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Abstract: One-dimensional heat-conduction models in a semi-infinite domain, although forced
convection obeys Newton’s law of cooling, are challenging to solve using standard integral transfor-
mation methods when the boundary condition ϕ(t) is an exponential decay function. In this study, a
general theoretical solution was established using Fourier transform, but ϕ(t) was not directly present
in the transformation processes, and ϕ(t) was substituted into the general theoretical solution to
obtain the corresponding analytical solution. Additionally, the specific solutions and corresponding
mathematical meanings were discussed. Moreover, numerical verification and sensitivity analysis
were applied to the proposed model. The results showed that T(x,t) was directly proportional to the
thermal diffusivity (a) and was inversely proportional to calculation distance (x) and the coefficient
of cooling ratio (λ). The analytical solution was more sensitive to the thermal diffusivity than other
factors, and the highest relative error between numerical and analytical solutions was roughly 4%
under the condition of 2a and λ. Furthermore, T(x,t) grew nonlinearly as the material’s thermal diffu-
sivity or cooling ratio coefficient changed. Finally, the analytical solution was applied for parameter
calculation and verification in a case study, providing the reference basis for numerical calculation
under specific complex boundaries, especially for the study of related problems in the fields of fluid
dynamics and peridynamics with the heat-conduction equation.

Keywords: Newton’s law of cooling; heat conduction; Fourier transform; general theoretical solution;
numerical verification; sensitivity analysis

MSC: 35A22; 35F15; 35K05

1. Introduction

In practical engineering and physical problems, the physical quantity to be analyzed
is affected by more than one variable; thus, it is generally expressed in partial differential
equations. For the needs of practice and application, Fourier elucidated the phenomenon
of heat conduction and presented a series of laws related to heat conduction, i.e., the
classical heat conduction equations in 1822; his research greatly impacted the development
of partial differential equations [1]. Heat conduction appears in many mathematical models.
The difference equation in the famous Black Scholes model can be transformed into heat
conduction and a simple solution can be derived, but many extension models have no
analytical solution. Thus, numerical methods are used for the calculation. For example,
the Crank–Nicolson method can be used to effectively determine the numerical solution of
heat conduction, and this method can also be used in many models without an analytical
solution [2]. Fayz et al. expressed a numerical study of flow features and heat transport
inside an enclosure. Governing equations were discretized by a finite-element process with
a collected variable arrangement. Streamlines and isotherm lines were utilized to show the
corresponding flow and thermal field inside a cavity. Velocity and temperature profiles
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were displayed for some selected positions inside an enclosure for a better perception of the
flow and thermal field [3]. Moreover, Navier–Stokes equations are motion equations that
describe the momentum conservation of viscous incompressible fluids. They reflect the
basic mechanical laws of viscous fluid flow and are of great significance in fluid mechanics,
but they are nonlinear partial differential equations, which are very difficult and complex
to solve. Moreover, they can be simplified to obtain an approximate solution in some
cases. Since the rapid development of computers, the numerical solution of Navier–Stokes
equations have made great progress. However, in terms of analytical solutions, the exact
solutions can only be obtained on some very simple special flow problems, and further
development and novel ideas or technologies are required to obtain the analytical solutions.

Therefore, the heat-conduction equation is an important development equation in
partial differential equations and an important theoretical equation in the fields of fluid
mechanics [4], materials [5], and bioengineering [6]. In the classical one-dimensional heat-
conduction model [7,8], the boundary temperature ϕ(t) is a known constant ∆T0 (i.e., the
boundary temperature increases ∆T0 at the initial instantaneous change and then remains
unchanged) when the temperature field follows the first boundary control condition. Here,
the analytical solution of the model can be directly obtained using integral transformation
methods, such as Laplace transform or Fourier transform [8–10]. Through Newton’s law
of cooling and Fourier’s law, combined with the relevant physical parameters, Tan et al.
established the heat-conduction model of the fire suit and the model could improve the
fitting accuracy, which is of great significance for the design and of and research into
specialist fire clothing and equipment, and also had a certain reference value for solving
similar problems [11]. It could also be directly solved using integral transformation when
the boundary condition had a relatively simple function form, such as a time linear func-
tion [9,12–14]. However, it is difficult to solve when ϕ(t) is a definite function form due
to its complexity, and the solution can be expressed or an approximate solution can be
obtained [15,16] by using the special functions [17,18].

The heat-conduction model has always been an important research component of
mathematical and physical methods [7–9]. For instance, Dominic et al. [17] studied the
analytical solution to the unsteady one-dimensional conduction problem with two time-
varying boundary conditions, Weigand et al. [19] studied the analytical methods for heat
transfer and fluid flow problems, and Burggraf et al. [20] studied an exact solution of the
inverse problem in heat conduction. Nevertheless, in practical engineering applications,
some common problems still exist. According to Newton’s law of cooling [21], objects
transfer heat to the surrounding medium when their temperature is higher than that of the
environment, which is one of the fundamental laws of heat transfer. For example, in the
ground source heat-pump system, the circulating water temperature in the heat exchanger
is naturally cooled, and the geothermal heat conduction around the heat exchanger can
be regarded as a heat conduction problem under the boundary conditions of Newton’s
law of cooling. To prevent the impact of high temperature on the performance and safety
of a power battery, Ma Yan et al. applied Newton’s cooling law, established the battery
resistance of the battery with temperature change, determined the convection heat transfer
coefficient changes with the coolant flow rate of the cell concentrated-mass heat model,
and proposed a fuzzy proportional-integral-derivative direct liquid-cooling strategy for
a battery pack [22]. Rosales et al. used a generalized conformable differential operator
and then a simulation of the well-known Newton’s law of cooling was made, which had
an advantage with respect to ordinary derivatives [23]. Melo et al. developed an active
thermography algorithm capable of detecting defects in materials, based on the techniques
of thermographic signal reconstruction, thermal contrast, and the physical principles of
heat transfer. Newton’s law of cooling was used to store the normalized temperature data
pixel-by-pixel over time and a compression ratio of 99% was obtained [24]. Konovalenko
et al. proposed a novel method that extends the applicability of Newton’s law of cooling to
changeable ambient temperatures based on a set of temperature stability conditions and
a sensor measurement error. In this method, an optimal number of measurements that
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characterize stable ambient temperatures and improve prediction reliability are selected [25].
Calvo-Schwarzwlder et al. simulated the growth of a one-dimensional solid by considering
a modified Fourier law with a size-dependent effective thermal conductivity and a Newton
cooling condition at the interface between the solid and the cold environment [26]. Herrera-
Sánchez et al. used Newton’s Law of Cooling for heat transfer, which states the rate of heat
exchange between an object and its environment, to solve the problem of the packaging
process when handling canned food [27].

In practice, even if the immediate increase in the boundary temperature and sub-
sequent decline are consistent with Newton’s law of cooling, the heat transfer issue is
challenging to solve directly by integral transformation when the boundary conditions
are the exponential decay function ∆T0 e−λt. Moreover, for the above one-dimensional
heat-conduction model, from the perspective of mathematical physical models, many prob-
lems in nature have similar physical laws, such as diffusion, cooling, charge and discharge,
particle spin polarization degree, and other system state evolutions over time. Moreover,
the solving of partial differential equations is equivalent to calculating a particular solution
under a specific boundary condition [28–46]. The physical law for describing the tempo-
ral temperature decrease has been dominated by Newton’s law of cooling (NLC), which
assumes that natural cooling occurs by following an exact exponential trend. However,
several studies have questioned the broad validity of this law by arguing that cooling
occurs following an approximate rather than an exact exponential trend. Silva introduced
a new formulation of NLC based on generalized statistics that outperforms the classical
NLC, and so demonstrates a new path to cooling analyses [47]. Yan et al. studied a discrete
variable topology optimization method to solve the simplified convective heat transfer
(SCHT) design optimization modeled by Newton’s law of cooling. The discrete variable
topology optimization was based on the proposed sequential approximate integer program-
ming with trust-region, which could identify the convective boundary and carry out the
optimization design [48]. Thus, the heat-conduction model with the boundary conditions
of Newton’s law of cooling needs to be studied.

The goal of this work was to analyze the mathematical and physical implications of
a one-dimensional heat-conduction model in a domain with a semi-infinite border using
Newton’s law of cooling as a boundary condition. More significantly, the analytical solution
approaches that are suggested were examined from the standpoint of fusing mathematical
significance with real-world application requirements. For specific research content, the op-
erator of ϕ(t) was used in the model transformation and inverse transformation processes to
establish a general theoretical solution. Furthermore, the boundary condition function does
not directly participate in the transformation based on the inverse Fourier transformation
and the differential properties of the convolution method [8,9]. Then, ϕ(t) = ∆T0 e−λt was
substituted into the general theoretical solution, and the analytical solution of this problem
is obtained. Note that although the formal transformation of ϕ(t) was not performed, the
boundary function must meet the Fourier transformation requirements. Additionally, the
specific solutions and corresponding mathematical meanings are discussed. Numerical
verification and sensitivity analysis are performed for the proposed model. Finally, an
analytical solution is applied for parameter calculation and verification in the case study.
The proposed solution method is relatively simple and convenient and does not have the
complicated transformation and inverse transformation operation processes of ϕ(t).

The proposed method aims to guide the actual process of solving the reverse heat
conduction reverse problem. This could provide a reference basis for numerical calcu-
lation under specific complex boundaries, especially for similar physical laws. Finally,
the measurement point arrangement and measurement effect inspection of heat sensitive
sensors depend on the distribution characteristics of the temperature field in the detection
parts. Thus, the analytical solution of the temperature field under the influence of different
temperature boundary conditions will provide a convenient and reliable theoretical method
for analyzing the temperature field distribution characteristics in different detection parts.
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2. Basic Model and Its Solution

In engineering practice, most heat exchange holes are arranged in a dense line in
ground coupling heat-pump system, and the heat exchange holes are regarded as a single
hole. The water temperature of the linearly arranged heat exchange hole is generalized as
the first temperature boundary (Dirichlet boundary). Here, the geothermal field change of
the heat-pump system can be generalized into a one-dimensional heat conduction problem
in the semi-infinite domain.

Based on the above a thin-layer material with a heat source at one boundary was taken
as an example, as shown in Figure 1. The heat transfer characteristics of materials can be
summarized as follows: (1) The experimental material is homogeneous and isotropic and
extends infinitely in the x-direction. (2) One boundary of the material is provided with
a heat source under the Dirichlet boundary condition, whereas the outer surface of the
other boundary is a heat insulation surface. (3) The initial temperature of the material
and boundary is T(x,0) = 0, and the temperature field is recorded as T(x,t). (4) The time
variation function of the boundary temperature is denoted as ϕ(t). (5) The heat transfer in
the thin layer material is one-dimensional heat conduction, and the temperature field near
the boundary is shown in Figure 2.

Figure 1. Schematic diagram of the tested material.

Figure 2. Spatial variation diagram of the temperature field under the boundary condition of
Newton’s law of cooling.

The above heat conduction problem can be depicted as a mathematical model (I) [49]:

(I)


∂T
∂t = a ∂2T

∂x2 (0 < x < +∞, t > 0) (1)
T(x, t)|t=0 = T(x, 0) (x > 0) (2)
T(x, t)|x=0 = T(0, 0) + ϕ(t) (t > 0) (3)
T(x, t)|x→∞ = T(x, 0) (t > 0) (4)

where t (s) is the time, x (m) is the distance from the calculation point to the boundary,
a (m2/s) is the thermal diffusivity or thermal conductivity of the solid material, T(x,t) (◦C)
is the temperature, and ϕ(t) is a boundary function.
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Model (I) is the basic model. In porous media seepage mechanics, T(x,t) is generally
denoted as H(x,t) to represent the water level and a (m2/d) is the permeability coefficient
of the porous media [12–14]. In environmental hydraulics, T(x,t) is generally denoted as
C(x,t) to represent the water quality concentration, wherein parameter a is mostly written
as D (m2/d), which is the hydrodynamic diffusion coefficient [50].

In model (I), the boundary condition (3) is x = 0: T(x,t) = T(0,0) + ϕ(t). So that the
converted model does not rely on the initial time value of the model, the following Fourier
transform is applied. Set u(x,t) = T(x,t) − T(x,0), and then, in model (II), the boundary
condition (7) is converted to u(x,t) = ϕ(x,0). Model (II) is as follows [7]:

(II)


∂u
∂t = a ∂2u

∂x2 (0 < x < +∞, t > 0) (5)
u(x, t)|t=0 = 0 (x > 0) (6)
u(x, t)|x=0 = ϕ(t) (t > 0) (7)
u(x, t)|x→∞ = 0 (t > 0) (8)

where u(x,t) is the temperature relative to the initial temperature field.
When a definite function of ϕ(t) exists such that ∆T0 is constant in the classical model,

model (II) can be solved via Fourier transform and Laplace transform.
For the above problem, in particular, the PDE is linear and a simple mathematical

model. There is a very hot field in mathematics and physics that has been studying
nonlinear PDE for a long time. For example, Md and Cemil examined the modified
(G′/G)-expansion process for generating closed-form wave answers of the conformable
fractional ZK equation, including power law nonlinearity [51]. So, in the future research,
the related nonlinear PDE equations could be studied further.

3. General Theoretical Solution

The heat conduction equation can be solved using methods such as analytical, approx-
imate analytical, and numerical methods. Numerical methods are usually used to deal with
this kind of heat conduction problem. Calculation tools and analysis techniques are fairly
advanced, and numerical methods have become the main means for solving the complex
heat conduction problems [52]. However, strict analytical solutions can only be obtained
under certain specific conditions. In most cases, especially under transient conditions, the
strict solution is either too cumbersome or does not exist at all. In existing research, the
heat-conduction model and its analytical solution for a ground source heat-pump system
are given, and the heat conduction outside a borehole can be generalized as an infinite or a
finite length linear heat source releasing heat to the surrounding soil [53,54]. The problem
can also be regarded as an unsteady heat-conduction process from the column heat source
to the surrounding infinite area [55]. A Kelvin line or infinite line heat source analytical
model is established based on Fourier heat conduction law. The theory usually assumes
that a borehole is an infinite linear heat source, and the Earth is an infinite homogeneous
medium with a specific initial temperature [53,56,57]. Moreover, the column heat source
model is based on the Fourier heat conduction law. Assuming that the heat transfer rate
is a constant value, Carslaw and Jaeger established the transient heat conduction control
equation under the given boundary conditions and initial conditions [7]. Eskilson assumed
that a borehole is a limited linear heat source and considered the heat flux along the bore-
hole axis; thus, their model is suitable for the long-term operation of the ground source
heat-pump system [58]. Based on the Eskilson theory, Zeng et al. considered the influence
of finite borehole length with the surface as the boundary, and they derived the analytical
solution of a transient finite-line heat source mode [54]. To solve complex mathematical
problems, analytical models usually have some restrictive assumptions and simplifications,
and the accuracy of analytical results is reduced [59]. However, analytical models have
high calculation efficiency and require low calculation times.
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According to the above research, using Fourier transform to solve the analytical solu-
tion in the heat-conduction mode is feasible. In terms of the properties of the transformation
of ϕ(t), the general theoretical solution of this kind of model is given separately. The process
does not depend on the transformation of ϕ(t).

For model (II), the variation range of x is 0–+∞. Thus, the Fourier sinusoidal trans-
formation of x can be solved. According to the characteristics and properties of Fourier
transform, the following calculation process is obtained [60]:

F[u(x, t)] =
∫ ∞

0
u(x, t) sin ωxdx =u(ω, t) (9)

F
[

∂u
∂t

]
=

du
dt

(10)

F
[

∂2u
∂x2

]
=
∫ ∞

0

∂2u
∂x2 sin ωxdx =ωu|x=0 −ω2u (11)

where u is the Fourier transform of u for x, ω is the Fourier transform operator, and F is the
transform operator.

From Equation (5) with the boundary condition (7), the results are as follows:

du
dt

= a[ω u|x=0 −ω2u] = a[ωϕ(t)−ω2u] (12)

The upper equation is a first-order inhomogeneous linear differential equation, and its
general solution is

u(ω, t) = e−ω2at
[∫ t

0
aω u|x=0eω2aξ dξ + C

]
(13)

where C is the pending constant.
When solving the special solution of the model (II), the pending constant C must first

be determined according to the fixed solution condition Equation (6). Thus, when u(x,t) = 0,
u(ω, t) = 0.

C = −
(∫ t

0
aω u|x=0eω2aξ dξ

)
|t=0 = 0 (14)

After the pending constant C is determined, then by Equations (13) and (14),

u(ω, t) = e−ω2at
∫ t

0
aω u|x=0eω2aξ dξ (15)

Substitute the boundary condition Equation (7) of the model (II) into Equation (14),
and the particular solution of the model (II) is

u(ω, t) = e−ω2at
∫ t

0
aωϕ(ξ)eω2aξ dξ (16)

For Equation (16), the inverse sine transform is obtained; then,

u(x, t) = F−1[u(ω, t)] = 2
π

∫ ∞
0 u(ω, t) sin ωxdω = 2

π

∫ ∞
0

[
e−ω2at ∫ t

0 aωϕ(ξ)eω2aξ dξ
]

sin ωxdω

= 2a
π

∫ t
0 ϕ(ξ)

[∫ ∞
0 ωe−ω2a(t−ξ) sin ωxdω

]
dξ

= 2a
π

∫ t
0 ϕ(ξ)

{[
1

−2a(t−ξ)
e−ω2a(t−ξ)

]∞

0
+ 1

2a(t−ξ)

∫ ∞
0 e−ω2a(t−ξ)x cos ωxdω

}
dξ

= x
π

∫ t
0

ϕ(ξ)
t−ξ

[∫ ∞
0 e−ω2a(t−ξ) cos ωxdω

]
dξ

(17)

where F−1 is the inverse conversion operator.
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To solve the above equation, the relation between inverse sine and cosine transform is
applied, and the order of integral exchange is focused on.

According to the known integral Equation (18) [60],∫ ∞

0
e−bω2

cosωxdω =
[√

π/
(

2
√

b
)]

e−x2/4b (18)

where b is the intermediate variable, b = a (t − ξ).
Combining with Equation (17), u(x,t) can be written as

u(x, t) =
x

2
√

πa

∫ t

0

[
ϕ(ξ)

(t− ξ)3/2 exp
(
− x2

4a(t− ξ)

)]
dξ (19)

where ξ is the integral variable in time.
Equation (19) is the solution of a one-dimensional heat-conduction model in semi-

infinite domain when the boundary condition is ϕ(t).
ϕ(t) is not directly engaged in the transformation throughout the calculating procedure.

Thus, a solution method for the model is provided when ϕ(t) is complex and difficult to
directly solve using Fourier transform.

According to the definition of convolution and the properties of Fourier transform, the
commonly used solution can be obtained in the form of the probability density function.
Thus, Equation (19) can be written as

u(x, t) = ϕ(ξ) ∗
[

x
2t
√

πat
exp

(
− x2

4at

)]
= ϕ(ξ) ∗ d

dt

[
2√
π

∫ +∞

x
2
√

at

e−τ2
dτ

]
= ϕ(ξ) ∗ d

dt

[
er f c

(
x

2
√

at

)]
(20)

where the asterisk is the convolution operator in Equation (19).
According to the differential properties of convolution

ϕ(t) ∗ d
dt

[
er f c

(
x

2
√

at

)]
+ er f c

(
x

2
√

at

)∣∣∣∣
t=0
· ϕ(t) = er f c

(
x

2
√

at

)
∗ d[ϕ(t)]

dt
+ ϕ(t)|t=0 · er f c

(
x

2
√

at

)
(21)

Note the equivalence between the third line of Equation (20) and the first item at the
left side of Equation (21). When er f c

[
x/
(

2
√

at
)]∣∣∣

t=0
= 0, Equation (21) can be rearranged

as follows:

u(x, t) = ϕ(t) ∗ d
dt

[
er f c

(
x

2
√

at

)]
= ϕ(t)|t=0 · er f c

(
x

2
√

at

)
+ er f c

(
x

2
√

at

)
∗ d[ϕ(t)]

dt
(22)

Using the commutative law of convolution, the above formula can be written in
integral form as

T(x, t) = T(x, 0)+ϕ(t)|t=0 · er f c
(

x
2
√

at

)
+
∫ t

0

d[ϕ(ζ)]
dζ

· er f c

(
x

2
√

a(t− ζ)

)
dζ (23)

Equation (23) is the model solution obtained without direct transformation of the
boundary condition ϕ(t), that is, the solution is valid for all boundary conditions of ϕ(t).
Therefore, Equation (23) is the general theoretical solution of this kind of model. When the
function form of ϕ(t) is determined, the solution can be obtained by substituting ϕ(t) into
Equation (23).

In the transformation process, ϕ(t) is operated in the form of the operator; thus, it
should meet the requirements of Fourier transform. Moreover, ϕ(t) is integrable on any
interval under the Dirichlet condition [50]. Additionally, it meets the above requirements
when ϕ(t) is the exponential decay function.
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For a one-dimensional heat-conduction model under the first boundary condition
of homogeneous medium in a semi-infinite domain, the general theoretical solution was
obtained under the complex form of the boundary condition function. Furthermore, the
process applied to the general theoretical solution can provide a reference for solving
similar problems in other fields, such as the contamination migration problem under the
natural decay boundary conditions of source concentration in the subsoil.

4. Solutions to the Newton’s Law of Cooling Boundary

To investigate the analytical solution of a one-dimensional unsteady temperature
field near the Newton’s law cooling boundary, the general theoretical solution of this kind
of model is given based on Fourier transform. The integration transformation and the
inverse transformation processes do not depend on the expression or function form of
ϕ(t) = ∆T0 e−λt, where λ is the coefficient of cooling ratio, and the corresponding physical
significance of λ is an indicator of the speed of temperature change under the Newton’s
law of cooling boundary.

The general solution gives the form of the solution, including all solutions that satisfy
the differential equation. When the initial conditions of the differential equation are given,
specific values of the parameter can be determined and a unique special solution can be
obtained. According to the actual situation, the special solutions under three kinds of
boundary conditions are as follows: (1) λ > 0, Newton’s law of cooling boundary condition,
that is, the solution of the nonlinear variation problem. (2) λ = 0, the boundary temperature
remains unchanged after instantaneous change. (3) The boundary temperature changes
linearly after the instantaneous change.

4.1. The Newton’s Law of Cooling Boundary

When λ > 0, after the boundary temperature instantaneously increases by ∆T0 and
then cools naturally according to Newton’s law of cooling, the boundary temperature is
ϕ(t) = ∆T0e−λt, which is substituted into Equation (23):

T(x, t) = T(x, 0) + ∆T0 · er f c
(

x
2
√

at

)
− λ · ∆T0

∫ t

0
e−λζ · er f c

[
x

2
√

a(t− ζ)

]
dζ (24)

By simply replacing the boundary conditions into the general theoretical solution,
the model solution is produced under the Newtonian cooling boundary. This solution
procedure can be used for models whose boundary conditions are other forms of function,
circumventing the complicated transformation process.

4.2. The Fixed Boundary Condition

When λ = 0, for the convenience of discussion, e−λt is expanded using a power
exponential form:

e−λt = 1 +
∞

∑
n=1

(−λt)n

n!
(25)

ϕ(t) = ∆T0 under the condition of λ = 0. The corresponding physical meaning is that
when the boundary temperature remains unchanged after the instantaneous change of ∆T0,
this is the general boundary condition in the classical model.

Here, the second term on the right side of Equation (25) is zero, and Equation (24) is
transformed into the solution of the classical model, that is, the solution of the classical
problem is a special case of Equation (23).

4.3. The Linear Boundary Condition

When λ 6= 0∩ϕ(t) = ∆T0(1 − λt), the boundary temperature changes linearly after the
instantaneous change. Equation (25) is an alternating series term, for example, the first two
terms of the series are taken in the process. ϕ(t) = ∆T0(1 − λt), which means that after the
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temperature instantaneously increases by ∆T0, the boundary temperature starts to slowly
decrease with a slope of λ∆T0. Then, from Equation (24),

T(x, t) = ∆T0

[
er f c

(
x

2
√

at

)
− λ

∫ t

0
er f c

(
x

2
√

aζ

)
dζ

]
(26)

At this time, the temperature at the boundary linearly decrease with time, and the
speed of temperature change can be calculated using Equation (26). Then, the analytical
solution of the model can be obtained. The boundary condition solution is relatively simple
and is not described.

5. Discussion
5.1. Numerical Verification

To confirm the viability of the suggested analytical approach, parameter response
regularity was examined using analytical and numerical methods. Additionally, the sug-
gested approach was used to study the response law of the model parameters. Because
of the absence of experimental data, a numerical solution was employed for comparison
with the analytical solution. The explicit scheme was used for the numerical solution of
Equation (1) [49] and it can be used for linear as well as nonlinear equations. The analytical
and numerical solutions could be used to validate each other, and the numerical solution of
the nonlinear Equation (1) can be used to show the effectiveness of the proposed method.

To derive the finite difference scheme for the nonlinear problem, the form of the
explicit scheme is as follows [49]:

Ti+1
n =

a∆t
∆x2

(
Ti

n+1 + Ti
n−1

)
+

(
1− 2

a∆t
∆x2

)
Ti

n (27)

where ∆t is the time step, ∆x is the space step length, (n,i) represents the position of a node in
the time-space region and the corresponding temperature, recorded as Tn

i, Tn
i+1 represents

the temperature value of the point at x = n at time i + 1; Tn
i, Tn+1

i and Tn−1
i represent the

temperature values at times i, x = n, x = n + 1 and x = n − 1, respectively.
Equation (27) constitutes the explicit computational scheme for the nonlinear Equation (1),

which by mathematical experimentation is found to be stable if

Fo∆ =
a∆t
∆x2 ≤

1
2

(28)

where Fo∆ is the grid Fourier number.
To elucidate the analytical result, hypothetically generated data were taken and demon-

strated with the help of graphs. Some hypothetical parameters were used to demonstrate
the temperature behavior. Common parameters, a = 6 × 10−7 (m2/s) and λ = 0.1 (h−1),
were used for uniform and varying source temperature. The length of the material do-
main was taken as 0 ≤ x (m) ≤ 3. Figure 3a,b and Figure 4a,b were drawn for varying
input parameters.

The solid curves in Figure 3a,b represent the analytical solution results for various
thermal diffusivity values, 0.2a, 0.5a, a, 1.5a, and 2a, with constant λ, and the dotted curve
depicts the numerical solution. The figures show that the temperature was higher for higher
thermal diffusivity values. The difference value of temperature was positively related to the
thermal diffusivity a, and the calculation error caused by the difference formula increased
with the increase of a. The solid curves in Figure 4a,b represent the analytical solution
results for various cooling ratio coefficients, 0.2λ, 0.5λ, λ, 1.5λ, and 2λ, with constant a, and
the dotted curve represents the numerical solution. The figure shows that the temperature
value was higher for lower cooling ratio coefficients.
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Figure 3. (a) Comparison of temperature in the presence of temperature source for different thermal
diffusivity values with fixed coefficient of cooling ratio at t = 11 h. (b) Variation of temperature
profiles in the presence of temperature source at x = 0.2 m. The analytical and numerical solutions are
shown as solid and dotted lines, respectively.

Figure 4. (a) Comparison of temperature in the presence of temperature source for different coef-
ficients of the cooling ratio with fixed thermal diffusivity at t = 11 h. (b) Variation of temperature
profiles in the presence of temperature source at x = 0.2 m. The analytical and numerical solutions are
shown as solid and dotted lines, respectively.

In Figures 3a and 4a, the comparison of temperature results is at particular time,
t = 11 h. At a particular position, the temperature profile for a fixed cooling ratio coeffi-
cient increased with the thermal diffusivity. The influence of thermal diffusivity plays a
significant role on temperature profile in the domain, and the influence range increased
with the thermal diffusivity in Figure 3a. The cooling ratio coefficient plays a significant
role in the temperature profile under the Newton’s law of cooling boundary, and the
temperature variation range was between about 20 ◦C and 33 ◦C. The case results show
that the boundary temperature clearly influenced the formation of the influence range in
the calculation domain. Comparison of Figures 3a and 4a shows that the influence range
of the temperature boundary increased with a but was not affected by λ. Therefore, the
temperature field study controlled by the Newtonian cooling boundary can provide a basis
for the layout range and layout density of temperature sensors in space.

In Figures 3b and 4b, the temperature profiles at various times are illustrated for
x = 0.2 m. The figure shows that temperature was higher for lower cooling ratio coefficients.
In the presence of a temperature source, the temperature in the region increased to the max-
imum value and then decreased with increasing time at a particular position. Comparison
of Figures 3b and 4b shows that the time required for the temperature to achieve stability
at any spatial point in the study area decreased with increasing λ, i.e., the larger the λ, the
shorter the time required for achieving stability, but it was not affected by a. Thus, the test
frequency of a temperature sensor can be appropriately decreased after the temperature
becomes stable. Therefore, the temperature field study controlled by the Newtonian cooling
boundary can provide a basis for designing the monitoring period and frequency of the
temperature sensor.
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Additionally, Figure 4a clearly shows that the temperature was higher for lower λ on
the boundary. In Figure 4b, in the presence of a temperature source, the temperature level
initially increased but then decreases with time. On the other hand, the temperature trends
had a peak inflection point, and the main contribution stems from λ.

T(x,t) is directly proportional to a and inversely proportional to x and λ, according
to the calculation findings from Figures 3 and 4. The highest relative error under the
conditions of 2a and λ was around 4%, as determined by the relative error between the
numerical and analytical solutions. This demonstrates that, compared with other factors,
the analytical solution is more sensitive to thermal diffusivity. Additionally, T(x,t) grew
nonlinearly if the material’s thermal diffusivity rose or the cooling ratio coefficient fell.

5.2. Sensitivity Analysis

Sensitivity analysis research varies from field to field. It is a tool for evaluating the
influence of input parameters on the model output. As a result, it not only aids in the
construction and validation of models but also lessens uncertainty. This study adopted the
improved Morris screening method [61] and sensitivity was expressed by a dimensionless
index, which was calculated as the ratio of the relative change of the model output to
that of the parameters. Another approach to defining parameter changes was taken into
consideration in order to increase the sensitivity of the discrimination parameters. In this
approach, the change in the parameters was defined as a fixed percentage of the effective
parameter range rather than a fixed percentage of the initial value [62,63].

The sensitivity discriminant factor is calculated as follows:

S =
1

n− 1

n−1

∑
i=1

(Yi+1 −Yi)/Ya

(Pi+1 − Pi)/Pa
(29)

where Yi+1 and Yi are the model outputs determined using the inputted parameter values
Pi+1 and Pi, respectively; S is the discriminant coefficient of variable sensitivity; Ya repre-
sents the average of Yi+1 and Yi; Pa represents the average of Pi+1 and Pi and n represents
the Morris model’s running time.

The sensitivity of the parameters was categorized into four classes according to the
S value of the variable, as shown in Table 1. The sensitivity of a parameter increased with
the S value.

Table 1. Sensitivity classes.

Class Index Sensitivity

I 0.00 ≤ |S| < 0.05 Low
II 0.05 ≤ |S| < 0.20 Medium
III 0.20 ≤ |S| < 1.00 High
IV |S| ≥ 1.00 Higher

Four parameters (x, t, a, and λ) were chosen for the sensitivity analysis in accordance
with the experimental settings; the beginning values for each parameter are displayed in
Table 2. The parameters also had a wide range of fluctuation. The set of parameter values
used for the sensitivity studies is shown in Table 3.

Table 2. Initial value of each parameter chosen for sensitivity studies.

Parameter x (m) t (h) a (m2/s) λ (h−1) u(x,t) (◦C)

Value 0.2 11 6×10−7 0.1 3.86
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Table 3. Values of the parameters chosen for sensitivity analysis.

Parameter x (m) t (h) a (m2/s) λ u(x,t) (◦C)

x

0.5x t a λ 5.60
1.0x t a λ 3.86
1.5x t a λ 2.08
2.0x t a λ 0.90
2.5x t a λ 0.31

t

x 0.5t a λ 2.61
x 0.7t a λ 3.60
x 1.0t a λ 3.86
x 1.5t a λ 3.56
x 1.7t a λ 3.23

a

x t 0.2a λ 0.56
x t 0.5a λ 2.35
x t 1.0a λ 3.86
x t 1.5a λ 4.56
x t 2.0a λ 4.96

λ

x t a 0.2λ 5.79
x t a 0.5λ 4.95
x t a 1.0λ 3.86
x t a 1.5λ 3.06
x t a 2.0λ 2.48

Figure 5 depicts the differences in the relative temperature u(x,t) caused by changes
in the values of other parameters based on the sensitivity assessments carried out for
each set of parameter values. Table 4 also displays the relative sensitivity to changes in
other parameters.

Figure 5. Variations in the relative temperature u(x,t) with variations in other parameters.

Table 4. Sensitivity of tj in relation to other parameters.

Parameter |S| Grade

x 2.29 IV
t 0.03 I
a 0.72 III
λ 0.47 III
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As shown in Figure 5, u(x,t) was directly proportional to a and inversely proportional
to λ and x. Moreover, the temperature trends had a peak inflection point with time. The
following sequence determines how sensitive u(x,t) is to other parameters: x > a > λ > t. The
sensitivities to a and λ shared the same sensitivity grade of III, whereas the sensitivity to
x was the greatest, with a sensitivity grade of IV. The findings indicate that while produc-
ing thermal conductive materials, the four aforementioned characteristics must be taken
into account.

5.3. The Application of Solutions
5.3.1. Parameters Calculation

The variable dynamic monitoring data were used to calculate the model parame-
ters, which was also an important objective of this study. In this study, the fitting curve
method was utilized to calculate the model parameters based on the dynamic monitoring
data. According to a previous research method [12–14], the rate of temperature change
ψ(x,t) = ∂T(x,t)/∂t at a distance x from the boundary was obtained using Equation (24):

ψ(x, t) =
∆T0

2
√

πa
t−

3
2 · exp

(
− x2

4at

)
+ λ∆T0er f c

(
x

2
√

at

)
(30)

In the experiment, ∆T0 and λ could be determined according to the change process of
the boundary temperature. For the temperature measuring point whose distance boundary
is x, ψL(x,t) was calculated at different times using Equation (30). Thus, the theoretical
curve series ψL(x,t) − t was composed corresponding to different a values. Moreover,
the measured curve series ψS(x,t) − t was composed corresponding to the measured
temperature change rate of the measuring point ψS(x,t).

When the value of a in the theoretical curve series ψS(x,t) − t is equal to that in
the measured curve series ψL(x,t) − t, the two curves should be identical and coincide
completely. According to this principle, the a value of the experimental material can be
determined by fitting the measured curve series with the theoretical curve series.

5.3.2. The Case Study

The thermal diffusivity of concrete is an important thermodynamic parameter for
the safety control of concrete dams [64]. To ascertain the quality of concrete, the thermal
diffusivity of specimens was tested. The dimensions of the concrete blocks were La = 3.0 m,
Lb = 1.5 m, and Lc = 0.3 m (Figure 1). A steel pipe with an outer diameter of 0.25 m was
present at one end of the Lb side. The steel pipe and concrete specimen were heat insulated
within 360◦. Moreover, the temperature-measuring optical fibers were set at 0.5 and 0.8 m
away from the steel pipe, and the temperature was continuously monitored.

The initial temperature of the concrete specimen and the indoor air temperature were
both 18 ◦C in the continuous 8 h experiment. Water with a temperature of 36 ◦C was quickly
injected into the steel pipe at the beginning of the experiment, and then, the water was left
to cool naturally. After 8 h, the water temperature was 22 ◦C. In the experiment, the steel
pipe filled with hot water formed the boundary of the concrete specimen, and the natural
cooling of the water conformed to Newton’s cooling law.

(1) Calculation of the thermal diffusivity

Measurement point 1 was located at x = 0.5 m from the heating device, the temperature
response was below measuring sensitivity for 2 h at the beginning of the experiment, and
the temperature measurement results after 2 h are shown in Table 5.
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Table 5. Temperature measurements at x = 0.5 m.

t/h 2 3 4 5 6 7 8

T(x,t)/(◦C) 18.04 18.23 18.61 19.17 19.86 20.66 21.53
ΨS(x,t)/(◦C/h) 0.02 0.19 0.38 0.56 0.69 0.80 0.87

The measured series curves ψS(x,t) − t were fitted to the theoretical series curves
ψL(x,t) − t (Figure 6).

Figure 6. Curve-fitting for measured and theoretical curves of ψ(x,t) to resolve a at x = 0.5 m.

Figure 6 shows that the measured data ψS(x,t) − t were between the theoretical curves
ψL(x,t) − t corresponding to a values of 0.0047 and 0.0049 m2/h; thus, the a value should be
taken as 0.0048 m2/h, which is within the range value of a of 0.004478–0.00564 m2/h [64].

(2) Experimental verification of the thermal diffusivity

The temperature-change process of the other measuring points can be calculated when
a = 0.0048 m2/h is substituted into Equation (30). Then, the reliability of the parameter
value and the experimental process was verified in comparison with the measured data.

Measurement point 2 was located at x = 0.8 m from the heating device, the temperature
response was below measuring sensitivity for 4 h at the beginning of the experiment, and
the temperature measurement results after 4 h are shown in Table 6.

Table 6. Comparison chart of the measured and theoretical curves of ψ(x,t) at x = 0.8 m.

t/h 4 5 6 7 8

T(x,t)/(◦C) 18.00 18.01 18.03 18.07 18.13
ΨS(x,t)/(◦C/h) 0.00 0.01 0.02 0.04 0.06
ΨL(x,t)/(◦C/h) 0.002 0.009 0.022 0.041 0.063

relative
error/% - 7.8 10.9 1.7 5.6

The measured series curves ψS(x,t) – t were fitted to the theoretical series curves
ψL(x,t) − t (Figure 7)
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Figure 7. Comparison diagram of the measured and theoretical curves of ψ(x,t) at x = 0.8 m.

Table 6 and Figure 7 show that the relative errors of ψS(x,t) − t and ψL(x,t) − t were
small at x = 0.8 m and the fitting curve was also better than that at x = 0.5 m. This shows
that the value of the thermal diffusivity calculated from the above fitting curve method is
reliable and the proposed method is reliable.

6. Conclusions

Based on the working of a one-dimensional heat-conduction model in the semi-infinite
domain under the Newton’s law of cooling boundary, the following conclusions can
be drawn:

(1) Although the one-dimensional heat-conduction model has been widely and deeply
studied, some problems still exist for which existing methods cannot afford solutions,
such as the semi-infinite domain one-dimensional heat-conduction model with the
exponential decay function ∆T0 e−λt as the boundary condition.

(2) The Fourier transform property can be applied to establish the generic theoretical
solution of the model, and then, the solution of the practical problem is obtained by
substituting the boundary conditions, providing a relatively simple solution for such
problems that omits the complicated transformation process.

(3) Comparison of the analytical and numerical solutions demonstrates that the relative
calculation error is manageable and the calculation approach is practical. Alternatively
put, the approach and its resolution are workable. Sensitivity analysis was conducted,
and the sensitivity of u(x,t) to other parameters decreased in the order of x > a > λ > t.
Additionally, a and λ play important roles in the heat conduction process.

(4) According to the heat exchange relationship between the temperature sensor and the
surrounding environment, the sampling frequency and the position of the temperature
measurement point all have a certain impact on the calculation results of the heat-
conduction problem, which needs to be comprehensively studied in future works.

(5) Compared to the existing model, the relative error afforded by the proposed model is
acceptable. However, for the application scope and solutions of the proposed model,
a more in-depth comparative analysis of the existing models needs to be conducted
and the error size in future applications needs to be determined.

(6) For the above problem, in particular, the PDE is linear and a simple mathematical
model. There is a very hot field in mathematics and physics that has been studying
nonlinear PDE for a long time. So, in the future research, the related nonlinear PDE
equations could be studied further.
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