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Abstract: In this paper, we introduce orthogonal multivalued contractions, which are based on the
recently introduced notion of orthogonality in the metric spaces. We construct numerous fixed point
theorems for these contractions. We show how these fixed point theorems aid in the generalization
of a number of recently published findings. Additionally, we offer a theorem that establishes the
existence of a fractional differential equation’s solution.
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1. Introduction and Preliminaries

The core of the metric fixed-point theory is the exploration of generalized contraction
principles to add more applicable fixed-point theorems in the theory. The simplest and
most applicable contraction principle is the Banach contraction principle. This contraction
principle can be applied to show the existence of solutions to equations representing math-
ematical models. The contraction principle that appeared in [1] generalizes the Rakotch [2]
contraction concept. Furthermore, Matkowski [3], Samet et al. [4], Karapinar et al. [5], and
Pasicki [6] have all generalized the Boyd-Wong notion. The concept of F-contraction [7]
is another notable generalization of the Banach contraction principle (BCP), and sev-
eral research articles have been published in the previous decade (see [8–13], and ref-
erences therein).

The role of fixed point theory in solving real-world problems has been described in
many recently published papers. Recently, Turab et al. [14] proposed a generic stochastic
functional equation that can be used to describe several psychological and learning theory
experiments. The existence, uniqueness, and stability analysis of the suggested stochastic
equation are examined by utilizing the notable fixed point theory tools. Khan et al. [15]
proposed a fixed-point technique to investigate a system of fractional order differential
equations. Rezapour et al. [16] proposed a labeling method for graph vertices, and then
presented some existence results for solutions to a family of fractional boundary value
problems (FBVPs) on the methyl propane graph by means of Krasnoselskii’s and Scheafer’s
fixed point theorems.

The use of partial order, admissibility of a mapping, graph theory and binary relation
are all being effectively utilized in metric fixed point theory. Recently, Gordji et al. [17]
presented a special binary relation, termed the orthogonal relation, and presented several
examples to clarify the concept of the orthogonal relation and, hence, orthogonal-set (see Ex
2.2 to Ex 2.11). Gordji et al. also presented a generalization of BCP in the orthogonal metric
space. Later, Baghani et al. [8] generalized the study done in [17] by using the concept of
F-contraction, while Nazam et al. [18] broadened the investigation conducted in [8].
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On the other hand, Proinov [19] offered various fixed-point theorems that built on
previous work in [1,3–7]. He introduced a generalized class of contractions by operating
two functions V, W : (0, ∞) → (−∞, ∞) on both sides of the Banach contraction and
obtained several fixed point results. The class of contractions given in [19] encapsulate the
contractions defined in [4,7,20,21].

In this paper, we extend some results of [19] to multivalued mappings subject to
the class of orthogonal contractions. The class of orthogonal contractions generalizes
ordered contractions, graphic contractions and α-admissible contractions. We demonstrate
that every contraction is orthogonal but not vice versa. Along with several examples to
validate the results, we also present an application for solving a fractional differential
equation (FDE).

Let U 6= ∅ and ⊥ ⊂ U × U satisfying the property (P),

(P) :∃ `0 ∈ U : either (∀τ ∈ U ; `0⊥ τ) or (∀τ ∈ U ; τ⊥ `0).

We call the pair (U ,⊥) an orthogonal set (abbreviated as, O-set). The concept of orthogo-
nality in an inner-product space is an example of ⊥.

For the illustration of the orthogonal set, O-sequence, O-Cauchy and its examples, we
suggest the reader read the articles [17,22].

Definition 1. [17] The O-set (U ,⊥) endowed with a metric d is called an O-metric space (in short,
OMS) denoted by (U ,⊥, d).

Definition 2. [17] Let (U ,⊥, d) be an orthogonal metric space. A mapping f : U → U is said to
be an orthogonal contraction if there exists k ∈ [0, 1) such that

d( f x, f y) ≤ kd(x, y) ∀x, y ∈ U with x⊥ y.

Terms such as continuity and orthogonal continuity, completeness and O-completeness,
Banach contraction and orthogonal contraction have been explained in [10,13,17,22]. In the
following, we give some comparisons between fundamental notions.

1. The continuity implies orthogonal continuity but the converse is not true. If f : R→ R
is defined by f (`) = [`], ∀` ∈ R and the relation ⊥ ⊆ R×R is defined by

`⊥ g if `, g ∈
(

i +
1
3

, i +
2
3

)
, i ∈ Z or ` = 0.

Then, f is ⊥-continuous while f is discontinuous on R.
2. The completeness of the metric space implies O-completeness, but the converse is not

true. We know that A = [0, 1) with Euclidean metric d is not a complete metric space.
If we define the relation ⊥ ⊆ A×A by

`⊥ g ⇐⇒ ` ≤ g ≤ 1
2

or ` = 0,

then (A,⊥, d) is an O-complete.
3. The Banach contraction implies orthogonal contraction but the converse is not true.

Let A = [0, 10) with Euclidean metric d so that (A, d) is a metric space. If we define
the relation ⊥ ⊆ A×A by

`⊥ g if `g ≤ ` ∨ g,

then (A,⊥, d) is an O-metric space. Define f : A → A by f (`) = `
2 (if ` ≤ 2) and

f (`) = 0 (if ` > 2). Since d( f (3), f (2)) > kd(3, 2), f is not a contraction; rather, it is an
orthogonal contraction.

Let
P(U )— set of non-empty subsets of U .
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Pcb(U )— set of all non-empty bounded and closed subsets of U .
K(U )—set of non-empty compact subsets of U .

If we let E ∈ Pcb(U ) and g ∈ U , then d(g, E) = inf
i∈E

d(g, i); d is a metric on U . The

mapping H : Pcb(U )× Pcb(U )→ [0, ∞) defined by

H(E1, E2) = max

{
sup
r∈E1

d(r, E2), sup
w∈E2

d(w, E1)

}
for all E1, E2 ∈ Pcb(U ),

defines a metric on Pcb(U ). It is also known as the Pompieu-Hausdorff-metric. In the
following, we define ⊥-admissible mapping, ⊥-preserving mapping and illustrate them
with examples. Let Λ = {(x, y) ∈ U × U : x⊥ y}.

Definition 3. A mapping f : U × U → [1, ∞) is said to be strictly ⊥-admissible if f (a, θ) > 1
for all a, θ ∈ U with a⊥θ and f (a, θ) = 1 otherwise.

Example 1. Let U = [0, 1) and define the relation ⊥ ⊂ U × U by

a⊥ θ if aθ ∈ {a, θ} ⊂ U .

Then, U is an O-set. Define f : U × U → [1, ∞) by

f (a, θ) =

{
a + 2

1+θ if a⊥ θ,
1 otherwise .

Then, f is ⊥-admissible.

Definition 4. Let U be a non-empty set. A set-valued mapping L : U → P(U ) satisfying the
property (O) is called ⊥-preserving.

(O). For each j ∈ U and l ∈ L(j) with j⊥ l or l⊥ j, ∃ g ∈ L(l) with l⊥ g or g⊥ l.

Example 2. Let U = [0, 1) and define a relation ⊥ ⊂ [0, 1)× [0, 1) by

g⊥ h if gh ∈ {g, h} ⊂ [0, 1).

Then, U := [0, 1) is an O-set. Now for a function t : U × U → [1, ∞) defined by

t(g, h) =
{

g + 2
1+h if g⊥ h,

1 otherwise .

Then, t is a ⊥-admissible mapping. The mapping r : U → P(U ) defined by

r(g) =

{ [
g

15 , g+1
7

]
if g ∈ Q∩ U ,

{0} if g ∈ Qc ∩ U ,

is a ⊥-preserving mapping.

The following facts have been stated in [19] and we carry them for our upcoming
results.

Lemma 1. Let {cα} ⊂ (X, d) and it obeys the equation limα→∞ d(cα, cα+1) = 0; then, there are
subsequences {cαl}, {cβl} and q > 0 (whenever {cα} is not Cauchy) following the equations:

lim
l→∞

d(cαl+1 , cβl+1
) = q + . (1)
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lim
l→∞

d(cαl , cβl ) = d(cαl+1 , cβl ) = d(cαl , cβl+1
) = q. (2)

The following result appeared in [23] and is very useful for our upcoming results.

Lemma 2. Let (U, d) and ` > 1, then, for all w ∈ Q1 ⊆ U, there is a g ∈ Q2 ⊆ U following
the inequality:

d(w, g) ≤ `H(Q1, Q2).

2. Multivalued (V , W)⊥-Contractions

This section deals with the multivalued (V, W)⊥-contractions. To guarantee the
presence of fixed points of multivalued (V, W)⊥-contractions, we study a number of
constraints on the real valued nonlinear functions (V, W). The multivalued (V, W)⊥-
contraction is defined as follows.

Definition 5. Let (U ,⊥, d) be an OMS. A mapping S : U → Pcb(U ) is called a multivalued
(V, W)⊥-contraction if there exists a strictly ⊥-admissible function ν such that

V(ν(q, `)H(S(q),S(`))) ≤W(d(q, `)) (3)

for all q, ` ∈ Λ with H(S(q),S(`)) > 0.

Remark 1. The following observations indicate the generality of multivalued (V, W)⊥ contraction
for the specific definitions of the mappings V, W.

1. If V(`) = ` and W(`) = λ`, where 0 ≤ λ < 1, then S is an orthogonal Nadler contrac-
tion [23].

2. If V(`) = `, then S is an orthogonal multivalued Boyd-Wong contraction [1].
3. If V is lower semi-continuous and W is upper semi-continuous, then S is an orthogonal

multivalued variant of the contraction defined in [24].
4. If W(`) = F(V(`)) , then S is an orthogonal multivalued variant of the contraction defined

in [21].
5. If W(`) = α(`)V(`) and V(`) = `, then S is an orthogonal variant of the contraction defined

in [25].
6. If W(`) = λV(`), then S is an orthogonal multivalued variant of the contraction defined

in [26].
7. If W(`) = F(V(`)) and F(`) = `α, then S is an orthogonal multivalued variant of the

contraction defined in [20].
8. If W(`) = V(`)− τ, then S is an orthogonal multivalued variant of the contraction defined

in [7].

Remark 2. It is noted that if W(c) = V(c) − τ for all c ∈ (0, ∞), then the contractive
condition (3) is a multivalued F-contraction [27]. If W(c) = V(c)− τ(c) for all c ∈ (0, ∞),
then it is a multivalued (τ, FT)-contraction [10]. If we set V(c) = ln(c) for all c, then we have
a Nadler contraction [23]. For, if the function V : (0, ∞) → (0, ∞) is non-decreasing and
p(j) ∈ (0, 1) for all j ∈ (0, ∞) with lim supz→ε+ p(z) < 1. Then, defining W(z) = p(z)V(z)
and V(z) = z for all z > 0, we obtain the contraction defined in [28].

Let ⊥RCOMS denote a ⊥-regular complete orthogonal metric space.
The following theorem presents the first formula of this paper for the existence of

fixed points.

Theorem 1. Let (U ,⊥, d) be a ⊥RCOMS. Suppose that S : U → Pcb(U ) is a ⊥-preserving and
satisfies (3). If⊥ is transitive and functions V, W : (0, ∞)→ (−∞, ∞) meet the following conditions:

(i) there exists c1 ∈ S(c0) such that c1⊥c0 or c0⊥c1, for any c0 ∈ U ,
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(ii) V is non-decreasing and W(c) < V(c) ∀ c > 0,
(iii) lim supc→γ+ W(c) < V(γ+) (∀ γ > 0).

Then, there exists c∗ ∈ U such that c∗ ∈ S(c∗).

Proof. By (i), for an arbitrary c0 ∈ U , there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0.
Since the mapping S is ⊥-preserving, there exists c2 ∈ S(c1) such that c1⊥ c2 or c2⊥ c1
and, thus, c3 ∈ S(c2) such that c2⊥ c3 or c3⊥ c2. In general, there exists cn+1 ∈ S(cn) such
that cn⊥ cn+1 or cn+1⊥ cn for all n ≥ 0. Hence, ν(cn, cn+1) > 1 for all n ≥ 0. If cn ∈ S(cn)
(for some n ≥ 0), then cn is a fixed-point of S . We assume that cn /∈ S(cn) (∀ n ≥ 0). Then,
H(Scn−1,Scn) > 0. So ν(cn, cn+1) > 1 and S(cn),S(cn+1) ∈ Pcb(U )(∀ n ≥ 0). Hence, there
exists cn 6= cn+1 ∈ S(cn) such that d(cn, cn+1) ≤ ν(cn−1, cn)H(S(cn−1),S(cn))(∀ n ≥ 1)
(see Lemma 2). Since the function V is increasing, by (3), we have

V(d(cn, cn+1)) ≤ V(ν(cn−1, cn)H(S(cn−1),S(cn))) ≤W(d(cn−1, cn)).

Since W(c) < V(c) (∀ c > 0), we have

V(d(cn, cn+1)) ≤W(d(cn−1, cn)) < V(d(cn−1, cn)). (4)

The monotonicity of the function V implies d(cn, cn+1) < d(cn−1, cn) (∀n ≥ 1) and, thus, the
sequence {d(cn−1, cn)} is monotone. Let δ ≥ 0 satisfy limn→∞ d(cn−1, cn) = δ+. If δ > 0, by
(4), we have

V(δ+) = lim
n→∞

V(d(cn, cn+1)) ≤ lim
n→∞

sup W(d(cn−1, cn)) ≤ lim
c→δ+

sup W(c).

This is a contradiction to (iii). Thus, δ = 0 and hence the mapping S is asymptotically-regular.
Now, we show that {cn} is a Cauchy sequence. Contrarily, suppose that the sequence

{cn} is not Cauchy. By Lemma 1, there exist two subsequences {cnk}, {cmk} of {cn} and
ε > 0 such that the equations (1) and (2) hold. By (1), we get that d(cnk+1, cmk+1) > ε.
Since cn⊥ cn+1 (∀n ≥ 0), by transitivity of ⊥, we have cnk ⊥ cmk and, hence, ν(cnk , cmk ) > 1
(∀k ≥ 1). Setting q = cnk and ` = cmk in (3), we have

V(d(cnk+1, cmk+1)) ≤ V(ν(cnk , cmk )H(Scnk ,Scmk )) ≤W(d(cnk , cmk )), for any k ≥ 1.

For if ak = d(cnk+1, cmk+1) and bk = d(cnk , cmk ), we have

V(ak) ≤W(bk), for any k ≥ 1. (5)

By (1) and (2), we have limk→∞ ak = ε+ and limk→∞ bk = ε. By (9), we obtain

lim inf
c→ε+

V(c) ≤ lim inf
k→∞

V(ak) ≤ lim sup
k→∞

W(bk) ≤ lim sup
c→ε

W(c). (6)

But (6) contradicts (iii), thus, {cn} is a Cauchy sequence in U . Since (U ,⊥, d) is a complete
OMS, limn→∞ cn = c∗ for some c∗ ∈ U . Since the space (U ,⊥, d) is ⊥-regular, we have
cn⊥ c∗ or c∗⊥ cn such that ν(cn, c∗) > 1. We need to show that d(c∗,S(c∗)) = 0 and
contrarily suppose that d(c∗,S(c∗)) > 0. Then, there exists n1 ∈ N such that d(cn,S(c∗)) >
0 for all n ≥ n1. By (3)

V(d(cn+1,S(c∗))) ≤ V(ν(cn, c∗)H(S(cn),S(c∗))) ≤W(d(cn, c∗)) < V(d(cn, c∗)). (7)

By monotonicity of V, we obtain that d(cn+1,S(c∗)) < d(cn, c∗). Taking the limit as n→ ∞
in (7), we have d(c∗,S(c∗)) < 0, which is a contradiction. Thus, d(c∗,S(c∗)) = 0. Since
S(c∗) is closed, c∗ ∈ S(c∗).

The following theorem states another set of terms and conditions ensuring the exis-
tence of fixed points of multivalued (V, W)⊥-contractions.
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Theorem 2. Let (U ,⊥, d) be a ⊥RCOMS with transitive ⊥. Suppose that S : U → Pcb(U )
is a ⊥-preserving and satisfies (3) and the functions V, W : (0, ∞) → (−∞, ∞) meet the
following conditions:

(i) there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0, c0 ∈ U ,
(ii) V is non-decreasing and W(y) < V(y) for any y > 0,
(iii) infc>ε V(c) > −∞,
(iv) for the strictly-decreasing sequences {V(cn)} and {W(cn)}, if limn→∞ V(cn) = limn→∞

W(cn) = L, then limn→∞ cn = 0,
(v) lim supc→ε W(c) < lim infc→ε+ V(c) for any ε > 0,
(vi) lim supc→ε1

W(c) < lim infc→ε V(c) for any ε, ε1 > 0.

Then, S admits at least one fixed-point in U .

Proof. By (i), for c0 ∈ U , there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0. Since T is a ⊥-
preserving mapping, there exists c2 ∈ S(c1) such that c1⊥ c2 or c2⊥ c1 and then c3 ∈ S(c2)
such that c2⊥ c3 or c3⊥ c2. In general, there exists cn+1 ∈ S(cn) such that cn⊥ cn+1 or
cn+1⊥ cn (∀ n ≥ 0). Hence, ν(cn, cn+1) > 1 for all n ≥ 0. If cn ∈ S(cn) then cn is a fixed-
point of S (∀ n ≥ 0). If cn /∈ S(cn) (∀n ≥ 0), then H(Scn−1,Scn) > 0. Since ν(cn, cn+1) > 1
and S(cn),S(cn+1) ∈ Pcb(U ), n ≥ 0, by Lemma 2, there exists cn+1 ∈ S(cn) (cn 6= cn+1)
such that d(cn, cn+1) ≤ ν(cn−1, cn)H(S(cn−1),S(cn)) for all n ≥ 1. By monotonicity of V
and (3), we have

V(d(cn, cn+1)) ≤ V(ν(cn−1, cn)H(S(cn−1),S(cn))) ≤W(d(cn−1, cn)) < V(d(cn−1, cn)). (8)

By (8) we get that {V(d(cn−1, cn))} is a strictly decreasing-sequence.
We have two cases:
Case 1. {V(d(cn−1, cn))} is unbounded below.
By (iii), we have infd(cn−1,cn)>ε V(d(cn−1, cn)) > −∞. This implies that

lim inf
d(cn−1,cn)→ε+

V(d(cn−1, cn)) > −∞.

Thus, limn→∞ d(cn−1, cn) = 0, otherwise, we have

lim inf
d(cn−1,cn)→ε+

V(d(cn−1, cn)) = −∞.

This is a contradiction to the assumption (iii).
Case 2. {V(d(cn−1, cn))} is bounded below.
The sequence is convergent and by (8), we have

lim
n→∞
{W(d(cn−1, cn))} = lim

n→∞
{V(d(cn−1, cn))}.

By (iv), we infer limn→∞ d(cn−1, cn) = 0.
Now, contrarily, if we let the sequence {cn} not be Cauchy, then by Lemma 1, there are

subsequences {cnk}, {cmk} of {cn} and ε > 0 such that the Equations (1) and (2) hold. By
(1), we get that d(cnk+1, cmk+1) > ε. Since cn⊥ cn+1 (∀n ≥ 0), by transitivity of ⊥, we have
cnk ⊥ cmk and hence ν(cnk , cmk ) > 1 (∀k ≥ 1). Setting q = cnk and ` = cmk in (3), we have

V(d(cnk+1, cmk+1)) ≤ V(ν(cnk , cmk )H(Scnk ,Scmk )) ≤W(d(cnk , cmk )), for any k ≥ 1.

For if ak = d(cnk+1, cmk+1) and bk = d(cnk , cmk ), we have

V(ak) ≤W(bk), for any k ≥ 1. (9)

By (1) and (2), we have limk→∞ ak = ε+ and limk→∞ bk = ε. By (9), we get that

lim inf
c→ε+

V(c) ≤ lim inf
k→∞

V(ak) ≤ lim sup
k→∞

W(bk) ≤ lim sup
c→ε

W(c). (10)
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But (10) contradicts (v), thus, {cn} is a Cauchy sequence in U . Since U is a complete OMS,
the sequence {cn} converges to c∗ ∈ U .

We show that c∗ is a fixed point of S . There are two possibilities. (P1) If d(cn+1,Sc∗) =
0 for a fixed n, then we have

d(c∗,Sc∗) ≤ d(c∗, cn+1) + d(cn+1,Sc∗) = d(c∗, cn+1).

Taking the limit n → ∞, we get d(c∗,Sc∗) ≤ 0. Thus, d(c∗,S(c∗)) = 0. Since S(c∗) is
closed, c∗ ∈ S(c∗). (P2) If d(cn+1,Sc∗) > 0 for all n ≥ 0, then the ⊥-regularity of the space
U implies cn⊥ c∗ or c∗⊥ cn and, thus, ν(cn, c∗) > 1. By the contractive condition (3), for all
n ≥ 0, we have

V(d(cn+1,Sc∗)) ≤ V(ν(cn, c∗)H(Scn,Sc∗)) ≤W(d(cn, c∗)). (11)

Set an = d(cn+1,Sc∗) and bn = d(cn, c∗). Then, by (11), we have

V(an) ≤W(bn) for all n ≥ 0. (12)

Suppose that ε = d(c∗,Sc∗) such that limn→∞ an = ε and limn→∞ bn = 0. By (12), we have

lim inf
c→ε

V(c) ≤ lim inf
n→∞

V(an) ≤ lim sup
n→∞

W(bn) ≤ lim inf
c→0

W(c). (13)

If ε > 0, then (13) contradicts (vi). Thus, we have d(c∗,Sc∗) = 0. Hence c∗ ∈ Sc∗, that is,
c∗ is a fixed point of S .

Remark 3. If we replace d(c, `) with E(c, `) in the contractive condition (3), then according to
Ćirić [29], Theorems 1 and 2 remain true.

Uniqueness of the fixed point: The following three conditions are essential for the
uniqueness of a fixed point of a multivalued mapping.

(U1). For any multivalued mappingM : Q → P(Q), the set of fixed points ofM
(F(M)) is totally orthogonal (for any w, e ∈ F(M) either w⊥ e or e⊥w).

(U2). Let

YM(`)(q) = {t ∈ M(`)|d(q, t) = d(M(`), q)} for all q ∈ Q.

For any ` ∈ Q, ∃ θ ∈ YM(`)(q) such that `⊥ θ.
(U3). For all i, b, τ ∈ Q, d(τ, i) ≥ d(b, i), whenever i⊥ b⊥ τ.

Theorem 3. Assume that, in addition to conditions stated in Theorem 1 (or Theorem 2), the
conditions (U1)− (U3) hold. Then, the mappingM : Q → Pcb(Q) admits a unique fixed point
in Q.

Proof. Clearly the mapping M admits at least one fixed point in Q (by Theorem 1 (or
Theorem 2)). Let w and e be two fixed points ofM, so that, w ∈ M(w) and e ∈ M(e).
By (U1), for any w, e ∈ (F(M), either w⊥ e or e⊥w. In view of (U2), ∃g ∈ YM(`)(q)
satisfying `⊥ g and d(q, g) = d(M(`), q). By (U3), q⊥ `⊥ g, implies that d(g, q) ≥ d(`, q).
Since ` ∈ M(`) so that d(g, q) ≤ d(`, q), hence, d(M(`), q) = d(q, g) = d(`, q). Now if
` 6= q, then d(`, q) > 0. Moreover,

d(`, q) = d(M(`), q) ≤ H(M(`),M(q)) < ν(`, q)H(M(`),M(q)).

By (ii) stated in Theorem 1 and (3), we deduce that

V(d(`, q)) < V(ν(`, q)H(M(`),M(q))) ≤W(d(`, q)) < V(d(`, q)).
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As V is an increasing mapping, we have d(`, q) < d(`, q), a contradiction, thus, ` = q.
Hence, the multivalued mappingM has a unique fixed point.

Examples for the Explanation of Theory

Example 3. Consider X = {0}∪]3, 7] endowed with usual-metric

d(q, `) = |q− `| for all q, ` ∈ X.

Define the relation ⊥ ⊂ X2 by

a⊥ b if and only if a ∧ b = 0⇒ a ∨ b ∈]5, 7].

Then, ⊥ is an orthogonal relation and (X, d,⊥) is a complete orthogonal metric space. Define
S : X → CB(X) by,

S(q) =
{
{5, 7}, q ∈]3, 7],
{4, 6}, q = 0.

Let A = {5, 7} and B = {4, 6}. Since

H(A, B) = max{d(A, B), d(B, A)}, (14)

d(A, B) = sup{d(q, B) : q ∈ A} = inf{d(q, `) : ` ∈ B}
d(B, A) = sup{d(`, A) : ` ∈ B}.

Consider,

{d(q, B) : q ∈ A} = {d(5, B), d(7, B)}, (15)

where

d(5, B) = inf{d(5, 4), d(5, 6)} = inf{1, 1} = 1.

d(7, B) = inf{d(7, 4), d(7, 6)} = inf{3, 1} = 1.

Thus, by (15), we get

d(A, B) = sup{d(q, B) : q ∈ A} = sup{1, 1} = 1. (16)

Consider

{d(`, A) : ` ∈ B} = {d(4, A), d(6, A)}. (17)

d(4, A) = inf{d(4, 5), d(4, 7)} = inf{1, 3} = 1.

d(6, A) = inf{d(6, 5), d(6, 7)} = inf{1, 1} = 1.

Thus, by (17), we get

d(B, A) = sup{d(`, A) : ` ∈ B} = sup{1, 1} = 1. (18)

By virtue of Equations (16) and (18), Equation (14) implies that H(A, B) = 1 > 0. Define
ν : X2 → [1, ∞) by

ν(a, b) =
{

2 if a⊥ b,
1 otherwise .

Then, ν is ⊥-admissible.
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Case 1: If ` = 0 and q ∈]5, 7], then, `⊥ q and

1
294
− 1

2H(Sq,S`) + 1
≤ 49

294
− 1

3

=− 1
6
< − 1

d(q, `) + 1
. (19)

Case 2: If q = 0 and ` ∈]5, 7], then, `⊥ q and

1
294
− 1

2H(Sq,S`) + 1
≤ 49

294
− 1

3

=− 1
6
< − 1

d(q, `) + 1
. (20)

By (19) and (20), we deduce that

1
294
− 1

2H(Sq,S`) + 1
< − 1

d(q, `) + 1
,

for all q, ` ∈ X with q⊥ `. Thus, by defining V(t) = − 1
t+1 and W(t) = V(t) − τ for all

t ∈ (0, ∞) and τ = 1
294 , we see that V and W satisfy conditions (ii) and (iii) of Theorem 1 and S is

a multivalued (V, W)⊥-contraction:

V(ν(q, `)H(S(q),S(`))) ≤W(d(q, `)).

Here, we note that the fixed point of S is 7, because 7 ∈ S(7).

Example 4. Consider X =]9, 21] endowed with the usual metric:

d(q, `) = |q− `| for all q, ` ∈ X.

Define the relation ⊥ ⊂ X2 by

a⊥ b if and only if a ∧ b = 10⇒ a ∨ b ∈]17, 21].

Then, ⊥ is an orthogonal relation and (X, d,⊥) is a complete orthogonal metric space. Define the
mapping S : X → CB(X) by,

S(q) =
{
{20, 21}, q ∈]9, 21],
{18, 19}, q = 10.

Let A = {20, 21} and B = {18, 19}. We know that

H(A, B) =max{d(A, B), d(B, A)}; d(A, B) = sup{d(q, B) : q ∈ A} and (21)

d(B, A) = sup{d(`, A) : ` ∈ B}.

Consider,

{d(q, B) : q ∈ A} = {d(20, B), d(21, B)}. (22)

d(q, B) = inf{d(q, `) : ` ∈ B}
d(20, B) = inf{d(20, 18), d(20, 19)} = inf{2, 1} = 1.

d(21, B) = inf{d(21, 18), d(21, 19)} = inf{3, 2} = 2.

Thus, by (22), we get

d(A, B) = sup{d(q, B) : q ∈ A} = sup{1, 2} = 2. (23)
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Similarly,

{d(`, A) : y ∈ B} = {d(18, A), d(19, A)}. (24)

d(18, A) = inf{d(18, 20), d(18, 21)} = inf{2, 3} = 2, and d(19, A) = inf{d(19, 20), d(19, 21)}
= inf{1, 2} = 1. Thus, by (24), we get

d(B, A) = sup{d(`, A) : ` ∈ B} = sup{2, 1} = 2. (25)

By Equations (23) and (25), the Equation (21) implies that H(A, B) = 2 > 0. Define ν : X2 →
[1, ∞) by

ν(a, b) =
{

2 if a⊥ b,
1 otherwise .

Then, ν is ⊥-admissible.
Case 1: If q = 10 and ` ∈]17, 21], then, q⊥ ` and

1 + d(10, `) ≥8 ≥ 3
2
(1 + 2H(S10,S`))

3
2
(1 + 2H(S10,S`)) ≤1 + d(10, `)

ln(
3
2
(1 + 2H(S10,S`))) ≤ ln(1 + d(10, `))

ln(
3
2
) + ln(1 + 2H(S10,S`)) ≤ ln(1 + d(10, `)).

Case 2: If ` = 10 and q ∈]17, 21], then, q⊥ ` and

1 + d(q, 10) ≥ 8 ≥ 3
2
(1 + 2H(Sq,S10))

3
2
(1 + 2H(Sq,S10)) ≤ 1 + d(q, 10)

ln(
3
2
(1 + 2H(Sq,S10))) ≤ ln(1 + d(q, 10))

ln(
3
2
) + ln(1 + 2H(Sq,S10)) ≤ ln(1 + d(q, 10)).

Thus, for all q, ` ∈ X with q⊥ `, Thus, by defining V(t) = ln(t + 1) and W(t) = V(t)− τ for
all t ∈ (0, ∞) and τ = ln 3

2 , we see that V and W satisfy conditions (ii)–(vi) of Theorem 2 and S is
a multivalued (V, W)⊥-contraction:

V(ν(q, `)H(S(q),S(`))) ≤W(d(q, `)).

We note that the fixed point of S is 20, because 20 ∈ S(20).

3. Consequences

It is noted that the Nadler fixed point theorem [30] is a particular case of Theorems 1
and 2 (let V(c) = c and W(c) = λc for all c > 0 and λ ∈ [0, 1)). The multivalued version of
the Wordowski Theorem can be derived by defining V(c) = c for all c > 0 in Theorem 1. If
we define W(c) = V(c)− t (t > 0) in Theorems 1 and 2, then we have an improvement of
the results presented in [8,12,27,31] as follows:

Corollary 1. Let (U ,⊥, d) be a ⊥RCOMS. Suppose that S : U → Pcb(U ) is ⊥-preserving and
there exists a ⊥-admissible function ν and t > 0 such that

H(Sx,Sy) > 0 implies t + V(ν(x, y)H(Sx,Sy)) ≤ V(d(x, y))) for all x, y ∈ U .
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If there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0, c0 ∈ U and V : (0, ∞)→ R is nondecreas-
ing, then S admits a fixed point in U .

Defining W(c) = V(c) − τ(c) for all c ∈ (0, ∞) in Theorems 1 and 2, we have the
following improvement of the result presented in [10].

Corollary 2. Let (U ,⊥, d) be a ⊥RCOMS. Suppose that S : U → Pcb(U ) is ⊥-preserving and
there exists a ⊥-admissible function ν such that

H(Sx,Sy) > 0 implies τ(d(x, y)) + V(ν(x, y)H(Sx,Sy)) ≤ V(d(x, y))) for all x, y ∈ U ,

lim inf
c→t+

τ(c) > 0, ∀ t ≥ 0.

If there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0, c0 ∈ U and V : (0, ∞)→ R is nondecreas-
ing, then S admits a fixed point in U .

Defining W(c) = g(V(c)) for all c ∈ (0, ∞) in Theorem 1, we have the following
improvement of Moradi’s theorem [21].

Corollary 3. Let (U ,⊥, d) be a ⊥RCOMS. Let B ⊂ R and g : B → [0, ∞) is an upper semi-
continuous function satisfying g(z) < z for all z ∈ B. Suppose that S : U → Pcb(U ) is
⊥-preserving and there exists a ⊥-admissible function ν such that

H(Sx,Sy) > 0 implies V(ν(x, y)H(Sx,Sy)) ≤ g(V(d(x, y))) for all x, y ∈ U .

If there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0, c0 ∈ U and V : (0, ∞)→ B is nondecreasing,
then S admits a fixed point in U .

Defining g(z) = zω (ω ∈ (0, 1)) in Corollary 3, we have the following conclusion.

Corollary 4. Let (U ,⊥, d) be a ⊥RCOMS. Suppose that S : U → Pcb(U ) is ⊥-preserving and
there exists a ⊥-admissible function ν such that

H(Sx,Sy) > 0 implies V(ν(x, y)H(Sx,Sy)) ≤ (V(d(x, y)))ω for all x, y ∈ U

and V : (0, ∞)→ (0, 1) is nondecreasing. If there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0,
c0 ∈ U , then S admits a fixed point in U .

Remark 4. Corollary 4 shows the improvements of fixed point results presented in [20,32].

If we define W(y) = λV(y) in Theorems 1 and 2, then we have the following improve-
ment of the special case of Skof’s fixed point theorem [26].

Corollary 5. Let (U ,⊥, d) be a ⊥RCOMS. Suppose that S : U → Pcb(U ) is ⊥-preserving and
there exists a ⊥-admissible function ν such that

H(Sx,Sy) > 0 implies V(ν(x, y)H(Sx,Sy)) ≤ λV(d(x, y)) for all x, y ∈ U ,

and V is a nondecreasing function that maps positive real numbers to positive real numbers and
λ ∈ (0, 1). If there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0, c0 ∈ U , then S has a unique
fixed point in U .

On the other hand, if V is a nondecreasing function that maps positive real numbers to
positive real numbers and χ : (0, ∞)→ (0, 1) meets the condition lim supz→ε+ χ(z) < 1 for
any ε > 0, and W(z) = χ(z)V(z) and V(z) = z for all z > 0 in Theorem 1, then we have an
improvement of a theorem in [25].
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Remark 5. (R1). The ⊥-admissibility of the mapping S can be dropped from all of the aforemen-
tioned results by replacing Pcb(U ) with K(U ) and the Lemma 2 is no more required.

(R2). The condition:

V(inf A) = inf V(A) for all A ⊆ (0, ∞) with inf A > 0,

can be used as an alternative of the ⊥-admissibility of S : U → Pcb(U ) in the above theorems.

The following theorem is a particular case of Theorem 1 and is useful for the upcom-
ing result.

Theorem 4. Let S be a ⊥-preserving self-mapping defined on ⊥RCOMS such that

t + V(ν(c, `)d(S(c),S(`))) ≤ V(E(c, `)) (26)

for all c, ` ∈ Λ with d(S(c),S(`)) > 0 and V : (0, ∞)→ R is nondecreasing and t > 0. If there
exists c1 = S(c0) such that c0⊥ c1 or c1⊥ c0; c0 ∈ U , then S admits a fixed point.

Proof. Setting W(y) = V(y)− t for all y > 0 in Theorem 1, we have the required result.

Remark 6. Define E(c, `) as any one of the following. Then, Theorem 4 is applicable.
(1) max{d(c, `), d(c,S(c)), d(`,S(`))}.
(2) max{d(c,S(c)), d(`,S(`))}.
(3) max

{
d(c, `), d(c,S(c))+d(`,S(`))

2 , d(`,S(c))+d(c,S(`))
2

}
.

(4) a1d(c, `) + a2(d(c,S(c)) + d(`,S(`))) + a3(d(`,S(c)) + d(c,S(`))), ∑3
i=1 ai < 1.

(5) a1d(c, `) + a2d(c,S(c)) + a3d(`,S(`)), ∑3
i=1 ai < 1. (6) d(c, `).

4. Application of Theorem 4 to FDE

Lacroix (1819) proposed and investigated several fractional differential properties. A
number of new Caputo-Fabrizio derivative (CFD) models have recently been discovered
and studied by authors in [33–35]. In this section, we will look at one of these models. The
following notations are required.

Let X =: C[0, 1] = { f |ν : [0, 1]→ (−∞, ∞) and f is continuous}. The function d :
X ×X → [0, ∞), defined by

d( f , g) = ‖ f − g‖∞ = max
x∈[0,1]

| f (x)− g(x)|, for all f , g ∈ C[0, 1],

is a metric on X and (X , d) is a complete metric space. Define an orthogonal relation ⊥ on
X by

c⊥ υ iff cυ ≥ 0, for all c, υ ∈ X .

Then, (X ,⊥, d) is a complete OMS. Let ν : X ×X → (1, ∞) be defined by

ν(r, t) = e‖r+t‖∞ for all r, t ∈ X with r⊥ t.

Then, ν is a strictly ⊥-admissible mapping. Let K1 : [0, 1] × (−∞, ∞) → (−∞, ∞) be
any mapping. We will apply Theorem 4 to show the existence of the solution to the
following FDE:

CFDg(x) = K1(x, g(x)); g ∈ X (27)

g(0) = 0, g
′
(1) = g

′
(0).

Here, CFD
0 denotes the Caputo-Fabrizio derivative (CFD) of order  defined by

CFD
0g(x) =

1
Γ(ζ − )

∫ x

0
(x− θ)ζ−−1g(θ)) dθ,
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where
ζ − 1 <  < ζ and ζ = [] + 1.

The integral operator is defined by

I g(x) =
1

Γ()

∫ x

0
(x− θ)−1g(θ) dθ, with  > 0.

One of the transformations of (27) is as follow:

g(x) =
1

Γ()

∫ x

0
(x− θ)−1K1(θ, g(θ)) dθ +

2x
Γ()

∫ 1

0

∫ θ

0
(θ − u)−1K1(u, g(u)) dudθ.

Let

(I) ∃ α > 0 such that

|K1(θ, g(θ))− K1(θ, `(θ))| ≤ e−αΓ( + 1)
4M

|g(θ)− `(θ)|(M = min{d(g, `)| g, ` ∈ X}),

(II) for an arbitrary g0 ∈ X , we have

g0(x) ≤ 1
Γ()

∫ x

0
(x− θ)−1K1(θ, g0(θ)) dθ +

2x
Γ()

∫ 1

0

∫ θ

0
(θ − u)−1K1(u, g0(u)) dudθ.

Theorem 5. If the conditions (I)–(II) stated above are satisfied, then the Equation (27) admits a
solution in X .

Proof. Define the operator S : X → X , in line with the above information, by

S(g)(x) =
1

Γ()

∫ x

0
(x− θ)−1K1(θ, g(θ)) dθ +

2x
Γ()

∫ 1

0

∫ θ

0
(θ − u)−1K1(u, g(u)) dudθ.

We note that whenever g(x)⊥ g(y) or g(y)⊥ g(x), S(g)(x)⊥S(g)(y). By (II), there is an
arbitrary function g0 ∈ X such that gn = Sn(g0)) with gn⊥ gn+1 or gn+1⊥ gn (∀n ≥ 0).
We establish (26) of Theorem 4 in the next lines.

|S(g)(x)− S(`)(x)| =

∣∣∣∣∣∣∣∣∣∣∣

1
Γ()

∫ x
0 (x− θ)−1K1(θ, g(θ)) dθ

− 1
Γ()

∫ x
0 (x− θ)−1K1(θ, `(θ)) dθ

+ 2x
Γ()

∫ 1
0

∫ θ
0 (θ − u)−1K1(u, g(u)) dudθ

− 2x
Γ()

∫ 1
0

∫ θ
0 (θ − u)−1K1(u, `(u)) dudθ

∣∣∣∣∣∣∣∣∣∣∣
implies
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|S(g)(x)− S(`)(x)|

≤
∣∣∣∣∫ x

0

(
1

Γ()
(x− θ)−1K1(θ, g(θ))− 1

Γ()
(x− θ)−1K1(θ, `(θ))

)
dθ

∣∣∣∣
+

∣∣∣∣∫ 1

0

∫ θ

0

(
2

Γ()
(θ − u)−1K1(θ, g(θ))− 2

Γ()
(θ − u)−1K1(u, `(u))

)
dudθ

∣∣∣∣
≤ 1

Γ()

e−αΓ( + 1)
4M

·
∫ x

0
(x− θ)−1(g(θ)− `(θ)) dθ

+
2

Γ()

e−αΓ( + 1)
4M

·
∫ 1

0

∫ θ

0
(θ − u)−1(`(u)− g(u)) dudθ

≤ 1
Γ()

e−αΓ( + 1)
4M

· d(g, `) ·
∫ x

0
(x− θ)−1 dθ

+
2

Γ()

e−αΓ() · Γ( + 1)
4MΓ(s) · Γ( + 1)

· d(g, `) ·
∫ 1

0

∫ θ

0
(θ − u)−1 dudθ

≤
(

e−αΓ() · Γ( + 1)
4MΓ() · Γ( + 1)

)
· d(g, `) + 2e−αB( + 1, 1)

Γ() · Γ( + 1)
4MΓ() · Γ( + 1)

· d(g, `)

≤ e−α

4M
d(g, `) +

e−α

2M
d(g, `) <

e−α

M
d(g, `),

The simplified form is given by

Md(S(g),S(`)) ≤ d(g, `)d(S(g),S(`)) ≤ e−αd(g, `). (28)

Define the mapping V(g(x)) = ln(g(x)) for all g, ` ∈ X . Then, the inequality (28) can be
re-written as

α + V(d(g, `)d(S(g),S(`))) ≤ V(d(g, `)).

By Theorem 4, (27) admits a solution in.

5. Conclusions

The multivalued contractions introduced in this paper encapsulate so many contrac-
tions, including Nadler, F, Boyd-Wong and Geraghty contractions. The results stated in
this paper generalize and improve a number of results on the existence of fixed-points of
the abovementioned contractions. The orthogonal relation is the useful generalization of
binary relation. Fixed point methodology is used to investigate the presence of a solution to
a fractional differential equation. Based on the recently developed concept of orthogonality
in the metric spaces, we introduce orthogonal multivalued contractions in this study. For
these contractions, we derive several fixed point theorems. We demonstrate how these
fixed point theorems help to generalize several newly released findings. In addition, we
provide a theorem that proves the existence of the solution to a fractional differential
equation (FDE).

6. Future Work

The interested readers are suggested to try these results in vector-valued metric spaces
or generalized metric spaces.
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