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1. Introduction, Preliminaries and Definitions

Assume that H(Λ) is the class of functions analytic in Λ = {χ : χ ∈ C and |χ| < 1}
and H[c, j] is the subclass of H(Λ) consisting of functions of the form

H[c, j] =
{
F : F ∈ H(Λ) and F (χ) = c + ajχ

j + aj+1χj+1 + · · · , (χ ∈ Λ ).
}

(1)

and H[1, 1]=H. For Ω ⊂ C, we denote by H(Ω) the class of meromorphic function in Ω.
For t ∈ N, denoted by Σt the class of meromorphic function given by

Σt :=

{
F : F ∈ H(Λ) and F (χ) = 1

χ
+

∞

∑
j=t+1

ajχ
j (χ ∈ Λ∗ = Λ \{0}; t ∈ N).

}
(2)

where Λ∗ is the punctured unit disc defined by

Λ∗ := {χ : χ ∈ C and 0 < |χ| < 1}.

In particular, we write Σ := Σ1 has the following form

F (χ) = 1
χ
+

∞

∑
j=2

ajχ
j, (3)

which are analytic and univalent in the punctured unit disc Λ∗

The functions F ∈ Σ given by (3) and G ∈ Σ given by

G(χ) = 1
χ
+

∞

∑
j=2

bjχ
j, (4)
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The Hadamard or convolution product of F and G is defined as follows

(F ∗ G)(χ) :=
1
χ
+

∞

∑
j=2

ajbjχ
j. (5)

Let S∗Σ and CΣ be the subclasses of Σ, which are meromorphic starlike and meromor-
phic convex in Λ∗, respectively, and defined by

S∗Σ :=
{
F : F ∈ Σ and −Re

(
χF ′(χ)
F (χ)

)
> 0 (χ ∈ Λ∗)

}
,

and

CΣ :=
{
F : F ∈ ± and −Re

(
1 +

χF ′′(χ)
F ′(χ)

)
> 0 (χ ∈ Λ∗)

}
.

Definition 1 ([1,2]). Let F1 and F2 be in H(Λ). The function F1 is subordinate to F2, or F2
is superordinate to F1, if there exists a function v analytic in Λ with v(0) = 0 and |v(χ)| < 1
(χ ∈ Λ), such that F1(χ) = F2(v(χ)). Also, we write F1(χ) ≺ F2(χ). If F2 is univalent, then
F1 ≺ F2, if and only if F1(0) = F2(0) and F1(Λ) ⊂ F2(Λ).

We introduce definitions and propositions for fuzzy differential subordination:

Definition 2 ([3]). Let Z be a nonempty set, then Υ : Z → [0, 1] is fuzzy subset and a pair
(Y , ΥY ), such that ΥY : Z → [0, 1] and

Y =
{

x ∈ Z : 0 < ΥK(x) ≤ 1
}
= sup(K, ΥK) (6)

is fuzzy set. A function ΥY is a function of the fuzzy set (Y , ΥY ).

Definition 3 ([4]). Assuming that Υ : C→ R+ is a function such that

ΥC(χ) = |Υ(χ)| (χ ∈ C).

Denote by

ΥC(C) = {χ : χ ∈ C and 0 < |Υ(χ)| ≤ 1} := Supp (C, ΥC(χ)).

Also, we call the following subset:

ΥC(C) = {χ : χ ∈ C and 0 < |Υ(χ)| ≤ 1} := ΛΥ(0, 1),

the fuzzy unit disk.

Proposition 1 ([5]). (i) If (Y , ΥY ) = (Λ, ΥΛ), then we have Y = Λ, where Y = sup(Y , ΥY )
and Λ = sup(Λ, ΥΛ).

(ii) If (Y , ΥY ) ⊆ (Λ, ΥΛ), then we have Y ⊆ Λ, where Y = sup(Y , ΥY ) and Λ =
sup(Λ, ΥΛ).

Let F ,G ∈ H(Λ). We denote

F (Λ) =
{
F (χ) : 0 <

∣∣∣ΥF (Λ)F (χ)
∣∣∣ ≤ 1, χ ∈ Λ

}
= sup

(
F (Λ), ΥF (Λ)

)
(7)

and
G(Λ) =

{
G(χ) : 0 <

∣∣∣ΥG(Λ)G(χ)
∣∣∣ ≤ 1, χ ∈ Λ

}
= sup

(
G(Λ), ΥG(Λ)

)
. (8)
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Definition 4 ([5]). Let χ0 ∈ Λ and F ,G ∈ H(Λ). The function F is fuzzy subordinate to G,
written as F ≺Υ G or F (χ) ≺Υ G(χ), when the followig conditions are satisfied:

(i) F (χ0) = G(χ0)

(ii)
∣∣∣ΥF (Λ)F (χ)

∣∣∣ ≤ ∣∣∣ΥG(Λ)G(χ)
∣∣∣, χ ∈ Λ.

Proposition 2 ([5]). Assuming that χ0 ∈ Λ and F ,G ∈ H(Λ). If F (χ) ≺Υ G(χ), χ ∈ Λ, then

(i) F (χ0) = G(χ0)

(ii) F (Λ) ⊆ G(Λ) and
∣∣∣ΥF (Λ)F (χ)

∣∣∣ ≤ ∣∣∣ΥG(Λ)G(χ)
∣∣∣, χ ∈ Λ,

where F (Λ) and G(Λ) are defined by (7) and (8), respectively.

Definition 5 ([6]). For Φ : C3 ×Λ→ C and H is an analytic function such that Φ(c, 0, 0, 0) =
H(0) = c. Assuming that p is analytic in ∗ with p(0) = c and satisfies the second order fuzzy
differential subordination∣∣∣ΥΨ(C3×Λ)Ψ

((
ϕ(χ), χϕ′(χ), χ2 ϕ′′(χ); χ

))∣∣∣ ≤ ∣∣∣ΥH(Λ)H(χ)
∣∣∣, (9)

i.e.,
Ψ
((

ϕ(χ), χϕ′(χ), χ2 ϕ′′(χ); χ
))
≺Υ H(χ).

then ϕ is a fuzzy solution of the fuzzy differential subordination.
A function q is a fuzzy dominant for the fuzzy differential subordination if∣∣∣Υϕ(Λ)ϕ(χ)

∣∣∣ ≤ ∣∣∣Υq(Λ)q(χ)
∣∣∣, i.e., ϕ(χ) ≺Υ q(χ), ζ ∈ Λ.

for all ϕ satisfying (9). A fuzzy dominant q̃ satisfies that∣∣∣Υq̃(Λ)q̃(χ)
∣∣∣ ≤ ∣∣∣Υq(Λ)q(χ)

∣∣∣, i.e., q̃(χ) ≺Υ q(χ), χ ∈ Λ.

for all fuzzy dominant q of (9) is the fuzzy best dominant of (9).

If F ,G ∈ Σ has the form (3) and (4), we define the integral operator N α
m : Σ→ Σ, with

m > 0, α ≥ 0, by
N 0

m(F ∗ G)(χ) := (F ∗ G)(χ),

and

N α
m(F ∗ G)(χ) :=

mα

Γ(α)χm+1

χ∫
0

tm
(

log
χ

t

)α−1
(F ∗ G)(t)dt, (10)

where all the powers are at the principal value.
It can be easily verified that

N α
m(F ∗ G)(χ) =

1
χ
+

∞

∑
j=2

(
m

m + j + 1

)α

ajbjχ
j, χ ∈ Λ∗. (11)

The extended operator J α,µ
m : Σ→ Σ is defined by the following convolution formula

J α,µ
m F (χ) ∗ N α

m(F ∗ G)(χ) =
1

χ(1− χ)µ+1 , χ ∈ Λ∗,
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where the power is at the principal value, and we have

J α,µ
m F (χ) =

1
χ
+

∞

∑
j=2

(
µ + j

j

)(
m + j + 1

m

)α

ajbjχ
j, χ ∈ Λ∗, (12)

for m > 0, α ≥ 0, and µ ≥ 0. From (12), it is easy to verify that

χ
(
J α,µ

m F (χ)
)′

= mJ α+1,µ
m F (χ)− (m + 1)J α,µ

m F (χ), χ ∈ Λ∗. (13)

To investigate main results, we need the following Lemmas:

Lemma 1 ([1]). Assume that E ∈ Σ and

K(χ) = 1
χ

∫ χ

0
E(t)dt (χ ∈ Λ∗).

If

−Re

(
1 +

χE ′(χ)
E ′(χ)

)
> −1

2
(χ ∈ Λ∗),

then K ∈ C.

Lemma 2 ([7]). Consider that the convex function E satisfies E(0) = c, let λ ∈ C∗ such that
Re(λ) ≥ 0. If P ∈ H[c, j] with P(0) = c and Ω :

(
C2 ×Λ

)
→ C, Ω(P(χ) + χP′(χ)) =

P(χ) + 1
λ χP′(χ) is holomorphic in Λ; then,∣∣∣∣ΥΩ(C2×Λ)

(
P(χ) + 1

λ
χP′(χ)

)∣∣∣∣ ≤ ∣∣∣ΥE(Λ)E(χ)
∣∣∣ =⇒ P(χ) + 1

λ
χP′(χ) ≺Υ E(χ) (χ ∈ Λ),

implies
ΥP(Λ)P(χ) ≤ Υq(Λ)q(χ) ≤ ΥE(Λ)E(χ).

i.e.,
P(χ) ≺Υ q(χ),

where
q(χ) =

λ

nχλ/n

∫ χ

0
t

λ
n−1E(t)dt,

is convex and best dominant.

Lemma 3 ([7]). Consider q is convex function in Λ, let E(χ) = q(χ) + nϑχq′(χ), ϑ > 0 and
j ∈ N. If P ∈ H[q(0), j] and Ω :

(
C2 ×Λ

)
→ C, Ω(P(χ) + χP′(χ)) = P(χ) + ϑχP′(χ) in Λ,

then ∣∣∣ΥP(Λ)

((
P(χ) + χP′(χ)

))∣∣∣ ≤ ∣∣∣ΥE(Λ)E(χ)
∣∣∣ =⇒ P(χ) + ϑχP′(χ) ≺Υ q(χ),

then ∣∣∣ΥP(Λ)P(χ)
∣∣∣ ≤ ∣∣∣Υq(Λ)q(χ)

∣∣∣, χ ∈ Λ

implies that
P(χ) ≺Υ q(χ).

and q is the best fuzzy dominant.

Recently, El-Deeb et al. [8], Srivastava and El-Deeb [9], El-Deeb and Oros [10],
Lupaş [4,7,11–13], Oros [5,6,14–17], El-Deeb and Lupas [18] and Wanas [19–21] obtained
fuzzy differential subordination results.



Axioms 2023, 12, 47 5 of 10

In Section 2 below, we obtain several fuzzy differential subordinations for meromor-
phic functions that are associated with the operator J α,µ

m by using the method of fuzzy
differential subordination.

2. Main Results

Theorem 1. Let the convex function φ in Λ∗, such that φ(0) = 1.

E=φ(χ) + χφ′(χ) χ ∈ Λ∗

For F ∈ ∑ and satisfies the following fuzzy differetial subordination:∣∣∣∣∣ΥΩ(C2×Λ∗)

[
mJ α+1,µ

m F (χ)− (m + 1)J α,µ
m F (χ) + χ

(
χ
(
J α,µ

m F (χ)
)′)′]∣∣∣∣∣ ≤ ∣∣∣ΥE(Λ∗)E(χ)∣∣∣, (14)

implies [
mJ α+1,µ

m F (χ)− (m + 1)J α,µ
m F (χ) + χ

(
χ
(
J α,µ

m F (χ)
)′)′]

≺Υ E(χ)

then ∣∣∣∣Υχ(J α,µ
m F (χ))

′

(
χ
(
J α,µ

m F (χ)
)′)∣∣∣∣ ≤ ∣∣∣ΥE(Λ∗)E(χ)∣∣∣

equivalently with

χ
(
J α,µ

m F (χ)
)′
≺Υ φ(χ).

Proof. Let
P(χ) = χ

(
J α,µ

m F (χ)
)′

. (15)

From (12) and (15), we have

P(χ) + χP′(χ) = m

(
1
χ +

∞

∑
j=2

(µ+j
k )
(

m+j+1
m

)α+1
ajbjχ

j

)

−(m + 1)

(
1
χ +

∞

∑
j=2

(µ+j
k )
(

m+j+1
m

)α
ajbjχ

j

)

+

(
1
χ
+

∞

∑
j=2

j2(µ+j
k )
(

m+j+1
m

)α
ajbjχ

j

)
(16)

= mJ α+1,µ
m F (χ)− (m + 1)J α,µ

m F (χ) + χ

(
χ
(
J α,µ

m F (χ)
)′)′

.

From (14) and (16), we obtain∣∣∣∣Υχ(J α,µ
m F (χ))

′

(
χ
(
J α,µ

m F (χ)
)′)∣∣∣∣ ≤ ∣∣∣ΥE(Λ∗)E(χ)∣∣∣,

which implies that∣∣∣ΥΩ(C2×Λ∗)
(
P(χ) + χP′(χ)

)∣∣∣ ≤ ∣∣∣ΥE(Λ∗)E(χ)∣∣∣ ≤ ∣∣∣ΥE(Λ∗)(φ(χ) + χφ′(χ)
)∣∣∣.

Thus, by applying Lemma 2 with λ = 1, we obtain∣∣∣ΥP(Λ∗)P(χ)
∣∣∣ ≤ ∣∣∣Υφ(∗)φ(χ)

∣∣∣ =⇒ ∣∣∣∣Υχ(J α,µ
m F (χ))

′

(
χ
(
J α,µ

m F (χ)
)′)∣∣∣∣ ≤ ∣∣∣Υφ(Λ∗)φ(χ)

∣∣∣
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i.e.,

χ
(
J α,µ

m F (χ)
)′
≺Υ φ(χ).

The proof of the theorem is completed.

Theorem 2. Let φ be the convex function in Λ∗, such that φ(0) = 1, and

E=φ(χ) + χφ′(χ) χ ∈ Λ∗

Let F ∈ ∑ and satisfies the following fuzzy differetial subordination:∣∣∣∣Υ(χJ α,µ
m F (χ))

′

(
χJ α,µ

m F (χ)
)′∣∣∣∣ ≤ ∣∣∣ΥE(Λ∗)E(χ)∣∣∣ =⇒ (

χJ α,µ
m F (χ)

)′
≺Υ E(χ) (17)

then ∣∣∣ΥJ α,µ
m F (χ)

(
J α,µ

m F (χ)
)∣∣∣ ≤ ∣∣∣Υφ(Λ∗)φ(χ)

∣∣∣ =⇒ J α,µ
m F (χ) ≺Υ φ(χ).

Proof. Assume that
P(χ) = J α,µ

m F (χ) (18)

From (12) and (18), we have

P(χ) + χP′(χ) =

(
1
χ +

∞

∑
j=2

(µ+j
k )
(

m+j+1
m

)α
ajbjχ

j

)
+

(
− 1

χ +
∞

∑
j=2

j(µ+j
k )
(

m+j+1
m

)α
ajbjχ

j

)

=
∞

∑
j=2

(j + 1)
(

µ + j
k

)(
m + j + 1

m

)α

ajbjχ
j. (19)

We obtain
P(χ) + χP′(χ) =

(
χJ α,µ

m F (χ)
)′

.

We obtain ∣∣∣∣Υ(χJ α,µ
m F (χ))

′

((
χJ α,µ

m F (χ)
)′)∣∣∣∣ ≤ ∣∣∣ΥE(Λ∗)E(χ)∣∣∣,

which implies that∣∣∣ΥΨ(C2×Λ∗)
(
P(χ) + χP′(χ)

)∣∣∣ ≤ ∣∣∣ΥE(Λ∗)E(χ)∣∣∣ ≤ ∣∣∣Υφ(Λ∗)
(
φ(χ) + χφ′(χ)

)∣∣∣.
Applying Lemma 3, we obtain∣∣∣ΥP(Λ∗)P(χ)

∣∣∣ ≤ ∣∣∣Υφ(Λ∗)φ(χ)
∣∣∣ =⇒ ∣∣∣ΥJ α,µ

m F (χ)

(
J α,µ

m F (χ)
)∣∣∣ ≤ ∣∣∣Υφ(Λ∗)φ(χ)

∣∣∣,
which implies that

J α,µ
m F (χ) ≺Υ φ(χ).

The proof of Theorem 2 is completed.

Theorem 3. For E ∈ H(Λ∗) with E(0) = 1, where

−Re

(
1 +

χE ′(χ)
E(χ)

)
> −1

2
(χ ∈ Λ∗).

If F ∈ ∑ and the following fuzzy differential subordination holds true:∣∣∣∣Υ(χJ α,µ
m F (χ))

′

(
χJ α,µ

m F (χ)
)′∣∣∣∣ ≤ ∣∣∣ΥE(Λ∗)E(χ)∣∣∣ =⇒ (

J α,µ
m F (χ)

)′
≺F E(χ) (20)
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then ∣∣∣ΥJ α,µ
m F (χ)

(
J α,µ

m F (χ)
)∣∣∣ ≤ ∣∣∣Υφ(Λ∗)φ(χ)

∣∣∣ =⇒ J α,µ
m F (χ) ≺F φ(χ).

where the function φ(χ) defined as follows

φ(χ) =
1
χ

∫ χ

0
E(t)dt

is convex and is the best fuzzy dominant.

Proof. Let
P(χ) = J α,µ

m F (χ). (21)

It is clear that P(χ) ∈ H[1, 1]. Suppose that E ∈ H(Λ∗) with E(0) = 1, such that

−Re

(
1 +

χE ′(χ)
E(χ)

)
> −1

2
(χ ∈ Λ∗).

From Lemma 1, we have

φ(χ) =
1
χ

∫ χ

0
E(t)dt,

is convex and satisfies the fuzzy differetial subordination (20). Since

E(χ) = φ(χ) + χφ′(χ) (χ ∈ Λ∗).

We have

P(χ) + χP′(χ) =
∞

∑
j=2

(j + 1)
(

µ + j
j

)(
m + j + 1

m

)α

ajbjχ
j

=
(

χJ α,µ
m F (χ)

)′
. (22)

From (22), the fuzzy differential subordination (20) is∣∣∣ΥP(Λ)

(
P(χ) + χP′(χ)

)∣∣∣ ≤ ∣∣∣ΥE(Λ)E(χ)
∣∣∣.

By applying Lemma 3 with v = 1, we obtain∣∣∣ΥP(Λ∗)P(χ)
∣∣∣ ≤ ∣∣∣Υφ(Λ∗)φ(χ)

∣∣∣.
Which complete the proof.

Setting

E(χ) = 1 + (2ρ− 1)χ
1 + χ

(χ ∈ Λ∗)

in Theorem 3, we obtain the following corollary.

Corollary 1. Assume that

E(χ) = 1 + (2ρ− 1)χ
1 + χ

(χ ∈ Λ∗)
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is convex function in Λ∗ such that E(0) = 1 and 0 ≤ ρ < 1. The function F ∈ ∑ satisfies the
following fuzzy differential subordination:∣∣∣∣Υ(χJ α,µ

m F (χ))
′

(
χJ α,µ

m F (χ)
)′∣∣∣∣ ≤

∣∣∣ΥE(Λ∗)E(χ)∣∣∣
=⇒

(
χJ α,µ

m F (χ)
)′
≺Υ E(χ), (23)

then the function φ(χ) is

φ(χ) = 2ρ− 1 +
2(1− ρ)

χ
log(1 + χ),

is convex and is the fuzzy best dominant.

Theorem 4. Let φ be convex function in Λ∗ and φ(0) = 1,

E(χ) = φ(χ) + χφ′(χ).

Let F ∈ ∑, and
(

χJ α−1,µ
m F (χ)
J α,µ

m F (χ)

)′
be in Λ∗. If∣∣∣∣∣∣∣Υ( χJ α−1,µ

m F (χ)
J α,µ

m F (χ)

)′
(

χJ α−1,µ
m F (χ)
J α,µ

m F (χ)

)′∣∣∣∣∣∣∣ ≤
∣∣∣ΥE(Λ∗)E(ζ)∣∣∣ =⇒

(
χJ α−1,µ

m F (χ)
J α,µ

m F (χ)

)′
≺Υ E(χ), (24)

then ∣∣∣∣∣∣∣Υ( J α−1,µ
m F (χ)
J α,µ

m F (χ)

)(J α−1,µ
m F (χ)
J α,µ

m F (χ)

)∣∣∣∣∣∣∣ ≤
∣∣∣Υφ(Λ∗)φ(χ)

∣∣∣,
i.e.,

J α−1,µ
m F (χ)
J α,µ

m F (χ)
≺Υ φ(χ).

Proof. Assuming that

P(χ) = J
α−1,µ

m F (χ)
J α,µ

m F (χ)
∈ H[1, 1]. (25)

Differentiating both sides of (25) with respect to χ, we obtain

P′(χ) =

(
J α−1,µ

m F (χ)
)′

J α,µ
m F (χ)

− P(χ)

(
J α,µ

m F (χ)
)′

J α,µ
m F (χ)

.

Then,

P(χ) + χP′(χ) =
J α,µ

m F (χ)
[

χ
(
J α−1,µ

m F (χ)
)′
+J α−1,µ

m F (χ)
]
−
(

χJ α−1,µ
m F (χ)

)
(J α,µ

m F (χ))
′

(J α,µ
m F (χ))

2

=

(
χJ α−1,µ

m F (χ)
J α,µ

m F (χ)

)′
. (26)
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Utilizing (26) in (24), we can obtain∣∣∣∣∣∣∣Υ( χJ α−1,µ
m F (χ)
J α,µ

m F (χ)

)′
(

χJ α−1,µ
m F (χ)
J α,µ

m F (χ)

)′∣∣∣∣∣∣∣ ≤
∣∣∣ΥE(Λ∗)E(χ)∣∣∣,

which implies that∣∣∣ΥP(Λ)

(
P(χ) + χP′(χ)

)∣∣∣ ≤ ∣∣∣ΥE(Λ∗)E(χ)∣∣∣ ≤ ∣∣∣Υφ(Λ∗)
(
φ(χ) + χφ′(χ)

)∣∣∣.
Thus, by applying Lemma 3 with ϑ = 1, we obtain∣∣∣∣∣∣∣Υ( J α−1,µ

m F (χ)
J α,µ

m F (χ)

)(J α−1,µ
m F (χ)
J α,µ

m F (χ)

)∣∣∣∣∣∣∣ ≤
∣∣∣Υφ(Λ∗)φ(χ)

∣∣∣,
i.e.,

J α−1,µ
m F (χ)
J α,µ

m F (χ)
≺Υ φ(χ).

The proof of the theorem is completed.

3. Conclusions

In our present investigation of the applications of fuzzy differential subordinations
in the geometric function theory of complex analysis, we successfully made use of the
integral operator J α,µ

m for meromorphic function. Another avenue for further research
on this subject is provided by the fact that, in the theory of differential subordinations
and differential superordinations, there are differential subordinations and differential
superordinations of the third and higher orders.
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