
an important role in the second order analysis. Finally, the second order convergence of the
Strang splitting is presented in Section 4.

2. Preliminaries

In this section, we collect and prove the results which are crucial in the proof of
first- and second order convergence analysis. For 1 ≤ p ≤ ∞, the norm in the Lebesgue
space Lp = Lp(R) is denoted by ‖ · ‖Lp , while for s > 0, the norm in the Sobolev space
Hs = Hs(R) is denoted by ‖ · ‖Hs .

2.1. Setting

For the well-posedness of the DP equation, we recall the results in [19]:
if u0 ∈ Hs, s > 3

2 , then there exists a maximal time T, such that the DP equation has
a unique strong solution u = u(·, u0) ∈ C([0, T); Hs) ∩ C1([0, T); Hs−1), and the solution
depends continuously on the initial data. Moreover, we have

‖u(t)‖L2 ≤ 2‖u0‖L2 , ‖u(t)‖L∞ ≤ c‖u0‖H1 , (7)

where the constant c only depends on T. For convenience, we use c to stand for a generic
constant. It may have different values even in the same line.

In order to carry out the error analysis we make the following further assumption on
the DP equation. We assume that on t ∈ [0, T], the solution u(t) is in H3 and there exists a
constant ρ > 0 such that u(t) is uniformly bounded as

‖u(t)‖H3 ≤ ρ (8)

for 0 ≤ t ≤ T.
Since the analysis in this paper heavily depends on the nonlinear variation-of-constants

formula, which needs to calculate Lie derivatives, we first list some results about the Lie
derivative. Denote ϕt

F(v) as the solution at time t of the differential equation ϕ̇ = F(ϕ)
with initial data ϕ(0) = v, then, for any unbounded vector field G on H1 and v ∈ H1, the
Lie derivative DF associated with F is defined by

(DFG)(v) =
d
dt
|t=0 G

(
ϕt

F(v)
)
= dG(v)[F(v)],

where dG is the Fréchet-derivative. Specially, for the identity operator G = Id, it follows
that (DFId)(v) = F(v).

The exponential operator etDF on G is defined as(
etDF G

)
(v) = G

(
ϕt

F(v)
)
.
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Obviously, for the identity operator G = Id,
(
etDF Id

)
(v) = ϕt

F(v). For derivatives, we
have the rule

d
dt

(etDF G)(v) =
(

DFetDF G
)
(v) =

(
etDF DFG

)
(v).

For composition, we have(
ϕ
[2]
t ◦ ϕ

[1]
s

)
(y0) =

(
esD1etD2Id

)
(y0),

where ϕ
[1]
s and ϕ

[2]
t are the flows of the differential equations ẏ = f [1](y) and ẏ = f [2](y),

respectively, D1, D2 are Lie derivatives associated to f [1], f [2] respectively.
Therefore, the Strang splitting method (6) can be written as

un+1 = Ψτ(un) =
(

e
τ
2 DA eτDB e

τ
2 DA Id

)
(un), n = 0, 1, 2 . . . (9)

Define Lie commutator of two nonlinear operators G and H as

[G, H](v) = dG(v)[H(v)]− dH(v)[G(v)],

then we have the following property

{DG, DH}(v) :− DGDH(v)− DH DG(v) = −[G, H](v).

With the help of Lie derivative, we can express the exact solution of the nonlinear equa-
tion into the similar form of the variation-of-constants formula, which is called nonlinear
variation-of-constants formula. The convergence analysis heavily depends on this formula.

Lemma 1 (Nonlinear variation-of-constants formula). The exact solution of the following
initial value problem{

u′(t) = C(u(t)) = A(u(t)) + B(u(t)), 0 ≤ t ≤ T,
u(0) = u0,

has the form

u(t) =
(

etDC Id
)
(u0) =

(
etDA Id

)
(u0) +

∫ t

0

(
e(t−s)DC DBesDA Id

)
(u0)ds.

Proof. Define function ϕ(s) =
(

e(t−s)DC esDA Id
)
(u0), according to the formula

ϕ(t)− ϕ(0) =
∫ t

0 ϕ̇(s)ds and DC = DA + DB, we have(
etDA Id

)
(u0)−

(
etDC Id

)
(u0)

=−
∫ t

0

(
e(t−s)DC DCesDA Id

)
(u0)ds +

∫ t

0

(
e(t−s)DC DAesDA Id

)
(u0)ds

=−
∫ t

0

(
e(t−s)DC DBesDA Id

)
(u0)ds.

This completes the proof.

Moreover, we note that the special convolution (2) is involved in the DP equation,
in order to simplify the analysis, we list the properties of convolution which are used
extensively in the convergence analysis.
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Lemma 2. The convolution (2) has the following properties:

(1) If f , g ∈ Hm for integer m ≥ 0, then ‖P ∗ g‖Hm ≤ ‖g‖Hm and ‖P ∗ ( f g)x‖Hm ≤
c‖ f ‖Hm‖g‖Hm .

(2) ∂2
x(P ∗ g) = P ∗ g− g, for g ∈ H2.

(3) |P ∗ ( f gx)| ≤ (‖ f ‖L∞ + ‖ fx‖L∞)P ∗ |g|, for f , g ∈ H2.

Proof. (1) See Lemmas 2.3 and 2.4 in [10].

(2) Integrating by parts yields

∂2
x(P ∗ g) =

1
2

∫ x

−∞
e−x+η dgη(η) +

1
2

∫ +∞

x
ex−η dgη(η) = P ∗ g− g.

(3) Integrating by parts gives

|P ∗ ( f gx)| =
∣∣∣∣12
∫ x

−∞
e−x+η f dg(η) +

1
2

∫ +∞

x
ex−η f dg(η)

∣∣∣∣
=

∣∣∣∣−1
2

∫ x

−∞
e−x+η( f + fη)g dη − 1

2

∫ +∞

x
ex−η(− f + fη)g dη

∣∣∣∣
≤ (‖ f ‖L∞ + ‖ fx‖L∞)P ∗ |g|.

This completes the proof.

2.2. Properties of the Exact Solutions

Now, we are in the position to estimate the properties of the DP equation and the two
subequations. We first show that the solution dependence on the initial data is Lipschitz
continuous in a weaker topology.

Lemma 3. Let u(t), v(t) be the exact solutions of the DP Equation (1) with initial data u0,
v0 respectively. If ‖u(t)‖H3 ≤ r, ‖v(t)‖H3 ≤ r for 0 ≤ t ≤ T, then there exists a constant
K = K(r, k, T) > 1 such that

‖u(t)− v(t)‖Hm ≤ K‖u0 − v0‖Hm , m = 0, 1, 2. (10)

Proof. Set δ = u− v and δ0 = u0 − v0, then it follows that

δt = −uδx − vxδ− 3P ∗ ((k3 + u)δx + vxδ). (11)

Taking the first and second order derivatives with respect to x of this equation yields

δxt = −(ux + vx)δx − uδxx − vxxδ− 3Px ∗ ((k3 + u)δx + vxδ), (12)

and

δxxt =− (uxx + 2vxx)δx − (2ux + vx)δxx − uδxxx − vxxxδ

− 3P ∗ ((k3 + u)δx + vxδ)− (k3 + u)δx − vxδ. (13)

To estimate ‖δ‖Hm (m = 0, 1, 2), multiplying Equations (11)–(13) by δ, δx and δxx
respectively and integrating gives

1
2

d
dt

∫ ∞

−∞
δ2 dx = −

∫ ∞

−∞
uδδx dx−

∫ ∞

−∞
vxδ2 dx− 3

∫ ∞

−∞
δP ∗ ((k3 + u)δx + vxδ)dx

=
∫ ∞

−∞
uxδ2 dx−

∫ ∞

−∞
vxδ2 dx− 3

∫ ∞

−∞
δP ∗ ((k3 + u)δx + vxδ)dx

≤ c(‖ux‖L∞ + ‖u‖L∞ + ‖vx‖L∞ + k3)‖δ‖2
L2 ≤ c(r + k3)‖δ‖2

L2 ,
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1
2

d
dt

∫ ∞

−∞
δ2

x dx =−
∫ ∞

−∞
(

1
2

ux + vx)δ
2
x dx−

∫ ∞

−∞
vxxδδx dx

− 3
∫ ∞

−∞
δxP ∗ ((k3 + u)δxx + uxδx)dx− 3

∫ ∞

−∞
δxPx ∗ (vxδ)dx

≤ c(‖ux‖L∞ + ‖u‖L∞ + ‖vx‖L∞ + k3)‖δx‖2
L2

+ ‖δ‖L∞‖vxx‖L2‖δx‖L2 + c‖vx‖L2‖δ‖L2‖δx‖L2

≤ c(r + k3)‖δ‖2
H1 ,

and

1
2

d
dt

∫ ∞

−∞
δ2

xx dx =−
∫ ∞

−∞
(uxx + 2vxx)δxδxx dx−

∫ ∞

−∞
(

3
2

ux + vx)δ
2
xx dx−

∫ ∞

−∞
vxxxδδxx

− 3
∫ ∞

−∞
δxxP ∗ ((k3 + u)δx + vxδx)dx− 3

∫ ∞

−∞
δxx((k3 + u)δx + vxδ)dx

≤ c(‖uxx‖L∞ + ‖vxx‖L∞ + ‖u‖L∞ + ‖ux‖L∞ + ‖vx‖L∞ + k3)‖δx‖L2‖δxx‖L2

+ c(‖ux‖L∞ + ‖vx‖L∞)‖δxx‖2
L2 + c‖δ‖L∞‖vxxx‖L2‖δxx‖L2

+ c(‖u‖L∞ + ‖ux‖L∞ + ‖vx‖L∞ + k3)‖δ‖L2‖δxx‖L2

≤ c(r + k3)‖δ‖2
H2 ,

where Lemma 2 is used in the estimations. Combining them together, we obtain

1
2

d
dt
‖δ‖2

Hm ≤ c(r + k3)‖δ‖2
Hm ,

which leads to
‖δ‖Hm ≤ ec(r+k3)t‖δ0‖Hm , m = 0, 1, 2.

Then the proof is complete.

Lemma 4. If the initial data of the DP Equation (1) satisfies ‖u0‖Hm ≤ M for m ≥ 2, then
there exists t̄(M) > 0 such that the solution u(t) of the DP equation has ‖u(t)‖Hm ≤ 2M, for
0 ≤ t ≤ t̄(M).

Proof. Set u = Φt
C(u0), we have

‖u‖Hm
d
dt
‖u‖Hm = (u, ut)Hm = −

m

∑
k=0

∫ ∞

−∞
∂k

xu∂k
x(uux + 3Px ∗ (k3u +

1
2

u2))dx.

We estimate the Burgers term and the convolution term separately. First for the Burgers
term we have

∂k
xu∂k

x(uux) =
k

∑
j=0

Cj
k∂k

xu∂
j
xu∂

k+1−j
x u.

Note that when k < m, we have j ≤ k < m and k + 1− j ≤ m, thus∣∣∣∣∫ ∞

−∞
∂k

xu∂
j
xu∂

k+1−j
x u dx

∣∣∣∣ ≤ ‖∂k
xu‖L∞‖∂j

xu‖L2‖∂k+1−j
x u‖L2 ≤ c‖u‖3

Hm .

When k = m and j > 0, we have ξ = min{j, k + 1− j} < m and η = max{j, k + 1−
j} ≤ m, this gives∣∣∣∣∫ ∞

−∞
∂k

xu∂
j
xu∂

k+1−j
x u dx

∣∣∣∣ ≤ ‖∂ξ
xu‖L∞‖∂k

xu‖L2‖∂η
xu‖L2 ≤ c‖u‖3

Hm .
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While in the remaining case k = m and j = 0, we have∣∣∣∣∫ ∞

−∞
∂m

x uu∂m+1
x u dx

∣∣∣∣ = ∣∣∣∣12
∫ ∞

−∞
u d(∂m

x u)2
∣∣∣∣ = ∣∣∣∣12

∫ ∞

−∞
∂xu(∂m

x u)2 dx
∣∣∣∣ ≤ c‖u‖3

Hm .

For the convolution term, it follows that∣∣∣∣∫ ∞

−∞
∂k

xu∂k+1
x (P ∗ (k3u +

1
2

u2))dx
∣∣∣∣ ≤ ‖∂k

xu‖L2‖∂k+1
x (P ∗ (k3u +

1
2

u2))‖L2 .

According to Lemma 2, it is easy to obtain that

‖∂k+1
x (P ∗ (k3u +

1
2

u2))‖L2 ≤ c(‖u‖Hm + ‖u‖2
Hm).

Then, we have∣∣∣∣∫ ∞

−∞
∂k

xu∂k+1
x (P ∗ (k3u +

1
2

u2))dx
∣∣∣∣ ≤ c(‖u‖2

Hm + ‖u‖3
Hm).

It follows that
d
dt
‖u‖Hm ≤ c(‖u‖Hm + ‖u‖2

Hm).

Noting that the solution of differential equation y′(t) = a(y + y2), a > 0 with initial
data y(0) = y0 is given by

y(t) =
y0eat

1 + (1− eat)y0
.

Hence, there exists t̄(M) > 0, if 0 < t < t̄(M), then y(t) ≤ 2y0. Therefore the result is
obtained.

We can get similar results of Lemma 4 for Equations (4) and (5), which is useful in the
convergence analysis and we list them below.

Lemma 5. For some m ≥ 2,
(1) if ‖v0‖Hm ≤ M, then there exists t̄1(M) > 0 such that ‖Φt

A(v0)‖Hm ≤ 2M, for 0 ≤ t ≤
t̄1(M);

(2) if ‖ω0‖Hm ≤ M, then there exists t̄2(M) > 0 such that ‖Φt
B(ω0)‖Hm ≤ 2M, for 0 ≤ t ≤

t̄2(M).

In the analysis of convergence, it is necessary to establish the boundedness of the
approximate solution. The following Lemma significantly contributes to the derivation of
such boundedness.

Lemma 6. For Equations (4) and (5),
(1) if ‖Φt

A(v0)‖H2 ≤ α holds for 0 ≤ t ≤ τ1, then ‖Φt
A(v0)‖H3 ≤ ec1αt‖v0‖H3 for 0 ≤ t ≤ τ1,

where c1 is independent of v0 and t;
(2) if ‖Φt

B(ω0)‖H2 ≤ β holds for 0 ≤ t ≤ τ2, then ‖Φt
B(ω0)‖H3 ≤ ec2(1+β)t‖ω0‖H3 for

0 ≤ t ≤ τ2, where c2 is independent of ω0 and t.

Proof. (1) Denote v = Φt
A(v0), we have

‖v‖H3
d
dt
‖v‖H3 = −

3

∑
k=0

k

∑
j=0

Cj
k

∫ ∞

−∞
∂k

xv∂
j+1
x v∂

k−j
x v dx

≤
3

∑
k=0

k

∑
j=0

Cj
k

∣∣∣∣∫ ∞

−∞
∂k

xv∂
j+1
x v∂

k−j
x v dx

∣∣∣∣.
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For k ≤ 2 , j ≤ k, it follows that∣∣∣∣∫ ∞

−∞
∂k

xv∂
j+1
x v∂

k−j
x v dx

∣∣∣∣ ≤ ‖∂k
xv‖L∞‖∂j+1

x v‖L2‖∂k−j
x v‖L2 ≤ c‖v‖H2‖v‖2

H3 .

For k = 3 and j < 3, we have ξ = min{j + 1, 3− j} < 3 and η = max{j + 1, 3− j} ≤ 3,
then it follows that∣∣∣∣∫ ∞

−∞
∂3

xv∂
j+1
x v∂

3−j
x v dx

∣∣∣∣ ≤ ‖∂ξ
xv‖L∞‖∂3

xv‖L2‖∂η
xv‖L2 ≤ c‖v‖H2‖v‖2

H3 .

For the last case, k = 3 and j = 3, integrating by parts yields∣∣∣∣∫ ∞

−∞
∂3

xv∂4
xvv dx

∣∣∣∣ ≤ 1
2

∣∣∣∣∫ ∞

−∞

(
∂3

xv
)2

vx dx
∣∣∣∣ ≤ 1

2
‖vx‖L∞‖∂3

xv‖2
L2 ≤ c‖v‖H2‖v‖2

H3 .

Therefor, we have
d
dt
‖v‖H3 ≤ c1α‖v‖H3 .

This ends the proof.
(2) Similarly, the statement of (2) can be verified by using the convolution property given

in Lemma 2.

3. First Order Convergence

It is known that Strang splitting method has the convergence order of two. Neverthe-
less, in order to demonstrate this convergence, the utilization of Lady Windermere’s fan is
necessary, which relies on the boundedness of the approximate solutions. Consequently,
this section will focus on proving the first order convergence to ensure the boundedness
of the approximate solutions. Our investigation shall commence by examining the error
estimates for the local error.

Lemma 7. The local error of the Strang splitting method is bounded in H2 by

‖Ψτ(u0)−Φτ
C(u0)‖H2 ≤ c3τ2,

where c3 only depends on ‖u0‖H3 .

Proof. First we represent the exact solution u(t) = Φτ
C(u0) by the nonlinear variation-of-

constants formula (see Lemma 1)

u(τ) =
(

eτDA Id
)
(u0) +

∫ τ

0

(
e(τ−s)DC DBesDA Id

)
(u0)ds. (14)

Using this formula again for the integrand, we obtain

u(τ) =
(

eτDA Id
)
(u0) +

∫ τ

0

(
e(τ−s)DA DBesDA Id

)
(u0)ds + ε1

with
ε1 =

∫ τ

0

∫ τ−s

0

(
e(τ−s−σ)DC DBeσDA DBesDA Id

)
(u0)dσ ds. (15)
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For sufficiently small τ, according to Lemmas 2, 4 and 5, we have

‖ε1‖H2 ≤ c
∫ τ

0

∫ τ−s

0
‖
(

DBeσDA DBesDA Id
)
(u0)‖H2 dσ ds

≤ c
∫ τ

0

∫ τ−s

0
‖
(

eσDA DBesDA Id
)
(u0)‖H2 + ‖

(
eσDA DBesDA Id

)
(u0)‖2

H2 dσ ds

≤ c
∫ τ

0

∫ τ−s

0
‖
(

DBesDA Id
)
(u0)‖H2 + ‖

(
DBesDA Id

)
(u0)‖2

H2 dσ ds

≤ c
∫ τ

0

∫ τ−s

0
‖
(

esDA Id
)
(u0)‖H2 + ‖

(
esDA Id

)
(u0)‖2

H2

+
(
‖
(

esDA Id
)
(u0)‖H2 + ‖

(
esDA Id

)
(u0)‖2

H2

)2
dσ ds

≤ c(‖u0‖H2)τ2.

On the other hand, using the first order Taylor expansion with the remainder in the
integral form to the exact solution of BBM equation yields

eτDB = Id + τDB + τ2
∫ 1

0
(1− θ)eθτDB D2

B dθ. (16)

Inserting it into the numerical scheme (9), we obtain

u1 =
(

eτDA Id
)
(u0) + τ

(
e

τ
2 DA DBe

τ
2 DA Id

)
(u0) + ε2

with

ε2 = τ2
∫ 1

0
(1− θ)

(
e

τ
2 DA eθτDB D2

Be
τ
2 DA Id

)
(u0)dθ. (17)

Following the same procedure as for ε1 and using Lemmas 2 and 5, we can also show
that

‖ε2‖H2 ≤ c(‖u0‖H2)τ2

holds for sufficiently small τ. Thus, we get

u1 − u(τ) = τ
(

e
τ
2 DA DBe

τ
2 DA Id

)
(u0)−

∫ τ

0

(
e(τ−s)DA DBesDA Id

)
(u0)ds + ε2 − ε1

=: ε0 + ε2 − ε1.

We find that ε0 is just the quadrature error of the midpoint rule applied to the integral
over [0, τ] of the function f (s) =

(
e(τ−s)DA DBesDA Id

)
(u0). We express this quadrature

error in the first order Peano form,

ε0 = τ f
(

1
2

τ

)
−
∫ τ

0
f (s)ds = τ2

∫ 1

0
κ1(θ) f ′(θτ)dθ,

where κ1 is the real-valued, bounded Peano kernel of the midpoint rule. We find

f ′(s) = −
(

e(τ−s)DA{DA, DB}esDA Id
)
(u0) =

(
e(τ−s)DA [A, B]esDA Id

)
(u0).

Calculating the Fréchet-derivatives of operators A and B gives

dA(ω)[ν] = −(ων)x, dB(ω)[ν] = −3P ∗ (k3ν + ων)x,

d2 A(ω)[µ, ν] = −(µν)x, d2B(ω)[µ, ν] = −3P ∗ (νµ)x,
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then

[A, B](v) = dA(v)[B(v)]− dB(v)[A(v)]

= 3vxPx ∗
(

k3v +
1
2

v2
)
+ 3vP ∗

(
k3v +

1
2

v2
)
− 3

2
k3v2 − 1

2
v3 − 3P ∗

(
1
2

k3v2 +
1
3

v3
)

.

where Lemma 2 is used in the last equality. According to Lemmas 2 and 5, it follows that

‖ f ′(s)‖H2 ≤ c(‖u0‖H3).

Hence, the quadrature error ε0 is O
(
τ2) in the H2 norm for u0 ∈ H3. This completes

the proof.

We are now in a position to state our first main result regarding the boundedness of
the approximate solutions, which is built along with the first order convergence result. This
boundedness is necessary for the refined second order error estimate.

Theorem 1 (First-order convergence in H2). Let Assumption (8) be fulfilled. Further, let u(t)
be the solution of the DP Equation (1), un be the numerical solution given by the Strang splitting
method (6). Then, there exists τ > 0 such that for τ ≤ τ and tn = nτ ≤ T,

‖un − u(tn)‖H2 ≤ c5τ, ‖un‖H2 ≤ R :− 2ρ, ‖un‖H3 ≤ ec6nτ‖u0‖H3 ≤ Λ :− ec6T‖u0‖H3.

Here, τ, c5 only depend on ‖u0‖H3 , R and T, while c6 = 5c1R + c2 + 4c2R is independent of
u0 and τ.

Proof. The induction method is employed during the process of establishing the proof.
For n = 1, Lemma 7 indicates that ‖u1− u(t1)‖ ≤ c5τ holds true. For the boundedness

of u1, we have

‖u1‖H2 = ‖u1 − u(t1)‖H2 + ‖u(t1)‖H2 ≤ c5τ + ρ ≤ R

with τ sufficient small enough such that c5τ ≤ ρ. For ‖u1‖H3 , note that

‖u1‖H3 = ‖Φ
τ
2
A ◦Φτ

B ◦Φ
τ
2
A(u0)‖H3

≤ ec1
τ
2 ‖Φ

τ
2
A ◦Φ

τ
B◦Φ

τ
2
A (u0)‖H2 ‖Φτ

B ◦Φ
τ
2
A(u0)‖H3 .

In the last inequality, Lemma 6 is used. From Lemma 5, we have

‖Φ
τ
2
A ◦Φτ

B ◦Φ
τ
2
A(u0)‖H2 ≤ 2‖Φτ

B ◦Φ
τ
2
A(u0)‖H2

≤ 4‖Φ
τ
2
A(u0)‖H2 ≤ 8‖u0‖H2 ≤ 8ρ.

The same logic is adopted to bound ‖Φτ
B ◦Φ

τ
2
A(u0)‖H3 and ‖Φ

τ
2
A(u0)‖H3 .

‖Φτ
B ◦Φ

τ
2
A(u0)‖H3 ≤ ec2τ(1+‖Φτ

B◦Φ
τ
2
A (u0)‖H2 )‖Φ

τ
2
A(u0)‖H3 ,

‖Φτ
B ◦Φ

τ
2
A(u0)‖H2 ≤ 4‖u0‖H2 ≤ 4ρ,

‖Φ
τ
2
A(u0)‖H3 ≤ ec1

1
2 τ‖Φ

τ
2
A (u0)‖H2 ‖u0‖H3 ,

‖Φ
τ
2
A(u0)‖H2 ≤ 2‖u0‖H2 ≤ 2ρ.

Combing above estimations together, we have

‖u1‖H3 ≤ e(5c1ρ+c2+4c2ρ)τ‖u0‖H3 ≤ ec6τ‖u0‖H3 ≤ Λ.
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Assume that the results are true for k ≤ n− 1, i.e.,

‖uk − u(tk)‖H2 ≤ c0τ, ‖uk‖H2 ≤ R, ‖uk‖H3 ≤ ec6kτ‖u0‖H3 .

We intend to show that the above results are also true for k = n. Using Lady Winder-
mere’s fan argument, the global error can be expressed as

‖un − u(tn)‖H2 = ‖Φ0
C(un)−Φnτ

C (u0)‖H2

≤
n−1

∑
k=0
‖Φkτ

C (un−k)−Φ(k+1)τ
C (un−k−1)‖H2

=
n−2

∑
k=0
‖Φ(n−1−k)τ

C (uk+1)−Φ(n−1−k)τ
C (Φτ

C(uk))‖H2 + ‖un −Φτ
C(un−1)‖H2 .

The Lipschitz condition (10) is subsequently utilized to estimate the error. However,
such an approach necessitates that we have to prove for some r > 0,

‖Φ(n−1−k)τ
C (uk+1)‖H3 ≤ r, ‖Φ(n−k)τ

C (uk)‖H3 ≤ r for k ≤ n− 2.

From the recursive assumption, it is easy to get ‖uk‖H3 ≤ Λ for k ≤ n− 1. According
to Lemma 4 with m = 3, Lipschitz condition in Lemma 10 with r = 2Λ is available. Then
the global error is

‖un − u(tn)‖H2

≤
n−2

∑
k=0
‖Φ(n−1−k)τ

C (uk+1)−Φ(n−1−k)τ
C (Φτ

C(uk))‖H2 + ‖un −Φτ
C(un−1)‖H2

≤
n−2

∑
k=0

K(r, k, T)‖uk+1 −Φτ
C(uk)‖H2 + c3τ2

≤ c(c3)nK(r, k, T)τ2 ≤ c5τ.

Similarly, we have

‖un‖H2 ≤ ‖un − u(tn)‖H2 + ‖u(tn)‖H2 ≤ c5τ + ρ ≤ R,

‖un‖H3 ≤ ‖Φ
τ
2
A ◦Φτ

B ◦Φ
τ
2
A(un−1)‖H3 ≤ ec6τ‖un−1‖H3 ≤ ec6nτ‖u0‖H3 ≤ Λ.

This completes the proof.

4. Second Order Convergence

In Section 3, first order convergence is analyzed and the boundedness of the approxi-
mate solution is obtained in H2-norm, which makes the proof of second order convergence
available. Next, we prove the Strang splitting method is second order convergent in
L2-norm.

Theorem 2 (Second-order convergence in L2). Let Assumption (8) be fulfilled. Further, let u(t)
be the solution of the DP Equation (1), un be the approximate solution given by the Strang splitting
method (6). Then, there exists τ > 0 such that for τ ≤ τ and tn = nτ ≤ T,

‖un − u(tn)‖L2 ≤ c7τ2

with constants τ, c7 only depend on ‖u0‖H2 , R and T.

Proof. The idea is similar to that for Lemma 7 and Theorem 1, but we expand the solution
to one more higher order to achieve the second order convergence. This is possible due to
the boundedness of the solution.
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Using the same notations introduced in the proof of Lemma 7, for the local error we have

u1 − u(τ) = ε0 + ε2 − ε1. (18)

We now give refined estimates for three terms.
Recall the definition of ε2 given by (17), we further have

ε2 =
τ2

2

(
e

τ
2 DA D2

Be
τ
2 DA Id

)
(u0) + ε̃2,

where ε̃2 takes the form

ε̃2 = τ3
∫ 1

0

∫ 1

0
(1− θ)θ(1− s)

(
e

τ
2 DA esθτDB D3

Be
τ
2 DA Id

)
(u0)ds dθ.

On the other side, for error ε1 given by (15), using the nonlinear variation-of-constants
formula again, we obtain

ε1 =
∫ τ

0

∫ τ−s

0

(
e(τ−s−σ)DA DBeσDA DBesDA Id

)
(u0)dσds + ẽ1,

with

ε̃1 =
∫ τ

0

∫ τ−s

0

∫ τ−s−σ

0

(
e(τ−s−σ−δ)DC DBeδDA DBeσDA DBesDA Id

)
(u0)dδ dσ ds.

Define function g(s, σ) =
(

e(τ−s−σ)DA DBeσDA DBesDA Id
)
(u0), then we have

ε2 − ε1 =
τ2

2
g
(τ

2
, 0
)
−
∫ τ

0

∫ τ−s

0
g(s, σ)dσds + ε̃2 − ε̃1.

According to the quadrature error of a first order two-dimensional quadrature formula,
we have∥∥∥∥τ2

2
g
(τ

2
, 0
)
−
∫ τ

0

∫ τ−s

0
g(s, σ)dσ ds

∥∥∥∥
L2
≤ cτ3

(
max

∥∥∥∥∂g
∂s

∥∥∥∥
L2
+ max

∥∥∥∥ ∂g
∂σ

∥∥∥∥
L2

)
,

where the maxima are taken over the triangle {(s, σ) : 0 ≤ σ ≤ s ≤ τ}. For the partial
derivatives, we have

∂g
∂s

= −
(

e(τ−s−σ)DA DADBeσDA DBesDA Id
)
(u0) +

(
e(τ−s−σ)DA DBDAeσDA DBesDA Id

)
(u0)

−
(

e(τ−s−σ)DA DBeσDA DADBesDA Id
)
(u0) +

(
e(τ−s−σ)DA DBeσDA DBDAesDA Id

)
(u0)

=
(

e(τ−s−σ)DA [A, B]eσDA DBesDA Id
)
(u0) +

(
e(τ−s−σ)DA DBeσDA [A, B]esDA Id

)
(u0).

With Lemmas 2 and 5, as the estimation of ε1 in Lemma 7, we have∥∥∥∥∂g
∂s

∥∥∥∥
L2
≤ c‖

(
[A, B]eσDA DBesDA Id

)
(u0)‖L2 + c‖

(
DBeσDA [A, B]esDA Id

)
(u0)‖L2 ≤ c(‖u0‖H2).

For ∂g
∂σ , we get

∂g
∂σ

=
(

e(τ−s−σ)DA [A, B]eσDA DBesDA Id
)
(u0),



Axioms 2023, 12, 946 13 of 15

then with Lemmas 2 and 5, it follows that∥∥∥∥ ∂g
∂σ

∥∥∥∥
L2
≤ c(‖u0‖H2).

Noting that, for sufficiently small τ, according to the well-posedness result (7) and
Lemma 5, we have

‖ε̃1‖L2 ≤ c(‖u0‖L2)τ3.

Similarly, Lemma 5 yields

‖ε̃2‖L2 ≤ c(‖u0‖L2)τ3.

Therefore, we have the bound

‖ε2 − ε1‖L2 ≤ c(‖u0‖H2)τ3.

Next, we show that similar third order bound also holds for ε0. To that end, we write
the error term τ f

(
1
2 τ
)
−
∫ τ

0 f (s)ds in its second order Peano form

ε0 = τ f
(

1
2

τ

)
−
∫ τ

0
f (s)ds = τ3

∫ 1

0
κ2(θ) f ′′(θτ)dθ

with the second order Peano kernel κ2 of the midpoint rule and f is the same function in
Lemma 7. We have

f ′′(s) =
(

e(τ−s)DA [A, [A, B]]esDA Id
)
(u0),

where

[A, [A, B]](v) = (dA(v))2[B(v)]− 2 dA(v)dB(v)[A(v)]− d2 A(v)[B(v), A(v)]

+ d2B(v)[A(v), A(v)] + dB(v)dA(v)[A(v)].

After some tedious calculus and simplification, we get that

(dA(v))2[B(v)] = −9
2
(v2)x(P ∗ (k3v +

1
2

v2)− k3v− 1
2

v2)− 3
2
(v2)xxPx ∗ (k3v +

1
2

v2)

− 3v2(Px ∗ (k3v +
1
2

v2)− (k3v +
1
2

v2)x),

−2 dA(v)dB(v)[A(v)] = 6vx(P ∗ (1
2

k3v2 +
1
3

v3)− 1
2

k3v2 − 1
3

v3)

+ 6v(Px ∗ (
1
2

k3v2 +
1
3

v3)− k3vvx − v2vx),

−d2 A(v)[B(v), A(v)] = 3(vvxx + v2
x)Px ∗ (k3v +

1
2

v2) + 3vvx(P ∗ (k3v +
1
2

v2)− k3v− 1
2

v2),

d2B(v)[A(v), A(v)] = −3Px ∗ (v2v2
x),

dB(v)dA(v)[A(v)] = −3Px ∗ (k3(2vv2
x + v2vxx) + 2v2v2

x + v3vxx).

Using Lemma 2, this yields

‖[A, [A, B]](v)‖L2 ≤ c(‖v‖H2).

Similarly, we have
‖ f ′′(s)‖L2 ≤ c(‖u0‖H2).
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Hence, ε0 is also bounded by cτ3. Combining the above estimations together, for the
local error, we obtain

‖u1 − u(τ)‖L2 ≤ c(‖u0‖H2)τ3. (19)

Here, the local error depends on the H2-norm of the approximate solution.
Finally, noting that the boundedness of the approximate solutions has been established in

Theorem 1, the second order error estimate can be built by the Lady Windermere’s fan argument.

‖un − u(tn)‖L2 = ‖Φ0
C(un)−Φnτ

C (u0)‖L2

≤
n−1

∑
k=0
‖Φkτ

C (un−k)−Φ(k+1)τ
C (un−k−1)‖L2

=
n−2

∑
k=0
‖Φ(n−1−k)τ

C (uk+1)−Φ(n−1−k)τ
C (Φτ

C(uk))‖L2 + ‖un −Φτ
C(un−1)‖L2

≤ cK(r, k, T)nτ3 ≤ cK(r, k, T)Tτ2,

where Lemma 3 and the third order estimate of the local error (19) are used. This completes
the proof.

5. Conclusions

This paper presents the error estimates for the Strang splitting method applied to
the Degasperis-Procesi equation. The nonlinearity of the two sub-operators after the
operator splitting renders the classical error analysis method inapplicable. Our main
technical contribution lies in initially establishing the first order convergence result in
the Sobolev space H2. This result is essential in proving the H2 boundedness of the
approximate solutions. Finally, by utilizing the Lie derivative bounds for the local error
and the boundedness of the approximate solution, we are able to derive the desired second
order convergence result in L2.

The present convergence theory aligns with the numerical experimental findings doc-
umented in [17]. It is worth noting that the two subequations in this paper are solved accu-
rately. Moving forward, the forthcoming study will focus on investigating the convergence
analysis of the complete discretization splitting scheme when numerical approximations
are employed for the two subequations.
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