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Abstract: This paper studies the goodness of fit test for the bivariate Hermite distribution. Specifically,
we propose and study a Cramér–von Mises-type test based on the empirical probability generation
function. The bootstrap can be used to consistently estimate the null distribution of the test statistics.
A simulation study investigates the goodness of the bootstrap approach for finite sample sizes.
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1. Introduction

Testing the goodness-of-fit (gof) of given observations with a probabilistic model is a
crucial aspect of data analysis.

Since the chi-square test was proposed and analyzed by Pearson in 1900 until today,
new gof tests have been constructed and applied to continuous and discrete data. Just to
mention some of the most recent publications, there are, for example, the works of: Ebner and
Henze [1], Górecki, Horváth and Kokoszka [2], Puig and Weiβ [3], Arnastauskaitè et al. [4],
Dörr, Ebner, and Henze [5]), Kolkiewicz, Rice, and Xie [6], Milonas et al. [7], Di Noia et al. [8],
and Erlemann and Lindqvist [9].

Because count data can appear in different circumstances, the present investigation is
oriented to gof in the discrete case, specifically, in the bivariate Hermite distribution (BHD).

In the univariate configuration, the Hermite distribution is a linear combination of
the form Y = X1 + 2X2, where X1 and X2 are independent Poisson random variables.
The distinguishing property of the univariate Hermite distribution (UHD) is that it is
flexible when it comes to modeling count data that present a multimodality, in addition
to presenting several zeros, which is called zero-inflation. It also allows for modeling
data in which the overdispersion is moderate, that is, the variance is greater than the
expected value. It was McKendrick at [10] who modeled a phagocytic experiment (bacteria
count in leukocytes) through the UHD, obtaining a more satisfactory model than with the
Poisson distribution. However, in practice, bivariate count data emerge in several different
disciplines and the BHD plays an important role, having superinflated data—for example,
the number of accidents in two different periods [11].

The only gof test related to the Hermite distribution found in this study so far is the
one developed by the researchers Meintanis and Bassiakos in [12]. However, this test is for
univariate data.

On the other hand, to the best of our knowledge, we did not find literature on gof tests
for BHD.

The purpose of this paper is to propose and study a gof test for the bivariate Hermite
Distribution that is consistent.

According to Novoa-Muñoz in [13], the probability generating function (pgf) char-
acterizes the distribution of a random vector and can be estimated consistently by the
empirical probability generating function (epgf); the proposed test is a function of the epgf.
This statistical test compares the epgf of the data with an estimator of the pgf of the BHD.
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As it is well known, to establish the rejection region, we need to know the distribution of
the statistic test.

As for finite sample sizes, the resulting test statistic is of the Cramér–von Mises type,
and it was not possible to calculate explicitly the distribution of the statistic under a null
hypothesis. This is why one uses simulation techniques. Therefore, we decided to use a
null approximation of the statistic by using a parametric bootstrap.

Because the properties of the proposed test are asymptotic (see, for example, [14])
and with the purpose of evaluating the behavior of the test for samples of finite size, a
simulation study was carried out.

The present work is ordered as follows: In Section 2, we present some preliminary
results that will serve us in the following chapters, and the definition of the BHD with some
of its properties is also given. In Section 3, the proposed statistic is presented. Section 4 is
devoted to showing the bootstrap estimator and its approximation to the null distribution
of the statistic. Section 5 is dedicated to presenting the results of a simulation study, power
of a hypothesis test, and the application to a set of real data.

Before ending this section, we introduce some notation: FA ∧
δ
FB denotes a mixture

(compounding) distribution, where FA represents the original distribution and FB the
mixing distribution (i.e., the distribution of δ) [15]; all vectors are row vectors, and x> is
the transposed of the row vector x; for any vector x, xk denotes its kth coordinate, and
‖x‖ its Euclidean norm; N0 = {0, 1, 2, 3, ...}; I{A} denotes the indicator function of the set
A; Pθ denotes the probability law of the BHD with parameter θ; Eθ denotes expectation
with respect to the probability function Pθ ; P∗ and E∗ denotes the conditional probability
law and expectation, given the data (X1, Y1), . . . , (Xn, Yn), respectively; all limits in this

work are taken as n→ ∞; L−→ denotes convergence in distribution; a.s.−→ denotes almost
sure convergence; let {Cn} be a sequence of random variables or random elements and
let ε ∈ R; then, Cn = OP(n

−ε) means that nεCn is bounded in probability, Cn = oP(n
−ε)

means that nεCn
P−→ 0 and Cn = o(n−ε) means that nεCn

a.s.−→ 0 and H = L2([0, 1]2, $
)

denotes the separable Hilbert space of the measurable functions ϕ, $ : [0, 1]2 → R such that
||ϕ||2H =

∫ 1
0

∫ 1
0 ϕ2(t) $(t)dt < ∞.

2. Preliminaries

Several definitions for the BHD have been given (see, for example, Kocherlakota
and Kocherlakota in [16]). In this paper, we will work with the following one, which has
received more attention in the statistical literature (see, for example, Papageorgiou et al.
in [17]; Kemp et al. in [18]).

Let X = (X1, X2) have the bivariate Poisson distribution with the parameters δλ1, δλ2,
and δλ3 (for more details of this distribution; see, for example, Johnson et al. in [19]); then,
X ∧

δ
N(µ, σ2) has the BHD. Kocherlakota in [20] obtained its pgf, which is given by

v(t; θ) = exp
(

µλ +
1
2

σ2λ2
)

, (1)

where t = (t1, t2), θ = (µ, σ2, λ1, λ2, λ3), λ = λ1(t1 − 1) + λ2(t2 − 1) + λ3(t1t2 − 1) and
µ > σ2(λi + λ3), i = 1, 2.

From the pgf of the BHD, Kocherlakota and Kocherlakota [16] obtained the probability
mass function of the BHD, which is given by

f (r, s) =
λr

1λs
2

r!s!
M(γ)

min(r,s)

∑
k=0

(
r
k

)(
s
k

)
k! ξkPr+s−k(γ),

where M(x) is the moment-generating function of the normal distribution, Pr(x) is a
polynomial of degree r in x, γ = −(λ1 + λ2 + λ3) and ξ = λ3

λ1λ2
.
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Remark 1. If λ3 = 0, then the probability function is reduced to

f (r, s) =
λr

1λs
2

r!s!
M(−λ1 − λ2) Pr+s(−λ1 − λ2).

Remark 2. If X is a random vector that is bivariate Hermite distributed with parameter θ, it will
be denoted X ∼ BH(θ), where θ ∈ Θ, and the parameter space is

Θ =
{
(µ, σ2, λ1, λ2, λ3) ∈ R5/µ > σ2(λi + λ3), λi > λ3 ≥ 0, i = 1, 2

}
.

Let X1 = (X11, X12), X2 = (X21, X22), . . . , Xn = (Xn1, Xn2) be independent and iden-
tically distributed (iid) random vectors defined on a probability space (Ω,A, P) and taking
values in N2

0. In what follows, let

vn(t) =
1
n

n

∑
i=1

tXi1
1 tXi2

2

denote the epgf of X1, X2, . . . , Xn for some appropriate W ⊆ R2.
The following section is dedicated to developing the statistic proposed in this study

and, for this, it is essential to know the result that is presented below, the proof of which
can be reviewed in [14]:

Proposition 1. Let X1, . . . , Xn be iid from a random vector X = (X1, X2) ∈ N2
0. Let v(t) =

E
(

tX1
1 tX2

2

)
be the pgf of X, defined on W ⊆ R2. Let 0 ≤ bj ≤ cj < ∞, j = 1, 2, such that

Q = [b1, c1]× [b2, c2] ⊆W; then,

sup
t∈Q
|vn(t)− v(t)| a.s.−→ 0.

3. The Test Statistic and Its Asymptotic Null Distribution

Let X1 = (X11, X12), X2 = (X21, X22), . . . , Xn = (Xn1, Xn2) be iid from a random
vector X = (X1, X2) ∈ N2

0. Based on the sample X1, X2, . . . , Xn, the objective is to test the
hypothesis

H0 : (X1, X2) ∼ BH(θ), for some θ ∈ Θ,

against the alternative
H1 : (X1, X2) � BH(θ), ∀θ ∈ Θ.

With this purpose, we will recourse to some of the properties of the pgf that allow us
to propose the following statistical test.

According to Proposition 1, a consistent estimator of the pgf is the epgf. If H0 is true
and θ̂n is a consistent estimator of θ, then v(t; θ̂n) consistently estimates the population pgf.
Since the distribution of X = (X1, X2) is uniquely determined by its pgf, v(t), t = (t1, t2) ∈
[0, 1]2, a reasonable test for testing H0 should reject the null hypothesis for large values of
Vn,w(θ̂n) defined by

Vn,w(θ̂n) =
∫ 1

0

∫ 1

0
V2

n (t; θ̂n)w(t)dt, (2)

where
Vn(t; θ) =

√
n{vn(t)− v(t; θ)},

θ̂n = θ̂n(X1, X2, . . . , Xn) is a consistent estimator of θ and w(t) is a measurable weight
function, such that w(t) ≥ 0, ∀t ∈ [0, 1]2, and∫ 1

0

∫ 1

0
w(t)dt < ∞. (3)
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The assumption (3) on w ensures that the double integral in (2) is finite for each fixed n.
Now, to determine what are large values of Vn,w(θ̂n), we must calculate its null distribution,
or at least an approximation to it. Since the null distribution of Vn,w(θ̂n) is unknown, we
first try to estimate it by means of its asymptotic null distribution. In order to derive it, we
will assume that the estimator θ̂n satisfies the following regularity condition:

Assumption 1. Under H0, if θ = (µ, σ2, λ1, λ2, λ3) ∈ Θ denotes the true parameter value, then

√
n
(
θ̂n − θ

)
=

1√
n

n

∑
i=1

`(X i; θ) + oP(1),

where ` : N2
0×Θ −→ R5 is such that Eθ{` (X1; θ)} = 0 and J(θ) = Eθ

{
`(X1; θ)>`(X1; θ)

}
< ∞.

Assumption 1 is fulfilled by most commonly used estimators; see [16,21].
The next result gives the asymptotic null distribution of Vn,w(θ̂n).

Theorem 1. Let X1, . . . , Xn be iid from X = (X1, X2) ∼ BH(θ). Suppose that Assumption 1 holds.
Then

Vn,w(θ̂n) = ||Wn||2H + oP(1),

where Wn(t) = 1√
n ∑n

i=1 V0(X i, θ; t), with

V0(X i, θ; t) = tXi1
1 tXi2

2 − v(t; θ)

{
1 +

(
λ,

1
2

λ2, η(t1 − 1), η(t2 − 1), η(t1t2 − 1)
)
`(X i; θ)>

}
,

i = 1, . . . , n, η = µ + σ2λ. Moreover,

Vn,w(θ̂n)
L−→∑

j≥1
λjχ

2
1j, (4)

where χ2
11, χ2

12, . . . are independent χ2 variates with one degree of freedom and the set {λj} is the non-
null eigenvalues of the operator C(θ) defined on the function space {τ : N2

0 → R, such that Eθ

{
τ2(X)

}
< ∞, ∀θ ∈ Θ}, as follows:

C(θ)τ(x) = Eθ{h(x, Y ; θ)τ(Y)},

where

h(x, y; θ) =
∫ 1

0

∫ 1

0
V0(x; θ; t)V0(y; θ; t)w(t)dt. (5)

Proof. By definition, Vn,w(θ̂n) = ‖Vn(θ̂n)‖2
H . Note that

Vn(t; θ̂n) =
1√
n

n

∑
i=1

V(X i; θ̂n; t), with V(X i; θ; t) = tXi1
1 tXi2

2 − v(t; θ). (6)

By Taylor expansion of V(X i; θ̂n; t) around θ̂n = θ,

Vn(t; θ̂n) =
1√
n

n

∑
i=1

V(X i; θ; t) +
1
n

n

∑
i=1

Q(1)(X i; θ; t)
√

n(θ̂n − θ)> + qn, (7)

where qn = 1
2
√

n (θ̂n − θ)∑n
i=1 Q(2)(X i; θ̃; t) (θ̂n − θ)>, θ̃ = αθ̂n + (1− α)θ, for some 0 <

α < 1 , Q(1)(x; ϑ; t) is the vector of the first derivatives and Q(2)(x; ϑ; t) is the matrix of the
second derivatives of V(x; ϑ; t) with respect to ϑ.
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Thus, considering (3) results in

Eθ

{∥∥∥Q(1)
j (X1; θ; t)

∥∥∥2

H

}
< ∞, j = 1, 2, . . . , 5. (8)

Using the Markov inequality and (8), we have

Pθ

∥∥∥∥∥ 1
n

n

∑
i=1

Q(1)
j (X i; θ; t)− Eθ

{
Q(1)

j (X1; θ; t)
}∥∥∥∥∥

H

> ε


≤ 1

n ε2 Eθ

[∥∥∥Q(1)
j (X1; θ; t)

∥∥∥2

H

]
→ 0, j = 1, 2, . . . , 5.

Then,
1
n

n

∑
i=1

Q(1)(X i; θ; t) P−→ Eθ

{
Q(1)(X1; θ; t)

}
,

where Eθ

{
Q(1)(X1; θ; t)

}
= −v(t; θ)

(
λ, 1

2 λ2, η(t1 − 1), η(t2 − 1), η(t1t2 − 1)
)

.

As ‖qn‖H = oP(1), then, using Assumption 1, (7) can be written as

Vn(t; θ̂n) = Sn(t; θ) + sn,

where ‖sn‖H = oP(1), and

Sn(t; θ) =
1√
n

n

∑
i=1

[
V(X i; θ; t) + Eθ

{
Q(1)(X1; θ; t)

}
`(X i; θ)>

]
.

On the other hand, observe that

‖Sn(θ)‖2
H =

1
n

n

∑
i=1

n

∑
j=1

h(X i, X j; θ),

where h(x, y; θ) is defined in (5) and satisfies h(x, y; θ) = h(y, x; θ), Eθ

{
h2(X1, X2; θ)

}
<

∞, Eθ{|h(X1, X1; θ)|} < ∞ and Eθ{h(X1, X2; θ)} = 0. Thus, from Theorem 6.4.1.B in
Serfling [22],

‖Sn(θ)‖2
H

L−→ ∑
j≥1

λj χ2
1j

where χ2
11, χ2

12, . . . and the set {λj} are as defined in the statement of the Theorem. In par-
ticular, ‖Sn(θ)‖2

H = OP(1), which implies (4).

The asymptotic null distribution of Vn,w(θ̂n) depends on the unknown true value of
the parameter θ; therefore, in practice, they do not provide a useful solution to the problem
of estimating the null distribution of the respective statistical tests. This could be solved by
replacing θ with θ̂.

However, a greater difficulty is to determine the sets {λj}j≥1; for most of the cases,
calculating the eigenvalues of an operator is not a simple task and, in our case, we must also
obtain the expression h(x, y; θ), which is not easy to find, since it depends on the function
`, which usually does not have a simple expression.

Thus, in the next section, we consider another way to approximate the null distribution
of the statistical test, the parametric bootstrap method.

4. The Bootstrap Estimator

An alternative way to estimate the null distribution is through the parametric boot-
strap method.
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Let X1, . . . , Xn be iid taking values in N2
0. Assume that θ̂n = θ̂n(X1, . . . , Xn) ∈ Θ.

Let X∗1 , . . . , X∗n be iid from a population with distribution BH(θ̂n), given X1, . . . , Xn, and
let V∗n,w(θ̂

∗
n) be the bootstrap version of Vn,w(θ̂n) obtained by replacing X1, . . . , Xn and

θ̂n = θ̂n(X1, . . . , Xn) by X∗1 , . . . , X∗n and θ̂∗n = θ̂n(X∗1 , . . . , X∗n), respectively, in the expression
of Vn,w(θ̂n). Let P∗ denote the bootstrap conditional probability law, given X1, . . . , Xn. In
order to show that the bootstrap consistently estimate the null distribution of Vn,w(θ̂n), we
will assume the following assumption, which is a bit stronger than Assumption 1.

Assumption 2. Assumption 1 holds and the functions ` and J satisfy
(1) supϑ∈Θ0

Eϑ

[
‖`(X; ϑ)‖2 I{‖`(X; ϑ)‖ > γ}

]
−→ 0, as γ → ∞, where Θ0 ⊆ Θ is an open

neighborhood of θ.

(2) `(X; ϑ) is continuous as a function of ϑ at ϑ = θ, and J(ϑ) is finite ∀ϑ ∈ Θ0.

As stated after Assumption 1, Assumption 2 is not restrictive since it is fulfilled by
commonly used estimators.

The next theorem shows that the bootstrap distribution of Vn,w(θ̂n) consistently esti-
mates its null distribution.

Theorem 2. Let X1, . . . , Xn be iid from a random vector X = (X1, X2) ∈ N2
0. Suppose that

Assumption 2 holds and that θ̂n = θ + o(1), for some θ ∈ Θ. Then,

sup
x∈R

∣∣P∗{V∗n,w(θ̂
∗
n) ≤ x

}
− Pθ

{
Vn,w(θ̂n) ≤ x

}∣∣ a.s.−→ 0.

Proof. By definition, V∗n,w(θ̂
∗
n) = ‖V∗n (θ̂∗n)‖2

H , with

V∗n (t; θ̂∗n) =
1√
n

n

∑
i=1

V(X∗i ; θ̂∗n; t)

and V(X; θ; t) defined in (6).

Following similar steps to those given in the proof of Theorem 1, it can be seen that
V∗n,w(θ̂

∗
n) = ‖W∗n‖2

H + oP∗(1), where W∗n (t) is defined as Wn(t) with X i and θ replaced by
X∗i and θ̂n, respectively.

To derive the result, first we will check that assumptions (i)–(iii) in Theorem 1.1 of
Kundu et al. [23] hold.

Observe that

Y∗n (t) =
n

∑
i=1

Y∗ni(t)

where
Y∗ni(t) =

1√
n

V0(X∗i ; θ̂n; t), i = 1, . . . , n,

Clearly, E∗
{

Y∗ni
}
= 0 and E∗

{
‖Y∗ni‖2

H

}
< ∞. Let Kn be the covariance kernel of Y∗n ,

which by SLLN satisfies

Kn(u, v) = E∗{Y∗n (u)Y∗n (v)}

= E∗
{

V0(X∗1 ; θ̂n; u)V0(X∗1 ; θ̂n; v)
}

a.s.−→ Eθ

{
V0(X1; θ; u)V0(X1; θ; v)

}
= K(u, v).
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Moreover, let Z be a zero-mean Gaussian process onH whose operator of covariance
C is characterized by

〈C f , h〉H = cov(〈Z , f 〉H , 〈Z , h〉H )

=
∫
[0,1]4

K(u, v) f (u)h(v)w(u)w(v)dudv.

From the central limit theorem in Hilbert spaces (see, for example, van der Vaart and

Wellner [24]), it follows that Yn = 1√
n ∑n

i=1 V0(X i; θ; t) L−→ Z onH, when the data are iid
from the random vector X ∼ HB(θ).

Let Cn denote the covariance operator of Y∗n and let {ek : k ≥ 0} be an orthonormal
basis ofH. Let f , h ∈ H, by a dominated convergence theorem,

lim
n→∞

〈Cnek, el〉H = lim
n→∞

∫
[0,1]4

Kn(u, v)ek(u)el(v)w(u)w(v)dudv

= 〈Cek, el〉H .

Setting akl = 〈Cek, el〉H in the aforementioned Theorem 1.1, this proves that condition
(i) holds. To verify condition (ii), by using a monotone convergence theorem, Parseval’s
relation and dominated convergence theorem, we obtained

lim
n→∞

∞

∑
k=0
〈Cnek, ek〉H = lim

n→∞

∞

∑
k=0

∫
[0,1]4

Kn(u, v)ek(u)ek(v)w(u)w(v)dudv

=
∞

∑
k=0

∫
[0,1]4

K(u, v)ek(u)ek(v)w(u)w(v)dudv =
∞

∑
k=0
〈Cek, ek〉H

=
∞

∑
k=0

akk =
∞

∑
k=0

Eθ

{
〈Z , ek〉2H1

}
= Eθ

{
‖Z‖ 2

H

}
< ∞.

To prove condition (iii), we first notice that

|〈Y∗ni, ek〉H | ≤
M√

n
, i = 1, . . . , n, ∀n, where 0 < M < ∞.

From the above inequality, for each fixed ε > 0,

E∗
[
〈Y∗ni, ek〉2H I{|〈Y∗ni, ek〉H | > ε}

]
= 0.

for sufficiently large n. This proves condition (iii). Therefore, Y∗n
L−→ Z inH, a.s. Now, the

result follows from the continuous mapping theorem.

From Theorem 2, the test function

Ψ∗V =

{
1, if V∗n,w(θ̂

∗
n) ≥ v∗n,w,α,

0, otherwise,

or, equivalently, the test that rejects H0 when p∗ = P∗{V∗n,w(θ̂
∗
n) ≥ Vobs} ≤ α, is asymptoti-

cally correct in the sense that, when H0 is true, lim Pθ(Ψ∗V = 1) = α, where v∗n,w,α = inf{x :
P∗(V∗n,w(θ̂

∗
n) ≥ x) ≤ α} is the α upper percentile of the bootstrap distribution of Vn,w(θ̂n)

and Vobs is the observed value of the test statistic.

5. Numerical Results and Discussion

According to Novoa-Muñoz and Jiménez-Gamero in [14], the properties of the statistic
Vn,w(θ̂n) are asymptotic, that is, such properties describe the behavior of the test proposed
for large samples. To study the goodness of the bootstrap approach for samples of finite



Axioms 2023, 12, 7 8 of 13

size, a simulation experiment was carried out. In this section, we describe this experiment
and provide a summary of the results that have been obtained.

It is necessary to emphasize, as mentioned in the Introduction that, to the best of
our knowledge, we have not found another goodness-of-fit test for the bivariate Hermite
distribution with which we can make a comparison. Therefore, the simulation study is
limited only to the test presented in this investigation.

On the other hand, all the computational calculations made in this paper were carried
out through codes written in the R language [25].

To calculate Vn,w(θ̂n), it is necessary to give an explicit form to the weight function w.
Here, the following is taken into account:

w(t; a1, a2) = ta1
1 ta2

2 . (9)

Observe that the only restrictions that have been imposed on the weight function are
that w be positive almost everywhere in [0, 1]2 and the established in (3). The function
w(t; a1, a2) given in (9) meets these conditions whenever ai > −1, i = 1, 2. Hence,

Vn,w(θ̂n) = n
∫ 1

0

∫ 1

0

[
n

∑
i=1

tXi1
1 tXi2

2 − exp
(

µ̂λ̂ +
1
2

σ̂2λ̂2
)]2

ta1
1 ta2

2 dt1dt2.

It was not possible to find an explicit form of the statistic Vn,w(θ̂n), for which its calculation
used the curvature package of R [25] to calculate it.

5.1. Simulated Data

In order to approximate the null distribution of the statistic Vn,w(θ̂n) for finite-size
samples of sizes 30, 50, and 70 from a BH(θ), for θ = (µ, σ2, λ1, λ2, λ3), the pgf (1), with
λ3 = 0, was utilized. The combinations of parameters were chosen in such a way that
µ > σ2(λi + λ3), i = 1, 2.

The selected values of the other parameters were µ ∈ {1.0, 1.5, 2.0}, σ2 ∈ {0.8, 1.0},
λ1 ∈ {0.10, 0.25, 0.50, 0.75, 1.00} and λ2 ∈ {0.20, 0.25, 0.50, 0.75}.

The selected values of λ1 and λ2 were not greater than 1 since the Hermite distribution
is characterized as being zero-inflated.

To estimate the parameter θ, we use the maximum likelihood method given in Kocher-
lakota and Kocherlakota [16]. Then, we approximated the bootstrap p-values of the pro-
posed test with the weight function given in (9) for (a1, a2) ∈ {(0, 0), (1, 0), (0, 1), (1, 1), (5, 1),
(1, 5), (5, 5)}, and we generate B = 500 bootstrap samples.

The above procedure was repeated 1000 times, and the fraction of the estimated p-
values that was found to be less than or equal to 0.05 and 0.10, which are the estimates type
I error probabilities for α = 0.05 and 0.1.

The results obtained are presented in Tables 1–7 for the different pairs (a1, a2). In
each table, the established order was growing in µ and σ2, and for each new µ increasing
values in λ1, and in each new λ1, increasing values for λ2. From these results, we can
conclude that the parametric bootstrap method provides good approximations to the null
distribution of the Vn,w(θ̂n) in most of the cases considered.

It is seen that the values of a1 and a2 of the weight function affect bootstrap estimates
of p-values.

From the tables, it is clear that the bootstrap p-values are increasingly approaching the
nominal value as n increases. These approximations are better when a1 = a2. In particular,
when a1 = a2 is small (less than 5), then the bootstrap p-values are approached from the
left (below) to the nominal value; otherwise, it happens when a1 = a2 are fairly large values
(greater or equal to 5). Table 4 is the one that shows the best results, being the weight
function with a1 = a2 = 1 that presents the best p-values estimates.
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Table 1. Simulation results for the probability of type I error for a1 = 0 and a2 = 0.

θ
n = 30 n = 50 n = 70

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

(1.0, 0.8, 0.10, 0.20, 0.00) 0.012 0.053 0.029 0.069 0.037 0.081
(1.0, 0.8, 0.25, 0.25, 0.00) 0.027 0.067 0.037 0.064 0.043 0.094
(1.0, 0.8, 0.50, 0.20, 0.00) 0.016 0.062 0.046 0.073 0.047 0.087
(1.0, 0.8, 0.50, 0.50, 0.00) 0.025 0.063 0.042 0.076 0.044 0.091
(1.5, 1.0, 0.50, 0.50, 0.00) 0.010 0.064 0.035 0.078 0.042 0.089
(1.5, 1.0, 0.50, 0.75, 0.00) 0.010 0.065 0.036 0.084 0.041 0.084
(1.5, 1.0, 0.75, 0.25, 0.00) 0.017 0.071 0.038 0.087 0.043 0.088
(1.5, 1.0, 1.00, 0.25, 0.00) 0.027 0.076 0.039 0.090 0.042 0.092
(2.0, 1.0, 0.25, 0.75, 0.00) 0.017 0.067 0.038 0.082 0.047 0.089
(2.0, 1.0, 0.50, 0.25, 0.00) 0.011 0.067 0.037 0.088 0.045 0.091
(2.0, 1.0, 0.75, 0.25, 0.00) 0.029 0.070 0.035 0.087 0.043 0.089

Table 2. Simulation results for the probability of type I error for a1 = 1 and a2 = 0.

θ
n = 30 n = 50 n = 70

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

(1.0, 0.8, 0.10, 0.20, 0.00) 0.010 0.039 0.025 0.073 0.043 0.088
(1.0, 0.8, 0.25, 0.25, 0.00) 0.025 0.073 0.037 0.088 0.041 0.104
(1.0, 0.8,0.50, 0.20, 0.00) 0.027 0.072 0.041 0.083 0.045 0.086
(1.0, 0.8, 0.50, 0.50, 0.00) 0.035 0.053 0.042 0.072 0.045 0.101
(1.5, 1.0, 0.50, 0.50, 0.00) 0.011 0.064 0.031 0.080 0.038 0.085
(1.5, 1.0, 0.50, 0.75, 0.00) 0.019 0.065 0.034 0.078 0.039 0.080
(1.5, 1.0, 0.75, 0.25, 0.00) 0.025 0.081 0.038 0.085 0.042 0.084
(1.5, 1.0, 1.00, 0.25, 0.00) 0.037 0.074 0.035 0.085 0.040 0.086
(2.0, 1.0, 0.25, 0.75, 0.00) 0.027 0.071 0.034 0.082 0.047 0.089
(2.0, 1.0, 0.50, 0.25, 0.00) 0.011 0.077 0.031 0.084 0.044 0.086
(2.0, 1.0, 0.75, 0.25, 0.00) 0.019 0.080 0.035 0.085 0.044 0.087

Table 3. Simulation results for the probability of type I error for a1 = 0 and a2 = 1.

θ
n = 30 n = 50 n = 70

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

(1.0, 0.8, 0.10, 0.20, 0.00) 0.014 0.044 0.029 0.067 0.043 0.088
(1.0, 0.8, 0.25, 0.25, 0.00) 0.028 0.068 0.039 0.079 0.042 0.084
(1.0, 0.8, 0.50, 0.20, 0.00) 0.019 0.063 0.042 0.083 0.057 0.092
(1.0, 0.8, 0.50, 0.50, 0.00) 0.029 0.063 0.045 0.075 0.054 0.089
(1.5, 1.0, 0.50, 0.50, 0.00) 0.011 0.066 0.039 0.079 0.042 0.089
(1.5, 1.0, 0.50, 0.75, 0.00) 0.013 0.070 0.043 0.082 0.043 0.087
(1.5, 1.0, 0.75, 0.25, 0.00) 0.017 0.081 0.042 0.089 0.043 0.092
(1.5, 1.0, 1.00, 0.25, 0.00) 0.037 0.086 0.045 0.091 0.045 0.093
(2.0, 1.0, 0.25, 0.75, 0.00) 0.047 0.077 0.048 0.084 0.047 0.089
(2.0, 1.0, 0.50, 0.25, 0.00) 0.014 0.077 0.037 0.089 0.043 0.093
(2.0, 1.0, 0.75, 0.25, 0.00) 0.027 0.080 0.041 0.097 0.044 0.096

Table 4. Simulation results for the probability of type I error for a1 = 1 and a2 = 1.

θ
n = 30 n = 50 n = 70

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

(1.0, 0.8, 0.10, 0.20, 0.00) 0.016 0.073 0.024 0.086 0.048 0.092
(1.0, 0.8, 0.25, 0.25, 0.00) 0.032 0.058 0.037 0.088 0.049 0.091
(1.0, 0.8, 0.50, 0.20, 0.00) 0.024 0.064 0.043 0.085 0.048 0.089
(1.0, 0.8, 0.50, 0.50, 0.00) 0.033 0.072 0.043 0.086 0.049 0.093
(1.5, 1.0, 0.50, 0.50, 0.00) 0.030 0.072 0.038 0.088 0.046 0.090
(1.5, 1.0, 0.50, 0.75, 0.00) 0.033 0.071 0.042 0.084 0.047 0.098
(1.5, 1.0, 0.75, 0.25, 0.00) 0.036 0.097 0.039 0.097 0.049 0.099
(1.5, 1.0, 1.00, 0.25, 0.00) 0.039 0.088 0.046 0.090 0.049 0.093
(2.0, 1.0, 0.25, 0.75, 0.00) 0.031 0.087 0.044 0.092 0.048 0.099
(2.0, 1.0, 0.50, 0.25, 0.00) 0.035 0.068 0.039 0.081 0.047 0.093
(2.0, 1.0, 0.75, 0.25, 0.00) 0.037 0.080 0.045 0.088 0.049 0.096
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Table 5. Simulation results for the probability of type I error for a1 = 1 and a2 = 5.

θ
n = 30 n = 50 n = 70

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

(1.0, 0.8, 0.10, 0.20, 0.00) 0.014 0.037 0.032 0.075 0.051 0.093
(1.0, 0.8, 0.25, 0.25, 0.00) 0.023 0.074 0.053 0.090 0.060 0.113
(1.0, 0.8, 0.50, 0.20, 0.00) 0.036 0.101 0.062 0.110 0.064 0.117
(1.0, 0.8, 0.50, 0.50, 0.00) 0.023 0.080 0.042 0.107 0.063 0.109
(1.5, 1.0, 0.50, 0.50, 0.00) 0.022 0.081 0.037 0.111 0.046 0.108
(1.5, 1.0, 0.50, 0.75, 0.00) 0.039 0.095 0.048 0.108 0.056 0.108
(1.5, 1.0, 0.75, 0.25, 0.00) 0.034 0.108 0.048 0.107 0.054 0.108
(1.5, 1.0, 1.00, 0.25, 0.00) 0.037 0.107 0.059 0.109 0.054 0.107
(2.0, 1.0, 0.25, 0.75, 0.00) 0.048 0.106 0.056 0.108 0.054 0.106
(2.0, 1.0, 0.50, 0.25, 0.00) 0.025 0.107 0.047 0.108 0.045 0.108
(2.0, 1.0, 0.75, 0.25, 0.00) 0.043 0.107 0.045 0.107 0.043 0.106

Table 6. Simulation results for the probability of type I error for a1 = 5 and a2 = 1.

θ
n = 30 n = 50 n = 70

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

(1.0, 0.8, 0.10, 0.20, 0.00) 0.015 0.040 0.032 0.062 0.042 0.081
(1.0, 0.8, 0.25, 0.25, 0.00) 0.034 0.076 0.045 0.101 0.048 0.104
(1.0, 0.8, 0.50, 0.20, 0.00) 0.028 0.084 0.048 0.073 0.053 0.089
(1.0, 0.8, 0.50, 0.50, 0.00) 0.028 0.069 0.045 0.079 0.054 0.098
(1.5, 1.0, 0.50, 0.50, 0.00) 0.019 0.071 0.035 0.078 0.042 0.099
(1.5, 1.0, 0.50, 0.75, 0.00) 0.044 0.104 0.048 0.098 0.056 0.104
(1.5, 1.0, 0.75, 0.25, 0.00) 0.027 0.107 0.038 0.105 0.046 0.103
(1.5, 1.0, 1.00, 0.25, 0.00) 0.037 0.117 0.043 0.112 0.060 0.107
(2.0, 1.0, 0.25, 0.75, 0.00) 0.037 0.112 0.039 0.108 0.054 0.108
(2.0, 1.0, 0.50, 0.25, 0.00) 0.026 0.077 0.034 0.109 0.055 0.109
(2.0, 1.0, 0.75, 0.25, 0.00) 0.034 0.116 0.045 0.107 0.056 0.105

Table 7. Simulation results for the probability of type I error for a1 = 5 and a2 = 5.

θ
n = 30 n = 50 n = 70

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

(1.0, 0.8, 0.10, 0.20, 0.00) 0.017 0.035 0.032 0.065 0.050 0.089
(1.0, 0.8, 0.25, 0.25, 0.00) 0.027 0.077 0.034 0.081 0.043 0.084
(1.0, 0.8, 0.50, 0.20, 0.00) 0.030 0.086 0.042 0.087 0.048 0.104
(1.0, 0.8, 0.50, 0.50, 0.00) 0.013 0.069 0.030 0.076 0.045 0.105
(1.5, 1.0, 0.50, 0.50, 0.00) 0.016 0.063 0.035 0.078 0.046 0.087
(1.5, 1.0, 0.50, 0.75, 0.00) 0.019 0.085 0.061 0.089 0.054 0.094
(1.5, 1.0, 0.75, 0.25, 0.00) 0.031 0.071 0.053 0.102 0.047 0.098
(1.5, 1.0, 1.00, 0.25, 0.00) 0.037 0.086 0.049 0.104 0.052 0.102
(2.0, 1.0, 0.25, 0.75, 0.00) 0.015 0.087 0.057 0.098 0.055 0.101
(2.0, 1.0, 0.75, 0.25, 0.00) 0.040 0.097 0.054 0.102 0.053 0.102

Unfortunately, we could not find a closed form for our statistic Vn,w(θ̂n); in order to
calculate it, we used the curvature package of the software R [25]. This had a serious impact
on the computation time since the simulations were increased in their execution time by
at least 30%.

5.2. The Power of a Hypothesis Test

To study the power, we repeated the previous experiment for samples of size n = 50
and, for the weight function, we used the values of a1 and a2 that yielded the best results in
the study of type I error. The alternative distributions we use are detailed below:

• bivariate binomial distribution BB(m; p1, p2, p3), where p1 + p2 − p3 ≤ 1, p1 ≥ p3,
p2 ≥ p3 and p3 > 0,

• bivariate Poisson distribution BP(λ1, λ2, λ3), where λ1 > λ3, λ2 > λ3 > 0,
• bivariate logarithmic series distribution BLS(λ1, λ2, λ3), where 0 < λ1 + λ2 + λ3 < 1,
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• bivariate negative binomial distribution BNB(ν; γ0, γ1, γ2), where ν ∈ N, γ0 > γ2, γ1 > γ2
and γ2 > 0,

• bivariate Neyman type A distribution BNTA(λ; λ1, λ2, λ3), where 0 < λ1 + λ2 + λ3 ≤ 1,
• bivariate Poisson distribution mixtures of the form pBP(θ) + (1− p)BP(λ), where

0 < p < 1, denoted by BPP(p; θ, λ).

Table 8 displays the alternatives considered and the estimated power for nominal
significance level α = 0.05. Analyzing this table, we can conclude that all the considered
tests, denoted by V(a1,a2)

, are able to detect the alternatives studied and with a good power,
giving better results in cases where a1 = a2. The best result was achieved for a1 = a2 = 1,
as expected, as occurred in the study of type I error.

Table 8. Simulation results for the power. The values are in the form of percentages, rounded to the
nearest integer.

Alternative V(0,0) V(1,0) V(1,1) V(1,5) V(5,5)

BB(1; 0.41, 0.02, 0.01) 87 81 89 81 85
BB(1; 0.41, 0.03, 0.02) 85 82 88 80 86
BB(2; 0.61, 0.01, 0.01) 93 84 98 83 92
BB(1; 0.61, 0.03, 0.02) 95 89 100 87 95
BB(2; 0.71, 0.01, 0.01) 94 86 100 85 93
BP(1.00, 1.00, 0.25) 85 76 89 77 82
BP(1.00, 1.00, 0.50) 84 77 91 72 85
BP(1.00, 1.00, 0.75) 87 75 92 73 83
BP(1.50, 1.00, 0.31) 87 77 93 75 87
BP(1.50, 1.00, 0.92) 86 76 92 77 87
BLS(0.25, 0.15, 0.10) 94 85 98 86 95
BLS(5d/7, d/7, d/7) ∗ 91 85 100 84 90
BLS(3d/4, d/8, d/8) ∗ 90 86 100 84 90
BLS(7d/9, d/9, d/9) ∗ 94 86 100 83 93
BLS(0.51, 0.01, 0.02) 90 83 98 83 91
BNB(1; 0.92, 0.97, 0.01) 93 87 96 85 92
BNB(1; 0.97, 0.97, 0.01) 92 86 95 85 92
BNB(1; 0.97, 0.97, 0.02) 94 88 100 89 93
BNB(1; 0.98, 0.98, 0.01) 92 84 97 85 92
BNB(1; 0.99, 0.99, 0.01) 91 84 96 83 91
BNTA(0.21; 0.01, 0.01, 0.98) 93 86 98 85 92
BNTA(0.24; 0.01, 0.01, 0.98) 95 87 100 85 95
BNTA(0.26; 0.01, 0.01, 0.97) 93 85 97 86 93
BNTA(0.26; 0.01, 0.01, 0.98) 94 85 98 86 94
BNTA(0.28; 0.01, 0.01, 0.97) 93 86 96 86 94
BPP(0.31; (0.2, 0.2, 0.1), (1.0, 1.0, 0.9)) 76 70 82 72 77
BPP(0.31; (0.2, 0.2, 0.1), (1.0, 1.2, 0.9)) 77 71 84 71 76
BPP(0.32; (0.2, 0.2, 0.1), (1.0, 1.0, 0.9)) 78 71 84 71 76
BPP(0.33; (0.2, 0.2, 0.1), (1.0, 1.0, 0.9)) 78 70 85 70 77
BPP(0.33; (0.2, 0.2, 0.1), (1.0, 1.1, 0.9)) 76 71 83 70 78
∗ d = 1− exp(−1) ≈ 0.63212.

5.3. Real Data Set

Now, the proposed test will be applied to a real data set. The data set comprises
the number of accidents in two different years, presented in [16], where X is the accident
number of the first period and Y the accident number of the second period. Table 9 shows
the real data set.

The p-value, obtained from the statistic Vn,w(θ̂n) of the proposed test, with a1 = 1
and a2 = 0 applied to the real values, is 0.838; therefore, we decided not to reject the
null hypothesis, that is, the data seem to have a BHD. This is consistent with the results
presented by Kemp and Papageorgiou in [26], who performed the goodness-of-fit test χ2

obtaining a p-value of 0.3078.
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Table 9. Real data of X accident number in a period and Y of another period.

X

0 1 2 3 4 5 6 7 Total

0 117 96 55 19 2 2 0 0 291
1 61 69 47 27 8 5 1 0 218
2 34 42 31 13 7 2 3 0 132

Y 3 7 15 17 7 3 1 0 0 49
4 3 3 1 1 2 1 1 1 13
5 2 1 0 0 0 0 0 0 3
6 0 0 0 0 1 0 0 0 1
7 0 0 0 1 0 0 0 0 1

Total 224 226 150 68 23 11 5 1 708
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