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Abstract: The multi-resolution analysis (MRA) associated with quadratic phase Fourier transform
(QPFT) serves as a tool to construct orthogonal bases of the L2(R). Consequently, it assumes a pivotal
role in facilitating potential applications of QPFT. Inspired by the sampling theorem applicable to
band-limited signals in the QPFT domain, this paper formulates the development of the MRA linked
with QPFT. Subsequently, we develop a method for constructing orthogonal bases for L2(R), followed
by some examples.
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1. Introduction

The Fourier transform (FT) is a remarkable discovery in the field of mathematical sci-
ences, which has had a profound impact on many branches of science and engineering [1,2].
Over time, the domain of Fourier analysis has witnessed numerous mathematical break-
throughs, leading to significant advancements and profound implications of the classical
Fourier transform. Notable developments that stem from the conventional Fourier trans-
form include the fractional Fourier transform [3,4], linear canonical transform [5], special
affine Fourier transform [6], and the relatively recent quadratic-phase Fourier transform [7].
The quadratic-phase Fourier transform (QPFT) extends the classical Fourier transform,
incorporating quadratic phase factors into its kernel. In the QPFT, the signal’s time-domain
representation is multiplied by a quadratic phase term before computing its frequency-
domain representation. This additional quadratic phase term allows for a more flexible
analysis of signals with time-varying frequency content. The QPFT provides a unified
framework for handling transient and non-transient signals, making it particularly useful
for analyzing signals with time-varying properties. It has found applications in various
fields, including signal processing, time-frequency analysis, and communication systems.
The mathematical expression for the QPFT involves five real parameters (A, B, C, D, E) that
control characteristics of the quadratic phase term. Adjusting these parameters can tailor
the QPFT to suit specific signal processing requirements. Overall, the quadratic-phase
Fourier transform enhances the traditional Fourier transform’s capabilities, enabling a
more versatile and powerful analysis of signals in the time-frequency domain. Shah et al.
studied short-time quadratic-phase Fourier transform as well as quadratic-phase wavelet
transform (QPWT) with many applications in [8,9]. Also, the quadratic phase Fourier
wavelet transform was explored by Prasad and Sharma in [10]. Over the past decades,
various integral transforms, including the Fourier, fractional Fourier, and linear canonical
transforms, have been extensively explored in time-frequency analysis.
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On the other hand, multiresolution analysis (MRA) is a powerful mathematical frame-
work used in signal and image processing introduced by Mallat [11], particularly in the
field of wavelet analysis. It provides a systematic and hierarchical approach to analyzing
signals or images at different levels of detail or resolution. The concept of MRA is rooted
in the idea of representing a signal or an image in terms of a series of subspaces, each
capturing different levels of frequency or scale information. Madych [12] established ele-
mentary properties of MRA in L2(Rn) with scaling functions represented as characteristic
functions. Subsequently, Zhang [13] explored scaling functions and wavelets in standard
MRA, providing a characterization of the support of the Fourier transform of these scaling
functions. Malhotra and Vashisht [14] contributed to understanding scaling functions on
Euclidean spaces. The MRA associated with FrWT was also introduced in [15], where FrWT
analyzes signals in the time-frequency-FrFD domain. Ahmad [16] studied fractional MRA
and associated scaling functions in L2(R). Dai et al. [17] proposed a novel fractional wavelet
transform (FRWT) and studied MRA associated with the developed FRWT, together with
the construction of the orthogonal fractional wavelets. Shah and Lone [18,19] studied
special affine MRA and the construction of orthonormal wavelets in L2(R) and studied
Shannon’s sampling theorem for the quadratic-phase Fourier transform, which serves as
a comprehensive sampling theorem applicable to a broad range of integral transforms.
Shah and Tantary [20] formulated the sampling theorem for the QPFT and developed a
novel convolution structure for efficient filtering in the quadratic-phase Fourier domain
and also gave the advantages of the proposed convolution structure and its integration
with the Wigner distribution to filter out undesired signal components. As a generalization
of FT, QPFT can represent adaptively signals in both time and FT domains. Therefore,
QPFT not only breaks through the limitation of FT in time-Fourier domain analysis but also
overcomes the limitation of FT in indicating the signal’s characteristics. QPFT successfully
inherits the advantages of MRA for FT. The MRA and the construction of orthogonal
wavelets associated with QPFT are crucial in its perspective applications. Thus, detecting
the MRA and the construction of the orthogonal wavelets related to QPFT is necessary.
Therefore, our primary concern is introducing the notion of quadratic phase MRA, which
allows a smoother construction of orthonormal bases simply and insightfully.

The main contributions of this article are as follows:

• To give an alternative proof of Shannon’s sampling theorem associated with the
quadratic phase Fourier transform.

• Inspired by the sampling theorem of band-limited signals in the QPFT domain,
the MRA associated with quadratic phase wavelet transform is developed.

• Discuss the construction of the orthonormal basis of L2(R) starting from a given
scaling function.

• To give examples of quadratic phase wavelets from given scaling functions.

The rest of the article follows this structure: in Section 2, we offer a comprehensive
introduction to the basics, covering the QPFT and also obtain some of its fundamental
properties that are new in the literature. Moving on to Section 3, we give an alternative
proof of the sampling theorem for the band-limited theorem in the QPFT domain. Based on
this sampling theorem, we define a novel MRA and discuss constructing an orthonormal
basis for L2(R), followed by some examples in Section 4. Finally, in Section 5, we conclude
our paper.

2. Preliminaries

In time-frequency analysis, a recent signal processing tool that has garnered attention
is the quadratic-phase Fourier transform (QPFT), introduced by Castro et al. [21]. This
transformative tool offers a unified approach to handling transient and non-transient
signals.

Definition 1. Given a parameter set Λ = (A, B, C, D, E) , the QPFT of f ∈ L2(R) is denoted as
QΛ f and is defined by
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(QΛ f )(ξ) =
1√
2π

∫
R

f (t)KΛ(t, ξ)dt,

where KΛ(t, ξ) is a quadratic-phase kernel and is given by

KΛ(t, ξ) = ei(At2−Btξ+Cξ2+Dt+Eξ)

and the corresponding inversion formula and Parseval’s formula for the QPFT reads

f (t) =
∫
R
(QΛ f )(ξ)KΛ(t, ξ)dξ,

and
〈 f , g〉 = |B|〈QΛ f , QΛg〉 ∀ f , g ∈ L2(R),

where A, B, C, D, E ∈ R, B 6= 0.

Some Properties Associated with the Quadratic Phase Fourier Transform

The lemma below gives some formula for the QPFT, that will be used later in this paper.

Lemma 1. Let f ∈ L2(R), a 6= 0, then the following holds:

(1) (QΛ{ f (at)})(ξ) = 1
|a| e

i
{

C
(

ξ2−( ξ
a )

2)
+E(ξ− ξ

a )
}(

QΛ
{

ei
{

A( t
a )

2−At2+D( t
a )−Dt

}
f (t)

})(
ξ
a

)
.

(2) (QΛ{ei{A(at)2−At2+D(at)−Dt} f (at)})(ξ) = 1
|a| e

i
{

C
(

ξ2−( ξ
a )

2)
+E(ξ− ξ

a )
}(

QΛ f (t)
)( ξ

a

)
.

Proof. Using the definition of the quadratic phase Fourier transform, we have

(QΛ{ f (at)})(ξ)

=
1√
2π

∫
R

f (at)ei(At2−Btξ+Cξ2+Dt+Eξ)dt

=
1√

2π|a|

∫
R

f (t)ei{A( t
a )

2− B
a tξ+Cξ2+ D

a t+Eξ}dt

=
1√

2π|a|

∫
R

ei
{

A( t
a )

2−At2+D( t
a )−Dt

}
f (t)e

i
{

At2−Bt
(

ξ
a

)
+C
(

ξ
a

)2
+Dt+E

(
ξ
a

)}

× e
i
{

C
(

ξ2−
(

ξ
a

)2
)
+E
(

ξ− ξ
a

)}
dt

=
1
|a| e

i
{

C
(

ξ2−
(

ξ
a

)2
)
+E
(

ξ− ξ
a

)} ∫
R

ei
{

A( t
a )

2−At2+D( t
a )−Dt

}
f (t)

× 1√
2π

e
i
{

At2−Bt
(

ξ
a

)
+C
(

ξ
a

)2
+Dt+E

(
ξ
a

)}
dt

=
1
|a| e

i
{

C
(

ξ2−
(

ξ
a

)2
)
+E
(

ξ− ξ
a

)}(
QΛ
{

ei
{

A( t
a )

2−At2+D( t
a )−Dt

}
f (t)

})(
ξ

a

)
,

i.e.,

(QΛ{ f (at)})(ξ) = 1
|a| e

i
{

C
(

ξ2−
(

ξ
a

)2
)
+E
(

ξ− ξ
a

)}(
QΛ
{

ei
{

A( t
a )

2−At2+D( T
a )−Dt

}
f (t)

})(
ξ

a

)
.
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Now,

(QΛ{φ(t) f (at)})(ξ)

=
1√
2π

∫
R

φ(t) f (at)ei(At2−Btξ+Cξ2+Dt+Eξ)dt

=
1√

2π|a|

∫
R

φ

(
t
a

)
f (t)ei

{
A( t

a )
2−B t

a ξ+Cξ2+D t
a +Eξ

}
dt

=
1
|a| e

i
{

C
(

ξ2−
(

ξ
a

)2
)
+E
(

ξ− ξ
a

)}(
QΛ
{

ei
{

A( t
a )

2−At2+D( t
a )−Dt

}
φ

(
t
a

)
f (t)

})(
ξ

a

)
.

If we take φ(t) = e−i{At2−A(at)2+Dt−D(at)}, then

(QΛ{e−i{At2−A(at)2+Dt−D(at)}})(ξ) = 1
|a| e

i
{

C
(

ξ2−
(

ξ
a

)2
)
+E
(

ξ− ξ
a

)}(
QΛ f (t)

)( ξ

a

)
,

i.e.,

(QΛ{ei{A(at)2−At2+D(at)−Dt} f (at)})(ξ) = 1
|a| e

i
{

C
(

ξ2−
(

ξ
a

)2
)
+E
(

ξ− ξ
a

)}(
QΛ f (t)

)( ξ

a

)
. (1)

This finishes the proof.

The following lemma is an important tool in proving the Shannon’s sampling theorem
in the QPFT domain. It says that if a function f is band-limited in the quadratic phase
Fourier transform domain, then there is a function g depending on f such that it is band-
limited in the Fourier domain. Note that, from here on, we take the value B in Λ as
positive.

Lemma 2. Assume a signal f (t) is band limited to ΩΛ in quadratic phase Fourier domain with
parameter Λ = (A, B, C, D, E) and B > 0. Let

g(t) =
∫ ∞

−∞
(QΛ f )(ξ)e−i[−Bξt+Cξ2+Eξ]dξ, (2)

then g(t) is a signal band-limited in (−BΩΛ, BΩΛ) in the Fourier domain.

Proof. Given,

g(t) =
∫ ∞

−∞
(QΛ f )(ξ)e−i[−Bξt+Cξ2+Eξ]dξ.

Taking the Fourier transform, we have

(F{g(t)})(ω) =
∫ ∞

−∞

{∫ ∞

−∞
(QΛ f )(ξ)e−i[−Bξt+Cξ2+Eξ]dξ

}
e−itω
√

2π
dt

=
∫ ∞

−∞
(QΛ f )(ξ)e−i[Cξ2+Eξ]

{∫ ∞

−∞
e−i[−Bξt] e−itω

√
2π

dt
}

dξ

=
∫ ∞

−∞
(QΛ f )(ξ)e−i[Cξ2+Eξ]

{
1√
2π

∫ ∞

−∞
ei(Bξ−ω)tdt

}
dξ

=
∫ ∞

−∞
(QΛ f )(ξ)e−i(Cξ2+Eξ)

√
2πδ(Bξ −ω)dξ

=
∫ −∞

−∞
(QΛ f )(ξ)e−i(Cξ2+Eξ)

√
2πδ(Bξ −ω)dξ



Axioms 2023, 12, 927 5 of 20

=

√
2π

B

∫ −∞

−∞
(QΛ f )

(
ξ

B

)
e
−i
(

C ξ2

B2 +E ξ
B

)
√

2πδ(ξ −ω)dξ

=

√
2π

B
(QΛ f )

(ω

B

)
e−i

(
C ω2

B2 +E ω
B

)
,

i.e., (F{g(t)})(ω) =

√
2π

B
(QΛ f )

(ω

B

)
e−i(C ω2

B2 +E ω
B ).

Since (QΛ f )(ω) is band-limited to ΩΛ, so supp(QΛ f ) ⊂ [−ΩΛ, ΩΛ], i.e.,

(QΛ f )(ω) 6= 0 a.e., |ω| > ΩΛ

=⇒ (QΛ f )
(ω

B

)
6= 0 a.e.,

∣∣∣ω
B

∣∣∣ > ΩΛ

=⇒ (QΛ f )
(ω

B

)
6= 0 a.e., |ω| > BΩΛ,

i.e., supp(F{g(t)}) ⊂ [−BΩΛ, BΩΛ] Thus, (F{g(t)})(ω) 6= 0 a.e., |ω| > BΩΛ. Therefore,
g(t) is band-limited to BΩΛ in the Fourier domain.

3. Sampling Theorem for Band Limited Signal in QPFT Domain

The sampling theorem, also known as the Nyquist–Shannon sampling theorem, is a
fundamental principle in signal processing and digital signal theory. It provides guidance
on how to accurately reconstruct a continuous-time analog signal from its discrete samples.
The theorem states that, to avoid aliasing and to perfectly reconstruct the original signal,
the sampling rate (i.e., the number of samples taken per second) must be at least twice the
highest frequency in the analog signal. Mathematically, if a band-limited signal contains
a range of k frequencies, it can be accurately reconstructed by taking 2k evenly spaced
samples. Taking additional samples would prove redundant, whereas fewer samples
would lead to a loss in signal quality. The sampling theorem can be expressed as follows: If
a continuous-time signal is band-limited, meaning it contains no frequencies higher than
a certain maximum frequency (known as the Nyquist frequency), then the signal can be
completely reconstructed from its samples if the sampling rate is greater than or equal to
twice the Nyquist frequency.

Inspired by the sampling theorem of band-limited signal in QPFT domain, in this
section, the MRA associated with QPFT is established in the next section. The sampling
theorem of a band-limited signal associated with QPFT is given by the following theorem.

Theorem 1. Let signal f (t) be band-limited to ΩΛ in QPFT-domain having parameter Λ =
(A, B, C, D, E), B > 0. Then, the following sampling theorem expansion for f (t) holds:

f (t) = ei(At2+Dt) ∑
n∈Z

f (nT)eiA(nT)2+D(nT)sinc
(

BΩΛ(t− nT)
π

)
, (3)

where T is the sampling period and satisfies T = π
BΩΛ

and is called as the Nyquist rate of sampling
theorem associated with the quadratic phase Fourier transform.

Proof. We have

f (t) =
1√
2π

∫
R
(QΛ f )(ξ)e−i(At2−Btξ+Cξ2+Dt+Eξ)dξ

=
1√
2π

∫
R
(QΛ f )(ξ)e−i(−Btξ+Cξ2+Eξ)e−i(At2+Dt)dξ

=

{∫
R
(QΛ f )(ξ)e−i(−Btξ+Cξ2+Eξ)dξ

}
1√
2π

e−i(At2+Dt)
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=
1√
2π

e−i(At2+Dt)g(t).

Since g(t) is band-limited to (−BΩΛ, BΩΛ) in the Fourier domain, by applying the
classical Shannon’s sampling theorem, we get

g(t) = ∑
n∈Z

g(nT)sinc
(

BΩΛ(t− nT)
π

)
,

where T = π
BΩΛ

is the sample period. Therefore,

f (t) =
1√
2π

e−i(At2+Dt) ∑
n∈Z

g(nT)sinc
(

BΩΛ(t− nT)
π

)
=e−i(At2+Dt) ∑

n∈Z
ei{A(nt)2+D(nt)} f (nT)sinc

(
BΩΛ(t− nT)

π

)
,

i.e.,

f (t) = e−i(At2+Dt) ∑
n∈Z

f (nT)ei{A(nt)2+D(nt)}sinc
(

BΩΛ(t− nT)
π

)
.

This finishes the proof.

4. Multiresolution Analysis Associated with QPFT

This section is devoted to the MRA associated with the QPFT. To introduce the defini-
tion, we first start with the following discussion, which has mainly to do with the Shannon’s
sampling theorem discussed before. It motivated us to define an MRA associated with the
QPFT. In what follows, the results also show the existence of the so-developed MRA.

When ΩΛ = π
B , the set of band-limited signals in QPFT domain is denoted by VΛ

0 , i.e.,

VΛ
0 =

{
f ∈ L2(R) : (QΛ f )(u) = 0, |u| ≥ ΩΛ =

π

B
}

,

where sampling period T = 1. Therefore, from the sampling theorem, for all f (t) ∈ VΛ
0 ,

we get

f (t) = ∑
n∈Z

e−i(At2+Dt) f (n)ei{An2+Dn}sinc
(

BΩΛ(t− n)
π

)
.

Since ΩΛ = π
B , we have

f (t) = ∑
n∈Z

e−i{A(t2−n2)+D(t−n)} f (n)sinc(t− n),

i.e.,

f (t) = ∑
n∈Z

f (n)φΛ,0,n(t),

where φΛ,0,n(t) = e−i{A(t2−n2)+D(t−n)}sinc(t− n).
Combining with the orthogonality of {φΛ,0,n}n∈Z, we can further obtain that {φΛ,0,n =

e−i{A(t2−n2)+D(t−n)}sinc(t− n)}n∈Z forms an orthonormal basis of VΛ
0 .

When ΩΛ = 2π
B , T = 1

2 , the set of band-limited signal in the QPFT domain is denoted
by VΛ

1 , i.e.,

VΛ
1 =

{
f ∈ L2(R) : (QΛ f )(u) = 0, |u| ≥ ΩΛ =

2π

B
}

.
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Therefore, according to sampling theorem Equation (3),

g ∈ VΛ
0 =⇒ (QΛ f )(u) = 0, |u| ≥ π

B

=⇒ (QΛ f )(u) = 0, |u| ≥ 2π

B
=⇒ g ∈ VΛ

1 ,

i.e., VΛ
0 ⊂ VΛ

1 . Also for T = 1
2 , ΩΛ = 2π

B , f ∈ VΛ
1 can be written as

f (t) =e−i(At2+Dt) ∑
n∈Z

f
(n

2

)
ei
{

A( n
2 )

2−D( n
2 )
}

sinc
(

2
(

t− n
2

))
= ∑

n∈Z
f
(n

2

)
e−i

{
A
(

t2−( n
2 )

2)
+D(t− n

2 )
}

sinc(2t− n)

= ∑
n∈Z

1√
2

f
(n

2

)
φΛ,1,n(t),

where φΛ,1,n(t) = 2
1
2 e−i

{
A
(

t2−( n
2 )

2)
+D(t− n

2 )
}

sinc(2t− n).

It can be further obtained that {φΛ,1,n = 2
1
2 e−i

{
A
(

t2−( n
2 )

2)
+D(t− n

2 )
}

sinc(2t− n)}n∈Z
forms an orthonormal basis of VΛ

1 . For a = 2, Equation (1) can be written as

(QΛ{ei{A(2t)2−At2+D(2t)−Dt} f (2t)})(ξ) = 1
2

e
i
{

C
(

ξ2−
(

ξ
2

)2
)
+E
(

ξ− ξ
2

)}(
QΛ f

)( ξ

2

)
.

This implies that f ∈ VΛ
0 if and only if ei{A(2t)2−At2+D(2t)−Dt} f (2t) ∈ VΛ

1 . This is
because

f ∈ VΛ
0 ⇐⇒ (QΛ f )(ξ) = 0, |ξ| ≥ ΩΛ =

π

B

⇐⇒ (QΛ f )
(

ξ

2

)
= 0,

∣∣∣∣ ξ2
∣∣∣∣ ≥ π

B

⇐⇒ (QΛ f )
(

ξ

2

)
= 0, |ξ| ≥ 2π

B

⇐⇒ 1
2

e
i
{

C
(

ξ2−
(

ξ
2

)2
)
+E
(

ξ− ξ
2

)}(
QΛ f (t)

)( ξ

2

)
= 0, |ξ| ≥ 2π

B

⇐⇒ (QΛ{ei{A(2t)2−At2+D(2t)−Dt} f (2t)})(ξ) = 0, |ξ| ≥ 2π

B

⇐⇒ ei{A(2t)2−At2+D(2t)−Dt} f (2t) ∈ VΛ
1 ,

i.e., f ∈ VΛ
0 ⇐⇒ ei{A(2t)2−At2+D(2t)−Dt} f (2t) ∈ VΛ

1 .
Generally, let ΩΛ = 2k π

B , T = 1
2k ,

VΛ
k = { f ∈ L2(R) : (QΛ f )(ξ) = 0, |u| ≥ 2k π

B
}.

Now, ∀ f ∈ VΛ
k , we have

f (t) = ∑
n∈Z

f
( n

2k

)
e
−i
{

A
(

t2−
(

n
2k

)2
)
+D

(
t− n

2k

)}
sinc

(
2kt− n

)
= ∑

n∈Z

1

2
k
2

f
( n

2k

)
φΛ,k,n(t),
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where φΛ,k,n(t) = 2
k
2 e
−i
{

A
(

t2−
(

n
2k

)2
)
+D

(
t− n

2k

)}
sinc

(
2kt− n

)
. Thus, {φΛ,k,n(t)}n∈Z forms

an orthonormal basis of VΛ
k .

Thus, ∀k ∈ Z, we have

(a) VΛ
k ⊂ VΛ

k+1;

(b) f (t) ∈ VΛ
k ⇐⇒ ei{A(2t)2−At2+D(2t)−Dt} f (2t) ∈ VΛ

k+1;

(c) ∩k∈ZVΛ
k = {0} and ∪k∈ZVΛ

k = L2(R).
To put it briefly, the sampling theorem for band-limited signals in the QPFT domain

serves as the inspiration to establish an orthonormal MRA associated with QPFT.
In this section, our focus lies on introducing the concept of a quadratic phase MRA

within the space L2(R). This MRA will hold significant importance in developing the
quadratic phase orthonormal wavelet basis for L2(R). Initially, we present the formal
definition of a special affine MRA in L2(R).

Definition 2. An orthogonal MRA associated with QPFT is defined as a sequence of closed subspace
VΛ

k , k ∈ Z such that

(A) VΛ
k ⊂ VΛ

k+1, ∀k ∈ Z.

(B) f (t) ∈ VΛ
k ⇐⇒ ei{A(2t)2−At2+D(2t)−Dt} f (2t) ∈ VΛ

k+1∀k ∈ Z.

(C) ∩k∈ZVΛ
k = {0} and ∪k∈ZVΛ

k = L2(R).
(D) There exist a function φ ∈ L2(R) such that {φΛ,0,n(t) = e−i{A(t2−n2)+D(t−n)}sinc(t−

n)}n∈Z is an orthonormal basis of the subspace VΛ
0 , where φ is called the scaling function

of the given MRA.

Lemma 3. The family {φΛ,0,n : n ∈ Z}, given by the above, constitute an orthonormal system in
L2(R) iff

∑
k∈Z
|(Fφ)(ξ + 2kπ)|2 =

1
2π

.

Proof. We have

(QΛ{φΛ,0,n})(ξ) =
∫
R

φ(t− n)e−i{A(t2−n2)+D(t−n)} 1√
2π

ei(At2−Btξ+Cξ2+Dt+Eξ)dt

=
∫
R

φ(t− n)e−i{A(−n2)+D(−n)} 1√
2π

ei(−Btξ+Cξ2+Eξ)dt

=
1√
2π

ei{An2+Dn−Bnξ+Cξ2+Eξ}
∫
R

φ(t)e−it(Bξ)dt,

i.e., (QΛ{φΛ,0,n})(ξ) = ei{An2+Dn−Bnξ+Cξ2+Eξ}(Fφ)(Bξ). Now since,

〈φΛ,0,n, φΛ,0,l〉 = B〈QΛ{φΛ,0,n}, QΛ{φΛ,0,l}〉

= B
∫
R
(QΛ{φΛ,0,n})(ξ)(QΛ{φΛ,0,l})(ξ)dξ

= B
∫
R

ei(An2+Dn−Bnξ+Cξ2+Eξ)e−i(Al2+Dl−Blξ+Cξ2+Eξ)|(Fφ)(Bξ)|2dξ

= B
∫
R

ei(A(n2−l2)+D(n−l)−B(n−l)ξ)|(Fφ)(Bξ)|2dξ

= Bei(A(n2−l2)+D(n−l)
∫
R

e−iB(n−l)ξ)|(Fφ)(Bξ)|2dξ

= ei(A(n2−l2)+D(n−l)
∫
R

e−i(n−l)ξ)|(Fφ)(ξ)|2dξ.
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Since {φΛ,0,n}n∈Z forms an orthonormal basis of VΛ
0 , we have

〈φΛ,0,n, φΛ,0,l〉 = δn,l ∀k, l ∈ R.

This implies ei(A(n2−l2)+D(n−l) ∫
R e−i(n−l)ξ)|(Fφ)(ξ)|2dξ = δn,l . Set n− l = q then

ei[A(q+l)2−l2]+Dq
∫
R

e−iqξ |(Fφ)(ξ)|2dξ = δq+l,l

=⇒
∫
R

e−iqξ |(Fφ)(ξ)|2dξ = δq,0, q ∈ Z

=⇒ ∑
k∈Z

∫ 2(k+1)π

2kπ
e−iqξ |(Fφ)(ξ)|2dξ = δq,0

=⇒ ∑
k∈Z

∫ 2π

0
e−iq(η+2kπ)|(Fφ)(η + 2kπ)|2dη = δq,0

=⇒ ∑
k∈Z

∫ 2π

0
e−iqη |(Fφ)(η + 2kπ)|2dη = δq,0,

i.e.,
∫ 2π

0
e−iqη ∑

k∈Z
|(Fφ)(η + 2kπ)|2dη = δq,0.

Let F(u) = ∑k∈Z|(Fφ)(η + 2kπ)|2. Then

F(u + 2π) = ∑
u∈Z
|(Fφ)(u + 2π + 2kπ)|2

= ∑
u∈Z
|(Fφ)(u + 2(k + 1)π)|2

= ∑
r∈Z
|(Fφ)(u + 2rπ)|2

=F(u),

i.e., F(u) is 2π periodic. Therefore, ∫ 2π

0
e−iqη F(η)dη = δq,0

=⇒ 1
2π

∫ 2π

0
e−iqη F(η)dη =

1
2π

δq,0

F(η) =
1

2π
,

i.e., ∑k∈Z|(Fφ)(ξ + 2kπ)|2 = 1
2π .

Conversely, let ∑k∈Z|(Fφ)(ξ + 2kπ)|2 = 1
2π , then

〈φΛ,0,n, φΛ,0,l〉 = ei(A(n2−l2)+D(n−l)
∫
R

e−i(n−l)ξ)|(Fφ)(ξ)|2dξ

= ei(A(n2−l2)+D(n−l) ∑
k∈Z

∫ 2(k+1)π

2kπ
e−i(n−l)ξ |(Fφ)(ξ)|2dξ

= ei(A(n2−l2)+D(n−l) ∑
k∈Z

∫ 2π

0
e−i(n−l)ξ |(Fφ)(ξ + 2kπ)|2dξ

= ei(A(n2−l2)+D(n−l)
∫ 2π

0
e−i(n−l)ξ ∑

k∈Z
|(Fφ)(ξ + 2kπ)|2dξ

= ei(A(n2−l2)+D(n−l) 1
2π

∫ 2π

0
e−i(n−l)ξ dξ
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=

{
1, n = l
0, n 6= l

= δn,l ,

i.e., the system is orthonormal. Hence the conclusion follows.

Let {VΛ
k }k∈Z be an orthonormal MRA of L2(R). Since φΛ,0,0(t) ∈ VΛ

0 ⊂ VΛ
1 , and

{φΛ,1,n}n∈Z forms an orthonormal basis of VΛ
1 , so there exists {hn}n∈Z such that

φΛ,0,0(t) = ∑
n∈Z

hnφΛ,1,n(t)

= ∑
n∈Z

hn
√

2φ(2t− n)e−i
{

A
(

t2−( n
2 )

2)
+D(t− n

2 )
}

. (4)

Equation (4) is called the quadratic phase refinement equation. Here,

hn =
√

2
∫
R

φΛ,0,0(t)φ(2t− n)ei
{

A
(

t2−( n
2 )

2)
+D(t− n

2 )
}

dt

=
√

2
∫
R

φ(t)φ(2t− n)e−i
{

A( n
2 )

2
+D( n

2 )
}

dt.

Now, from Equation (4), we have

φ(t)e−i(At2+Dt) =
√

2 ∑
n∈Z

hnφ(2t− n)e−i
{

A
(

t2−( n
2 )

2)
+D(t− n

2 )
}

.

Taking QPFT on both sides we get∫
R

φ(t)e−i(At2+Dt)ei(At2−Btξ+Cξ2+Dt+Eξ)dt

=
√

2
∫
R

∑
n∈Z

hnφ(2t− n)e−i
{

A
(

t2−( n
2 )

2)
+D(t− n

2 )
}

ei(At2−Btξ+Cξ2+Dt+Eξ)dt.

This gives∫
R

φ(t)ei(−Btξ+Cξ2+Eξ)dt =
√

2 ∑
n∈Z

hn

∫
R

φ(2t− n)e−i
{
−A( n

2 )
2−D( n

2 )
}

ei(−Btξ+Cξ2+Eξ)dt

i.e., ei(Cξ2+Eξ)
∫
R

φ(t)e−iBtξ dt = ei(Cξ2+Eξ)
√

2 ∑
n∈Z

hn

∫
R

φ(2t− n)ei
{

A( n
2 )

2
+D( n

2 )
}

e−iBtξ dt.

Thus,∫
R

φ(t)e−it(Bξ)dt =
√

2 ∑
n∈Z

hnei
{

A( n
2 )

2
+D( n

2 )
} ∫

R
φ(2t− n)e−it(Bξ)dt

= ∑
n∈Z

hnei
{

A( n
2 )

2
+D( n

2 )
} ∫

R

√
2φ(2t− n)e−it(Bξ)dt

= ∑
n∈Z

hnei
{

A( n
2 )

2
+D( n

2 )
} ∫

R

1√
2

φ(t− n)e−it
(

Bξ
2

)
dt

= ∑
n∈Z

hnei
{

A( n
2 )

2
+D( n

2 )
} ∫

R

1√
2

φ(t)e−i(t+n)
(

Bξ
2

)
dt

= ∑
n∈Z

1√
2

hnei
{

A( n
2 )

2
+D( n

2 )−n
(

Bξ
2

)} ∫
R

φ(t)e−it
(

Bξ
2

)
dt,



Axioms 2023, 12, 927 11 of 20

i.e., (Fφ)(Bξ) = Λ0

(
Bξ
2

)
(Fφ)

(
Bξ
2

)
, where Λ0

(
Bξ
2

)
= 1√

2 ∑n∈Z hnei
{

A( n
2 )

2
+D( n

2 )−n
(

Bξ
2

)}
.

Equivalently,

(Fφ)(ξ) = Λ0

(
ξ

2

)
(Fφ)

(
ξ

2

)
, (5)

where Λ0(ξ) =
1√
2 ∑n∈Z hnei

{
A( n

2 )
2
+D( n

2 )−nξ
}

.

Since {φΛ,0,n}n∈Z is an orthonormal basis or orthonormal system of VΛ
0 , so by Lemma 3,

we have

∑
k∈Z
|(Fφ)(ξ + 2kπ)|2 =

1
2π

. (6)

Hence, we can write

1
2π

= ∑
k∈Z
|(Fφ)(ξ + 2kπ)|2

= ∑
k∈Z

∣∣∣∣Λ0

(
ξ + 2kπ

2

)
(Fφ)

(
ξ + 2kπ

2

)∣∣∣∣2
= ∑

k∈Z

∣∣∣∣Λ0

(
ξ + 2kπ

2

)∣∣∣∣2∣∣∣∣(Fφ)

(
ξ + 2kπ

2

)∣∣∣∣2
= ∑

k∈Z

∣∣∣∣Λ0

(
ξ

2
+ 2kπ

)∣∣∣∣2∣∣∣∣(Fφ)

(
ξ

2
+ 2kπ

)∣∣∣∣2
+ ∑

k∈Z

∣∣∣∣Λ0

(
ξ

2
+ (2k + 1)π

)∣∣∣∣2∣∣∣∣(Fφ)

(
ξ

2
+ (2k + 1)π

)∣∣∣∣2. (7)

Observe that

Λ0(ξ) =
1√
2

∑
n∈Z

hnei
{

A( n
2 )

2
+D( n

2 )−nξ
}

Λ0(ξ + 2π) =
1√
2

∑
n∈Z

hnei
{

A( n
2 )

2
+D( n

2 )−n(ξ+2π)
}

=
1√
2

∑
n∈Z

hnei
{

A( n
2 )

2
+D( n

2 )−nξ
}

e−2inπ

=
1√
2

∑
n∈Z

hnei
{

A( n
2 )

2
+D( n

2 )−nξ
}

i.e., Λ0(ξ + 2π) = Λ0(ξ).

Also,

Λ0(ξ + 2kπ) =Λ0(ξ). (8)

Hence, from (7)

1
2π

= ∑
k∈Z

∣∣∣∣Λ0

(
ξ

2
+ 2kπ

)∣∣∣∣2∣∣∣∣(Fφ)

(
ξ

2
+ 2kπ

)∣∣∣∣2 + ∑
k∈Z

∣∣∣∣Λ0

(
ξ

2
+ (2k + 1)π

)∣∣∣∣2∣∣∣∣(Fφ)

(
ξ

2
+ (2k + 1)π

)∣∣∣∣2
=

∣∣∣∣Λ0

(
ξ

2

)∣∣∣∣2 ∑
k∈Z

∣∣∣∣(Fφ)

(
ξ

2
+ 2kπ

)∣∣∣∣2 + ∣∣∣∣Λ0

(
ξ

2
+ π

)∣∣∣∣2 ∑
k∈Z

∣∣∣∣(Fφ)

(
ξ

2
+ (2k + 1)π

)∣∣∣∣2.
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Now using Equation (6), we have∣∣∣∣Λ0

(
ξ

2

)∣∣∣∣2 · 1
2π

+

∣∣∣∣Λ0

(
ξ

2
+ π

)∣∣∣∣2 · 1
2π

=
1

2π

=⇒
∣∣∣∣Λ0

(
ξ

2

)∣∣∣∣2 + ∣∣∣∣Λ0

(
ξ

2
+ π

)∣∣∣∣2 = 1.

Given an orthogonal MRA {VΛ
n }n∈Z, we define another sequence {WΛ

n }n∈Z, of closed
subspaces of L2(R) by VΛ

j+1 = VΛ
j ⊕WΛ

j , j ∈ Z. Followed by a definition, these subspace

inherit the scaling property of {VΛ
j }j∈Z, namely

f (t) ∈WΛ
j ⇔ f (2t)ei[A{(2t)2−t2}+D(2t−t)] ∈WΛ

j+1, j ∈ Z. (9)

Moreover, the subspaces WΛ
j are mutually orthogonal with the following decomposi-

tion formula

L2(R) = ⊕j∈ZWΛ
j . (10)

Note that condition (10) means that any orthonormal basis for L2(R) can be constructed
by finding out an orthonormal basis for the subspace WΛ

j . On the other hand, condition (9)
implies that the quadratic phase basis can be constructed as long as the orthonormal basis
for WΛ

0 is found. Therefore, our main concern is to construct a mother function ψΛ,0,0 in
WΛ

0 such that {ψΛ,0,k : k ∈ Z} forms an orthonormal basis of WΛ
0 .

Suppose ψΛ,0,0(t) ∈WΛ
0 ⊂ VΛ

1 , there exists {dk}k∈Z such that

ψΛ,0,0(t) =
√

2 ∑
k∈Z

dkφ(2t− k)ei
{

A
(

t2−( k
2 )

2)
+D(t− k

2 )
}

. (11)

Equation (11) is called quadratic phase wavelet equation. Taking QPFT on both sides,
we get

(Fψ)(Bξ) =Λ1

(
Bξ

2

)
(Fφ)

(
Bξ

2

)
,

i.e., (Fψ)(ξ) =Λ1

(
ξ

2

)
(Fφ)

(
ξ

2

)
, (12)

where

Λ1(ξ) =
1√
2

∑
n∈Z

dnei
{

A( n
2 )

2
+D( n

2 )−nξ
}

. (13)

Since WΛ
0 and VΛ

0 , are orthogonal in VΛ
1 , we have

0 = 〈φΛ,0,k, φΛ,0,l〉
= B〈QΛ{φΛ,0,k}, QΛ{φΛ,0,l}〉. (14)
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Observe that

(QΛ{φΛ,0,k})(ξ) =
1√
2π

∫
R

φΛ,0,k(t)ei(At2−Btξ+Cξ2+Dt+Eξ)dt

=
1√
2π

∫
R

φ(t− k)ei{Ak2+Dk}ei(−Btξ+Cξ2+Eξ)dt

=
1√
2π

ei{Ak2+Dk}ei(Cξ2+Eξ)
∫
R

φ(t− k)e−it(Bξ)dt (15)

=
1√
2π

ei{Ak2+Dk}ei(Cξ2+Eξ)
∫
R

φ(t)e−i(t+k)Bξ dt

=ei{Ak2+Dk}ei(Cξ2+Eξ)e−ik(Bξ) 1√
2π

∫
R

φ(t)e−it(Bξ)dt

i.e., QΛ(φΛ,0,k)(ξ) =ei{Ak2+Dk+Cξ2+Eξ−kBξ}(Fφ)(Bξ). (16)

Similarly,

QΛ(ψΛ,0,l)(ξ) =ei{Al2+Dl+Cξ2+Eξ−lBξ}(Fψ)(Bξ). (17)

Therefore, using Equations (15) and (17) in (14), we get

0 =
∫
R

ei{Ak2+Dk+Cξ2+Eξ−kBξ}(Fφ)(Bξ)e−i{Al+Dl+Cξ2+Eξ−lBξ}(Fψ)(Bξ)dξ

=ei{A(k2−l2)+D(k−l)}
∫
R

e−i(k−l)Bξ(Fφ)(Bξ)(Fψ)(Bξ)dξ

=
1
B

ei{A(k2−l2)+D(k−l)}
∫
R

ei(l−k)ξ(Fφ)(ξ)(Fψ)(ξ)dξ

=
1
B

ei{A(k2−l2)+D(k−l)}
∫
R

ei(l−k)ξΛ0

(
ξ

2

)
Λ1

(
ξ

2

)∣∣∣∣(Fφ)

(
ξ

2

)∣∣∣∣2dξ

=
1
B

ei{A(k2−l2)+D(k−l)} ∑
m∈Z

∫ 4(m+1)π

4mπ
ei(l−k)ξ Λ0

(
ξ

2

)
Λ1

(
ξ

2

)∣∣∣∣(Fφ)

(
ξ

2

)∣∣∣∣2dξ

=
1
B

ei{A(k2−l2)+D(k−l)} ∑
m∈Z

∫ 4π

0
ei(l−k)(ξ+4mπ)Λ0

(
ξ

2
+ 2mπ

)
Λ1

(
ξ

2
+ 2mπ

)

×
∣∣∣∣(Fφ)

(
ξ

2
+ 2mπ

)∣∣∣∣2dξ

=
1
B

ei{A(k2−l2)+D(k−l)} ∑
m∈Z

∫ 4π

0
ei(l−k)ξΛ0

(
ξ

2

)
Λ1

(
ξ

2

)∣∣∣∣(Fφ)

(
ξ

2
+ 2mπ

)∣∣∣∣2dξ

=
1
B

ei{A(k2−l2)+D(k−l)} ∑
m∈Z

[ ∫ 2π

0
ei(l−k)ξ Λ0

(
ξ

2

)
Λ1

(
ξ

2

)∣∣∣∣(Fφ)

(
ξ

2
+ 2mπ

)∣∣∣∣2dξ

+
∫ 4π

2π
ei(l−k)ξ Λ0

(
ξ

2

)
Λ1

(
ξ

2

)∣∣∣∣(Fφ)

(
ξ

2
+ 2mπ

)∣∣∣∣2dξ
]

=
1
B

ei{A(k2−l2)+D(k−l)} ∑
m∈Z

[ ∫ 2π

0
ei(l−k)ξ Λ0

(
ξ

2

)
Λ1

(
ξ

2

)∣∣∣∣(Fφ)

(
ξ

2
+ 2mπ

)∣∣∣∣2dξ

+
∫ 2π

0
ei(l−k)(ξ+2π)Λ0

(
ξ + 2π

2

)
Λ1

(
ξ + 2π

2

)∣∣∣∣(Fφ)

(
ξ + 2π

2
+ 2mπ

)∣∣∣∣2dξ

]
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=
1
B

ei{A(k2−l2)+D(k−l)}
[ ∫ 2π

0
ei(l−k)ξΛ0

(
ξ

2

)
Λ1

(
ξ

2

)
∑

m∈Z

∣∣∣∣(Fφ)

(
ξ

2
+ 2mπ

)∣∣∣∣2dξ

+
∫ 2π

0
ei(l−k)(ξ+2π)Λ0

(
ξ

2
+ π

)
Λ1

(
ξ

2
+ π

)
∑

m∈Z

∣∣∣∣(Fφ)

(
ξ

2
+ (2m + 1)π

)∣∣∣∣2dξ

]

=
1
B

ei{A(k2−l2)+D(k−l)}
[ ∫ 2π

0
ei(l−k)ξΛ0

(
ξ

2

)
Λ1

(
ξ

2

)
dξ

+
∫ 2π

0
ei(l−k)(ξ+2π)Λ0

(
ξ

2
+ π

)
Λ1

(
ξ

2
+ π

)
dξ

]
=

1
B

ei{A(k2−l2)+D(k−l)}
∫ 2π

0
ei(l−k)ξ

{
Λ0

(
ξ

2

)
Λ1

(
ξ

2

)
+ Λ0

(
ξ

2
+ π

)
Λ1

(
ξ

2
+ π

)}
dξ.

Therefore,

∫ 2π

0
ei(l−k)ξ

{
Λ0

(
ξ

2

)
Λ1

(
ξ

2

)
+ Λ0

(
ξ

2
+ π

)
Λ1

(
ξ

2
+ π

)}
dξ = 0. (18)

From Equation (18), we conclude that

Λ0

(
ξ

2

)
Λ1

(
ξ

2

)
+ Λ0

(
ξ

2
+ π

)
Λ1

(
ξ

2
+ π

)
= 0.

This implies

Λ0(ξ)Λ1(ξ) + Λ0(ξ + π)Λ1(ξ + π) = 0. (19)

Equation (19) can be written in the matrix form as

MM∗ = I2×2,

where M∗ denotes the conjugate transpose of M, I2×2 is the identity matrix, and

M =

[
Λ0(ξ) Λ0(ξ + π)
Λ1(ξ) Λ1(ξ + π)

]
.

Since Λ0(ξ) and Λ0(ξ + π) cannot vanish together on a set of non-zero measures due
to the orthogonal property, there exists a 2π- periodic function λ(ξ) such that(

Λ1(ξ), Λ1(ξ + π)

)
=

(
λ(ξ)Λ0(ξ + π),−λ(ξ)Λ0(ξ)

)
. (20)

Since,

Λ1(ξ) =λ(ξ)Λ0(ξ + π) (21)

Λ1(ξ + π) =λ(ξ + π)Λ0(ξ + 2π).

Using Equation (8),

Λ1(ξ + π) =λ(ξ + π)Λ0(ξ).
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Therefore, we have

−λ(ξ)Λ0(ξ) = λ(ξ + π)Λ0(ξ)

{λ(ξ + π) + λ(ξ)}Λ0(ξ) = 0

λ(ξ + π) + λ(ξ) = 0.

Therefore, λ(ξ) is 2π- periodic, it can be expressed as

λ(ξ) = ∑
k∈Z

cke−ikξ ,

where

ck =
1

2π

∫ 2π

0
λ(ξ)eikξ dξ

=
1

2π

[ ∫ π

0
λ(ξ)eikξ dξ +

∫ 2π

π
λ(ξ)eikξ dξ

]
=

1
2π

[ ∫ π

0
λ(ξ)eikξ dξ +

∫ π

0
λ(ξ + π)eik(ξ+π)dξ

]
=

1
2π

[ ∫ π

0
λ(ξ)eikξ dξ +

∫ π

0
(−1)kλ(ξ + π)eikξ dξ

]
=

1
2π

[ ∫ π

0
λ(ξ)eikξ dξ + (−1)k

∫ π

0
−λ(ξ)eikξ dξ

]
=

1
2π
{1− (−1)k}

∫ π

0
λ(ξ)eikξ dξ.

Therefore, λ(ξ) = ∑k∈Z cke−ikξ , where

ck =
1

2π
{1− (−1)k}

∫ π

0
λ(ξ)eikξ dξ

=⇒ ck =0 ∀ k = 2m, m ∈ Z.

Therefore,

λ(ξ) = ∑
l∈Z

c2l+1e−i(2l+1)ξ

= ∑
l∈Z

c2l+1e−2ilξe−iξ

=e−iξ ∑
l∈Z

c2l+1e−2ilξ

=e−iξ γ(2ξ),

where γ(ξ) = ∑l∈Z c2l+1e−2ilξ . Now,

Λ0(ξ) =
1√
2

∑
n∈Z

hnei
{

A( n
2 )

2
+D( n

2 )−nξ
}

=⇒ Λ0(ξ + π) =
1√
2

∑
n∈Z

hnei
{

A( n
2 )

2
+D( n

2 )−n(ξ+π)
}

=
1√
2

∑
n∈Z

hnei
{

A( n
2 )

2
+D( n

2 )−n(ξ+π)
}
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=
1√
2

∑
n∈Z

hnei
{

A( n
2 )

2
+D( n

2 )−nξ
}

e−inξ

=
1√
2

∑
n∈Z

(−1)nhnei
{

A( n
2 )

2
+D( n

2 )−nξ
}

.

Therefore,

Λ0(ξ + π) =
1√
2

∑
n∈Z

(−1)nhne−i
{

A( n
2 )

2
+D( n

2 )−nξ
}

.

Thus, from (21)

Λ1(ξ) =λ(ξ)Λ0(ξ + π)

=e−iξγ(2ξ)Λ0(ξ + π).

In particular, for γ(2ξ) = 1, using (13), we have

Λ1(ξ) = e−iξ γ(2ξ)Λ0(ξ + π).

This implies

1√
2

∑
n∈Z

dnei
{

A( n
2 )

2
+D( n

2 )−nξ
}
= e−iξ 1√

2
∑

n∈Z
(−1)nhne−i

{
A( n

2 )
2
+D( n

2 )−nξ
}

i.e., ∑
n∈Z

dnei
{

A( n
2 )

2
+D( n

2 )
}

e−inξ = ∑
n∈Z

(−1)nhne−i
{

A( n
2 )

2
+D( n

2 )
}

ei(n−1)ξ

i.e., ∑
n∈Z

dnei
{

A( n
2 )

2
+D( n

2 )
}

e−inξeikξ = ∑
n∈Z

(−1)nhne−i
{

A( n
2 )

2
+D( n

2 )
}

ei(n−1)ξ eikξ .

Integrating both sides, we get

∑
n∈Z

dnei
{

A( n
2 )

2
+D( n

2 )
} ∫

R
e−i(n−k)ξ dξ = ∑

n∈Z
(−1)nhne−i

{
A( n

2 )
2
+D( n

2 )
} ∫

R
e−i(1−n−k)ξdξ

=⇒ ∑
n∈Z

dnei
{

A( n
2 )

2
+D( n

2 )
}

δn−k = ∑
n∈Z

(−1)nhne−i
{

A( n
2 )

2
+D( n

2 )
}

δ1−n−k

=⇒ ∑
k∈Z

dkei
{

A( k
2 )

2
+D( k

2 )
}
= (−1)1−kh1−ke−i

{
A( 1−k

2 )
2
+D( 1−k

2 )
}

=⇒ dk = (−1)1−kh1−ke−i
{

A( 1−k
2 )

2
+D( 1−k

2 )+A( k
2 )

2
+D( k

2 )
}

=⇒ dk = (−1)1−kh1−ke
−i
{

A
(

(1−k)2+k2
4

)
+ D

2

}
.

Therefore, equivalently, we can write the wavelet coefficients dk of Equation (11) as

dk = (−1)1−kh1−ke
−i
{

A
(

(1−k)2+k2
4

)
+ D

2

}
, k ∈ Z. (22)

The above discussion can be summarized in the following theorem.

Theorem 2. If {VΛ
n }n∈Z is the quadratic phase MRA associated with the scaling function φ, then

there exists a function ψ such that

ψΛ,0,0(t) =
√

2 ∑
k∈Z

dkφ(2t− k)e−i
{

A
(

t2−( k
2 )

2)
+D(t− k

2 )
}

, (23)
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where dk is given by (22) with hk =
√

2e−i
{

A( k
2 )

2
+D( k

2 )
} ∫

R φ(t)φ(2t− k)dt, i.e., the system{
ψΛ,k,n, k, n ∈ Z

}
is an orthonormal basis of L2(R).

Example 1. It is observed in the earlier discussion that the function sinc(t) = sin(πt)
πt is a scaling func-

tion for the quadratic phase MRA {VΛ
n }n∈Z, where {φΛ,0,n(t) = e−i{A(t2−n2)+D(t−n))}sinc(t−

n)}n∈Z is an orthonormal basis of the subspace VΛ
0 . Hence,

hn =


1√
2
, n = 0

√
2 sin( πn

2 )e
−i
(

An2
4 + Dn

2

)
πn , n 6= 0,

which results in

dn =


1√
2

e−i( A
4 +

D
2 ), n = 1

√
2(−1)−n cos( πn

2 )e−
1
4 in(An+2D)

π(n−1) , n 6= 1.

Thus, the quadratic phase wavelet corresponding to the scaling function sinc(t) is given by

ψΛ,0,0(t) =
√

2d1e−i
{

A
(

t2−( 1
2 )

2)
+D(t− 1

2 )
}

φ(2t− 1)

+
√

2 ∑
n∈Z, n 6=1

dnφ(2t− n)e−i
{

A
(

t2−( n
2 )

2)
+D(t− n

2 )
}

= e−it(At+D)φ(2t− 1) +
√

2 ∑
n∈Z, n 6=1

√
2(−1)−n cos

(
πn
2
)
e−it(At+D)

π(n− 1)
φ(2t− n)

= e−it(At+D) sin((2t− 1)π)

(2t− 1)π

+
√

2 ∑
n∈Z, n 6=1

√
2(−1)−n cos

(
πn
2
)
e−it(At+D)

π(n− 1)
sin((2t− n)π)

(2t− n)π
.

The plots of the real and imaginary part of ψΛ,0,0 are given below for the particular choice of
the parameter Λ = (0, 1, 0, 0, 0) and Λ = ( 1

3 , 1, 0, 1
5 , 0)

Example 2. Let φ(t) = χ[0,1)(t), where χ[0,1)(t) is a characteristic function on [0, 1). It is a matter
of simple verification that the set {φΛ,0,n(t) : n ∈ Z} forms an orthonormal system. Hence it forms
an orthonormal basis of the set VΛ

0 , thus is a scaling function associated with the MRA {VΛ
n }n∈Z.

Thus,

hn =


1√
2
, n = 0

1√
2

e−i
{

A( 1
2 )

2
+D( 1

2 )
}

, n = 1

0, otherwise

resulting in

dn =


− 1√

2
, n = 0

1√
2

e−i
{

A( 1
2 )

2
+D( 1

2 )
}

, n = 1

0, otherwise.

Thus, the quadratic phase wavelet corresponding to the scaling function χ[0,1)(t) is given by

ψΛ,0,0(t) =

{
−e−it(At+D), 0 ≤ t < 1

2

e−it(At+D), 1
2 ≤ t < 1.
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The plots of the real and imaginary parts of ψΛ,0,0 are given below for the particular choice of
the parameter Λ = (0, 1, 0, 0, 0) and Λ = ( 1

3 , 1, 0, 1
5 , 0)

Remark 1. By virtue of Lemma 3 and the Definition 2 of MRA we can say that any function that
serves as a scaling function in the classical MRA will also serve as a scaling function for the MRA
given by Definition 2. But, depending on the choice of parameters Λ, we can have different quadratic
phase wavelets and thus different families of orthonormal bases of L2(R). In particular, for the choice
of the parameter Λ = (0, 1, 0, 0, 0), we get the classical wavelets and the quadratic phase wavelets
for Λ = ( 1

3 , 1, 0, 1
5 , 0) (see Figures 1,2, 3 and 4). The flexibility in the choice of the parameters

results in the development of some novel families of orthonormal bases of L2(R) corresponding to
the same scaling function.

Re(ψ⋀,0,0 (t))

Im(ψ⋀,0,0 (t))

-4 -2 2 4

-0.5

0.5

1.0

Figure 1. Plot of the real part and imaginary parts of ψΛ,0,0 corresponding to Λ = (0, 1, 0, 0, 0).

Re(ψ⋀,0,0 (t))

Im(ψ⋀,0,0 (t))

-4 -2 2 4

-0.5

0.5

1.0

Figure 2. Plot of the real part and imaginary parts of ψΛ,0,0 corresponding to Λ = ( 1
3 , 1, 0, 1

5 , 0).
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Re(ψ⋀,0,0 (t))

Im(ψ⋀,0,0 (t))

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Figure 3. Plot of the real part and imaginary parts of ψ∧,0,0 corresponding to Λ = (0, 1, 0, 0, 0).

Re(ψ⋀,0,0 (t))

Im(ψ⋀,0,0 (t))

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Figure 4. Plot of the real part and imaginary parts of ψ∧,0,0 corresponding to Λ = ( 1
3 , 1, 0, 1

5 , 0).

5. Conclusions

The MRA and the construction of orthogonal wavelets for QPFT play a vital role in
facilitating prospective applications of QPFT. In this paper, we gave an alternative proof
of the Shannon’s sampling theorem applicable to the band-limited signal in the QPFT.
Inspired by the theorem, we developed an MRA associated with QPFT. Subsequently, we
discussed the construction of the quadratic phase wavelets for a given scaling function,
followed by some of its examples.
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