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Abstract: This paper establishes the existence of unique and multiple solutions to two nonlocal
equations with fractional operators. The main results are obtained using the variational method
and algebraic analysis. The conclusion is that there exists a constant A* > 0 such that the equations
have only three, two, and one solution, respectively, for A € (0,A*), A = A*, and A > A*. The main
conclusions fill the gap in the knowledge of this kind of fractional-order problem.
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1. Work Spaces and Preliminaries

Let Q be a bounded domain in RN (N > 1) with a smooth boundary. In this paper,
we will prove the existence of solutions for two nonlocal equations with the fractional
Laplacian (—A)® in the fractional Hilbert space Hj(()), where s € (0, 1) is the fractional
order. From the introduction in [1], we know that there are many studies that have made
useful efforts to define the fractional operator with a fractional order s € (0,1). Here, the
fractional Sobolev-type spaces are also called Aronszajn spaces [2], Gagliardo spaces [3], or
Slobodeckij spaces [4].

1.1. The First Definition of the Fractional Hilbert Space and Fractional Laplacian Operator

Now, let us introduce the first definition of the fractional Laplacian operator (—A)*

with the fixed scalar s € (0,1), which relates to the eigenvalue problem of —A in the general
Hilbert space H} (Q). As is well known, for the eigenvalue problem

—Au=Au, in Q,
u=20, on 09Q),

there exists a sequence {A}$> ; C R and a function sequence {@;}{>, C H}(Q), such that

—A(pk = Akqokr in Q,
o =0, on 0.

Moreover, it holds that ¢; > 0in () and

0<)\1<)\2§/\3§/\4§---SMSMHS-“,kﬁm)\kZ‘i‘OO-
—00

By the general normalization, the L?>-norm can be normalized as [|¢x||;2(q) = 1 for k > 1.
Let {ar}7> ; and {Bx};> ; be the sequences in R defined by [5] (Section 1),
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o [e0]
Hi(Q) := {u =Y apr € L2(Q); Y Mg < 400, 0<s < 1}.
k=1 k=1

Ifu:= Z appr and v = 2 B¢k belong to Hy(Q)), then Hj(Q) is a Hilbert space under a

abstract 1nner product

<u,v> . = < Z Xk Pk, Z ﬁk§0k> = Z )\iﬂékﬁk. (1)
Hj(©) k=1 k=1 HY(Q) k=1
Based on the fractional Hilbert space Hj(Q}), define (—A)° : Hj(Q)) — H,*°(Q) as
Y appr=u— (—A)u:= Y Ajaggy, )
k=1 k=1

which is called the fractional Laplacian operator. Therefore, in view of the fractional Hilbert
space Hj(Q)), the inner product can be stated as (1) and

(5} = (1008 = -8
- <(—A)Su,v>L2(Q) - <(—A)Sv,u>L2(Q) 3)

for any u,v € Hj(Q)). Correspondingly, the norm is

lull s ) = (/ﬂ (—A)Eude)z’ u € H3(Q). )

The space Hj(Q) is the so-called fractional Hilbert space and is a reflective Banach
space. Obviously, the fractional Hilbert space Hj(Q2) and the fractional Laplacian operator
are defined by spectral theory here, which are related to a mathematical eigenvalue problem.
For more details, see, for instance, [6,7].

1.2. The Second Definition of the Fractional Hilbert Space and Fractional Laplacian Operator
Fix the fractional exponent s € (0,1). For any p € [1,+00), the fractional Sobolev space

WP (Q) = {u eLP(Q); /Q N dedy < +oo}

is defined as an intermediary Banach space between LP(Q)) and Wl (Q).

1
p
e = ( [ o+ [ 0 avay ©)

is the natural norm of u € W*?(Q}), where

1
, |u(x) —u(y)[P g
[ulwsr() = (/Q N dedy

is the so-called Gagliardo semi-norm of u. For u € W5P(Q), it holds that |u|P~2u €
[WP(Q)]’. The dual action between v € WP (Q) and |u|P~2u € [W5P(Q)]’ is
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<|u|p 2u,v> :<|u|” 2u,v> P +
[WoP (Q)] x WP () P=1(QxQ)xLP (QAxQ)

+<|u(X) uly )IP‘Q[ (x) —u()] o(x) —o(y)
|x

yI S+s)(p-1) ’ |x_y|?f+5> L](QXQ)XLP(OXQ)

Let W, (Q) be the completion of the space C*(2) in WP (Q)) under the norm defined
by (5), then l[ullwsr(q) and [ulwsp(q) are the equivalent norms in W, (€2), which has an
equivalent dual

<|”|p_2“’v>[ws/r’<n>rstfﬂ<o>
_ < u(x) —u(y) [P 2[u(x) —u(y)] o(x) —oy)
|

y|(%+s)(p71) ' |x—y|%+s > LI(QXQ)XLP(QXQ)

between W, 7 (QQ) and [W, " (Q)] = W™ ST (Q2). The space W3?(Q) is a reflective Banach

1
space, denoted here by WS 2(Q) = H§ (), which is called the fractional Hilbert space.
Therefore, in an equivalent form, the norm is

1
|u(x) —u(y)? :
||”||H5(Q) = (/Q 0 dedy

and the inner product is

<u,v> = <u(x)?\t](y),v(x)z;(y)> , Vu,v e HY(Q).
M\ fx—y|2 T x—y2 " S 2ax0)
A fractional Laplacian with an exterior zero condition can be defined as

(=A)’u(x) = C(N,s)P.V. RNWdy

u(x) — u(y)

= C(N,s) lim e dy (6)

e0+ /]R\Bg |x —

_ 1 (x+y)+u(x—y)—2u(x) N N
= _EC(N’S)/n yNTE dy, y € RY, Vx € RY,

where P.V.is the Cauchy’s principal value and the constant

-1
c9) = ([, pelar) >0t @ i) e R

Let CQ = RN\ O, IT = R?V \ (CQ x £Q), and consider u, v € H§(Q2). Then,

<(—A)Su,v>L2(Q) C(N,s) P.V. /RN /RN |x;[|?;](f2>5 oW 4y
C(N,s) P.V. ﬂ |x_ |N<f2)s_ "W gydy

Now, define the equivalent norm as

1
u 2
|u||H8(Q)—< (N, ) pv// [u( 2 yIN“S dxdy) %
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and the equivalent inner product as

<u,v> . . =C(N,s)P.V. / / Yllox) _U(y)]dydx

H3(Q) |x— |N+ZS

- < 20 LZ OxQ) _/
= <(—A)5u,v>L2(Q) = <(—A)Sv,u>L2(Q).

Then, it is easy to see that the norms (4) and (7) are equivalent, and the inner products have

the same form as ,
<u,v>H = /Q(—A)Zu - (=A)2vdx,

for H = H}(Q) or H = H3(Q)).
The fractional Laplacian in (6) is defined by a Fourier transformation and inverse
Fourier transform, the details of which can be found, for instance, in [1] and ([8], Section 4).
Many researchers have explained the differences between the two definitions of the
fractional Hilbert space and the fractional Laplacian operator, for example, [5,6]. Indeed,
from ([5] Section 1) we know that

N\
N\ £

(=A)7vdx

Hy(Q) = {u =Y awgr € L3(Q); Y Ajag < +o0, 0 <5 < 1}.
k=1 k=1

Moreover, from ([9] Section 2) we know that
H3(Q) = {u € H'(RV); u(x) =0ae x € ]RN\Q}.
A clear result is that u(x) = 0 a.e. in RN\ Q) is not necessary for Hj(Q)), but u(x) = 0 a.e. in

RN\ Q) is necessary due to the non-local character of the operator for #§(Q)).
A general statement found in [1] shows that the embedding W*? (Q) — L1(Q}) is pre-

compact for g € [1, p¥) and continuous for q € [1, p¥], where p} = Nl\izp if N > spand p} =
oo if N < sp. That is to say, H{(Q)) — L7(Q) is pre-compact for g € [1,27) and continuous
for g € [1,2¢]. In the above-mentioned work, the authors still claim that this property
is fit for Hj(()). We refer readers to the statements in [5-13] for the fractional Hilbert
space and fractional Laplacian operator, and some useful applications using Caputo’s
fractional-order problems can be found in [14-19], which extend the possibilities of these
problems. Indeed, there exists much information on the properties of the Sobolev and
Hilbert Spaces with different fractional orders in the works by [8,11-13]. Moreover, as
mentioned above, some conclusions for the space H§(Q2) can be found in [5-7]. Yang and
Yu [5] considered a nonlinear elliptic equation in Hj()) with a singular domain using
the variational method and determined the existence of infinitely many solutions with
some necessary conditions. Servadei and Valdinoci [6] gave the difference between two
spectra of two fractional operators. Wang, Yang, and Zhou [7] studied a fractional-order
problem with Hardy’s term and Sobolev’s critical exponent and obtained infinitely many
solutions in {u,} C Hj(Q) by applying the perturbation method. Similarly, Fiscella and
Mishra [9] obtained two solutions in H{(()) by a Nehari manifold for a fractional Kirchhoff
Hardy problem with singular and critical Sobolev nonlinearities, where a,b > 0. Wang,
Wang, and Feckan [14] obtained the economic growth modeling of the Group of Seven
using a BP neural network and fractional-order gradient. In [15], Wang, Feckan, and
Wang applied the fractional-order gradient approach to forecast the economic growth
of the Group of Seven. Sathiyaraj, Wang, and Balasubramaniam [16] researched a class
of time-delayed fractional stochastic integro-differential systems, and controllability and
optimal control were obtained by applying the fixed point theorem. A forecasting model
was obtained in [17] by Liao, Wang, and Wang, where the main tool is the fractional-order
gray gradient. With the impulses, Yang, Feckan, and Wang [18] concluded the consensus of
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linear conformable fractional-order multi-agent systems, and Wang, Liu, and Fe¢kan [19]
made clear applications for the fractional-order control of equations by iterative learning.

2. Main Results and Background

Let the domain Q) be bounded in RN (N > 1) with a smooth boundary, the constants a
and b belong to R, and the parameters A > 0 and f(x) € L2(Q) with 1 fll12(q) > 0. In this
paper, we consider the existence of a solution in Hj () for the following problem:

(a+ b/ﬂ [(—A)3updy) (—A)fu = Af(x), in O, .
u=0, on dQ),
where (—A)?® is defined by (2). Moreover, we still consider the problem
(a+ b/ [(—8)2ufdx) (—Afu = Af(x), n O, o
0
u=0, in RN\ Q,

where (—A)® is defined by (6). Here, we aim to study the existence of solutions for Equa-
tions (8) and (9). The solution belongs to Hj(Q}) in Equation (8) and H{(Q2) in Equation (9).
So, we denote the work space by H = H{(Q)) in the considered equation, Equation (8), and
H = H(Q) in the considered equation, Equation (9), and denote the norm in H with || - ||
and the dual action between H and H’ with (-, -).

Definition 1. A function u € H is called a solution of Equation (8) or Equation (9) if
+b/ _A)3uf?d /—A%.—A%d:/\/ dx, Vg e H.
(a0 [ -8)3uPdx) [ (~a)iu-(~A)igdx=12 [ f(x)pdx, Vg
The main results can be stated as follows:

Theorem 1. Assume that |a| + [b| # 0and ||f||;2(q) = O, then, for any A > 0, Problems (8)
and (9) have at least one solution.

Theorem 2. Assume that ab > 0,a+ b # 0and ||fHL2(Q) > 0, then, for any A > 0, Problems (8)
and (9) only have one solution.

Theorem 3. Assume that ab < 0 and A||f||;2(qy) = O, then, Problems (8) and (9) have infinitely
many solutions.

Theorem 4. Assume that ab < 0 and ||f|[;2(q) > O, then, there exists A* > 0 such that
Problems (8) and (9) have only one, two, or three solutions, respectively, when A > A*, A = A*, or
A€ (0,A%).

Problem (8) is related to the following Kirchhoff model [20]:

o%u po E fLjoup? o%u
o5p (5 +ar ) |5s] @) 5 = Flexw), (19

where every symbol has its physical significance and f (¢, x, u) is an abstract function. In the

form of expression, Equation (10) contains a global integration - fOL % ‘de so it is also
called a nonlocal problem. In general, a steady state of Equation (10) can be rewritten as

- (11 + b/Q \Vu|2dx) Au = f(x,u), (11)
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where 4, b are constants and QO ¢ RN and f (x,u) are abstract functions, which, in this case,
is the so-called Kirchhoff-type equation. If ab > 0, it is a generalization of the D’ Alembert
equation. If ab < 0, it can be described as the interaction of forces between two atoms
and in this case, the minus Young’s modulus is clearly shown. For more details, see the
introduction in [21-23] for this problem and another negative modulus in [24,25]. Indeed,
there are many results that have been obtained by researchers in the past few years and
we refer readers to the summary in [23], where the context and research status of this
problem can be seen. Considering the Kirchhoff-type equation, there are many results for
Problem (11) (see, for instance, [26-37] for ab < 0 and [38—48] for a,b > 0). In addition,
other cases can be rewritten in the form mentioned above.

As far as we know, there is no article discussing all 2, b € R for Equations (8) and (9),
although there are many results that consider the fractional Kirchhoff-type equation. Here,
we refer readers to some recent papers, for instance, [49-55]. Motivated by the above-
mentioned papers, we consider the existence of a unique solution to Problems (8) and (9).
Theorems 1 to 4 are based on the variational method and algebraic analysis and those
results can be extended to the case of f € H5(Q)).

3. Proof of Main Results
3.1. Proof of Theorem 1

Proof. Consider the functional I : H — R U {co} defined by

1) = g/ﬁ\(—A)%u\zdaﬂ—g(/ﬂ|(—A)%u|2dx>2—)\/0f(x)udx.

Then, we can easily verify that for any ¢ € H, it holds that

%I(u—kt(p)‘tzo = (u+b/ﬂ|(—A)%u|2dx) /Q(—A)%w(—Aﬁ(pdx—/\/ﬂf(x)godx

D= <I’(u),(p>.

Which shows that I(u) is a Gateaux’s differentiable functional and its critical points are the
solutions to Problem (8) if H = H{j(Q2) and the solutions to Problem (9) if H = H}(Q2).

If A = 0, we can see that u = 0is a solution to Problem (8) if H = H{(Q2) and a solution
to Problem (9) if H = H{(Q)). So, next, we let A > 0.

If b = 0 # a, the functional I(u) is equivalent to the functional

Jw) = [ Iayupax =2 [ poouds = ul> =2 [ fxuds

A A
> ul? = | [ feoudx] = ul? = | 2|1z ]

V

> A
- _@”f”LZ(Q)‘

So, J(u) is a coercive lower-bound functional. Denote by c the infimum of J(u), then, there
is a minimizing sequence {u,}°’ ; C H such that

A? 2 . .
_meHLZ(Q) < nlgrolo](un) = ulglf-lj(u) = < +o0.
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Moreover, {un}z’:] is a bounded sequence and H is a reflexive Banach space [1]. Hence,
there exists a subsequence {uy, }° ; of {u,};_; and a function u, € H such that

lim/(—A)%(unk—u*)-(—A)%q)dx:O,VgoeH,
O

k—o0

lim / |y, —u |Pdx =0, Vp € [1,25), (12)

k—o00 JO)
lim uy, (x) = u(x), ae.x € Q,
k— 00

where the sign of uy, (x) is determined by the sign of 2 f(x). Indeed, the sign of 1y, (x) is
same as the sign of 2 f(x). Therefore, one has

1

2

1
lim‘/f (up — uy)dx <11m /|f|2dx 2 /|uk—u*| dx

k—o0

(13)

by the fact that 2; = A5 > 2if N > 2sand 2; = o0 > 2if N < 2s. By using the
Ekeland’s variational principle in ([56], Lemma 1.1), there exists a minimizing sequence
{uk].}fl"zl C {up, }$7_1, such that

) < inf J0) e and J(ug) < J(0) +edo,ug) Yo H (4)
ue
for any e > 0 and positive integral k;, where d(v, uk],) = ||v — uy|| is an equivalent metric in

H. For each kj and any ¢ € H with [|¢|| =1, weletv = Uk, + t(£¢) and find

J (uge; + t) — J ()

(J'(ug)), @) = lim t > —¢[tg]| > —,
J (uge; + H(=9)) — J (ug;)

> —el[t(=9)ll = —¢,

which shows that for every k;, —¢ < <]’(ukj), ¢) < eforany ¢ > 0 and any ¢ € H with
o]l = 1. This implies that ||]'(u) |1 < ¢. Hence, we have J'(uy,) — 0 as j — oo by the
arbitrariness of ¢ > 0. Therefore, we have

tim (7 ) — ) = Tim [ [ (~8)5m - ()% (= w)dv — 7 / £60) gy = 0.k

]—0 J—0

from the results of (12) and (13). Taking ¢ = u, we find that

lim/ I(—A)3 (1 — ) [Pdx = lim [ (—A)Suy -

k—o0 k—o0 JQ

~
—
|
>
~—
Nlw
—~
=
~
|
=
*
~—
Q.
=

+ Hm [ (=A)2uy - (—A)2 (uy — ug)dx
k—o0 JQO)
=0.

Therefore, we have J'(u,) = 0 and

<I'(u*),q)> = a<]’(u*),(p> = a/Q(—A)%u* - (—A)3 pdx —/\/Of(x)qodx =0,Vp € H,



Axioms 2023, 12, 45

8 of 15

which shows that u. is a solution to Problem (8) if H = H{(Q)) and u; is a solution to
Problem (9) if H = H(Q}).

If b # 0, without loss of generality, we can assume b > 0 in I(u). Otherwise, we can
consider the functional J(u) = —I(u). Letb > 0in I(u), then,

%/Q|(—A)%u|2dx+Z(/Q|(—A)%u|2dx)2—)\/0f(x)udx

a b
el 4 2l = Al 2 el

I(u)

v

It is easy to see that I(u) is a coercive lower-bound functional. Denote by ¢ the infimum of
I(u), then, there is a minimizing sequence {1}, C H such that

o< i Jlen) = g Ju) = e < oo

Similarly, we find that {u,}{_; is a bounded sequence in H and there exists a sub-
sequence {uy, }p> 4 of {u,};; and a function u, € H such that (12) and (13) hold. The
Ekeland’s variational principle implies that there exists a minimizing sequence {uk], }o, C
{un, }57_4, such that

I(u,) < inf I(u) +¢ and I(u) < I(v)+ed(o,u), Vo e H

ucH

As the proof as ]’(uk].) — 0, we have I’(uk].) — 0 as j — oo by the arbitrariness of € > 0. So,

lim <I’(ukj),ukj = u*>

j—o0

— lim [(a+b/0\(—A)%ukj|2dx)/Q(—A)%uk,.(—A)%(ukj—u*)dx

j—o0

k—o0

=0

— lim [(a+b/0|(—a)%uk|2dx)/Q(—A)%uk-(—A)%(uk—u*)dx

from the results of (12) and (13). We have

. AV 2 _
I};mm (a—i—b/0|( A2y dx) 0 (15)
or

S

lim [ (=A)3uy- (—A)

Jim | (up — uy)dx = 0. (16)

We claim that the case in (15) is an impossible event. For the case in (15), it can be

deduced that [[uy||> — — . This shows that [, f(x)uxdx — 0ask — coby (I’ (uy), ux) — 0.
That is to say,

_.g_zzé_zzz_/ _ @
c—lggrilo{zf()|( A)2uy dx+4</0|( A)2uy dx) A Qf(x)ukdx]— e
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This contradicts the results that

b s 2
— — 2 b —A)2yl? _
c= L}g}f_{l = mf / [(—A)3ul dx+4(/0|( A)2ul dx) )L/Qf(x)udx}

ueH

b . 2
. “ o E) v . ER)
<u121f1 2/Q|( A)2ul dx+4(/0|( A)2ul dx)}
{ 0, if a>0b>0;

2,
—q, if a<0<b.

For the case in (16), it is easy to verify uy — u, as k — oo. Therefore, we have
I'(u,) = 0and

<I’( = a+b/ [(— %u*\zdx) /Q(—A)%u*-(—A)%(pdx—)t/ﬂf(x)(pdx
_O,V(pEH.

This implies that u, is a solution to Problem (8) if H = H{(Q) and u, is a solution to
Problem (9) if H = H{(Q)).

By using the same method, it is clear that Problems (8) and (9) have at least one
solution when |a| + [b| # 0, [|f||;2(y) > 0and A > 0. The proof is completed. [

3.2. Proof of Theorem 2

Proof. From the results in Theorem 1, Problems (8) and (9) have at least one solution under
the assumptions in Theorem 2. Now, we just need the uniqueness of the solution. Let u, v
be two solutions to Problem (8) or Problem (9), with ab > 0 and || f||;2() > 0, then, for any
A > 0, we have

11—|—b/ 2u|2dx /Q(—A)%w(—A)%q)dx:)t/()f(x)(pdx, VoeH
and
a+b/ |(— Zv\zdx /Q(—A)%zw(—A)%fpdx:/\/ﬂf(x)godx, V¢ € H.

Let ¢ = u — v to find

a+b/| 8)2ufdx) /Q(—A)%u.(—A)%(u—v)dx
- a+b/\ 8)iofdx) /('2(—A)%v-(—A)%(u—v)dx.
That is to say,
/ (= %u—v)|2dx+b/ I(— zu|2dx/(')(—A)%u.(—A)%(u—v)dx

—b/ [(— 20|2dx/( A)iv- (=A)3 (u—o)dx

Therefore, it is easy to verify that u(x) = v(x) fora # 0 = b in the sense of H. If ab > 0
ora =0 # b, we have
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1 2 24\
<
<5 ([ 1= dx+/\ Aol dx)

- (/ [(—A 2u|2dx / |(— 2v|2dx
= /\ 2z;|2dx—/| 20|2dx

This means that u(x) = v(x) in the sense of H. The proof is completed. [

3.3. Proof of Theorem 3

Proof. Assume that ab < 0 and A|/f||;2(q) = 0, then, for any v € H with |o]|? = 1, itis
easy to verify that

u(x) = /=5 -o(x)

is the solution to Problem (8) if H = Hj(Q)) and u(x) is the solution to Problem (9) if
H = H{ (). Hence, Problems (8) and (9) have infinitely many solutions by the arbitrariness
ofv. O

3.4. Proof of Theorem 4
Proof. Let [|f|[;2() > 0. For the following problem

(=A)’u=f(x), in Q,
{ u=020, on 0Q), (17)
with (—A)® in (2) and the problem
(=A)Y’u = f(x), in Q,
{ u=0, in RN\ Q (18)

with (—A)® in (6), we know that Problems (17) and (18) have only one solution by the
results in Theorem 1. We denote by U the unique solution to Problem (17) or Problem (18).
Now, we consider the following algebraic problem

(a+b/0 V(1) 2dx) (~ ) (1) = Af ().

Then, tU is a solution to Problem (8) if H = Hj(Q)) and tU is a solution to Problem (9) if
H = H{(Q).
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Equivalently, we consider the existence of the zero point ¢ for the function g : R — R,
— 2 2 —
ts g(t) = (a+ bt /Q VUPdx)t— A

where A > 0 is a parameter. Obviously, g € C*(R), considering that the zero point t of g,
tU is the solution to Problem (8) or Problem (9).
If ab > 0 and a + b # 0, we can see that g(t) is strictly monotonically increasing and

g(—00) = —o0 < g(+00) = +o0, ifa,b >0
or strictly monotonically decreasing on R and
g(—00) = 400 > g(+00) = —oo, ifa,b < 0.

So, the function g(t) has only one zero point ¢;. That is to say, ;U is the unique solution to
Problem (8) if H = Hj(Q)) and t;U is the unique solution to Problem (9) if H = H{(Q}).

Next, we set the proof as two steps.

Step 1.We prove that for the conditions ab < 0 and ||| ;2(y) > O, there exists A, > 0,
such that Problems (8) and (9) have at least one, two, or three solutions, respectively, when
A> A, A =A% o0rA e (0,A).

If ab < 0, it holds that

2 :u+3bt2/ VU 2dx = a + 3682 || U2,
Q

For the case @ > 0 > b, we have g(—o0) = 00 > g(400) = —o0,

<0, if te(—oo,— 3bHUH2)
=0, it ==/

g(t)¢ >0, if te( \ TR\ 3T )
=0, if AT
<0, if te (H,—i—oo

This implies that g(t) achieves its local minimum at t;, = —, / 3h\|u\|2 and achieves its local
maximum at fg =, /m. Let t1, tp, t3 be the zero points of ¢(t), then, a general algebraic

analysis shows that

t1 < tp;ty, t3 non-existent if g(ty) < g(tg) <0,
h<tpr<th<tg<ts if g(tL)<O<g(i’R),
HH=tr=1th <tp<ft3 if g(tL):O<g(fR),
h <ty <th)=1Ig =13 if g(tL)<O=g(l'R),
t3 > tg; t1, tp non-existent if 0 < g(t) < g(tr)-
Since
—a —a —2a —a
() = = (a+oju 3b||u||2> 36U 3 \[3ojuE =t
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and

- — 2a —a
tr) = iUl —2 a _ | —a _
®) = (atoul 3bHLIH2) selulE = 3\ supE

there exists A* = % 5 such that the zero points t1, f5, t3 of g(t) satisfy

< — 3b||lj||2 t,, t3 non-existent if A€ (A*, +o0),
o< — <t 0 i A=A

—a
< -— <t < <tz if Ae(0,A%).
v uE << mup < A0

For the case 1 < 0 < b, we have g(—o0) = 400 > g(400) = —o0,

>0, if te

—
3
|
w
E|
Sl=
S
S~—
N

=0, if t=—, /-0

! i ™ m
gt <0, if te (- 3b|\5|\2' 3b\|5\|2)’
=0, if t=, /50,

>0, if te(y/5rtm +%).

So, g(t) achieves its local maximum at t; = —, / 3b|\u|\ s+ and achieves its local minimum at
tR =,/ WL{;HZ' Let t1, tp, t3 be the roots of g(t), then, a general algebraic analysis shows that

ty < tr;ty, t3 non-existent if g(ty) > g(tg) >0,
b <t <t =tg=ts if g(t) >0=g(tr),
H<tp <t <tgR<t3 if g(tr) > 0> g(tr),
=t =t <itg <t3 if g(tL):0>g(tR),
t3 > tg;t1,t» non-existent if 0 > g(tL) > g(fR).
Since
—2a —a
(tL) “h - /\/
¢ B[P

3
2a —a
= —/ —A

there exists A* = — 2“ A/ 3bHUH2 such that the zero points t1, t5, t3 of ¢(t) satisfy

t3 > 3b|_ll\|2' t1, t» non-existent if A€ (A*, +o0),
t = — =t < t3 if A=A%
3b| ||2 ||2
) < — <t < t3 if A€ (0,A%).
BT T )
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As a conclusion, we find that there exists A* = @ 3 ﬁ}” > > 0, such that Problems (8)

and (9) have at least one, two, or three solutions, respectively, when A > A*, A = A*, or
A € (0,A*), where all solutions can be expressed as constant multiples of U(x), U is the
unique solution to Problem (17) if H = Hj(Q2), and U is the unique solution to Problem (18)
if H="Hj(Q)).

Step 2. The numbers of solutions in Step 1 are unique and linearly dependent.

Let u, v be two different solutions to Problem (8) or Problem (9), then, (a + b||u||?) and
(a+ b||v||?) are non-zero constants and

(a -+ bl[ul|?) (~A)*u
(a+bllol?) (—2)*v

(=2)°[(a + bllu]|?)u]
(=8)*[(a +blvl*)]

} = Af(x),#0 in L2(Q).

Hence, one has
(a+bllull*)u = (a+b][o]*)o,

This shows that all solutions to Problems (8) and (9) are linearly dependent.

From the process in Step 1, we know that the linearly dependent solutions to Prob-
lems (8) and (9) can be expressed as constant multiples of U(x), where U is the unique
solution to Problem (17) if H = H{(Q)) and U is the unique solution to Problem (18) if
H = HB(Q) Therefore, all the solutions to Problem (8) or Problem (9) are t1U, t,U, t3U,
where t1, f5, t3 are all the zero points of function g(#). So, it is clear that Problems (8) and (9)
have only one, two, or three solutions, respectively, when A > A*, A = A*, or A € (0,A*)

under the assumptions ab < 0 and [|f{|;2(y) > 0. Furthermore, A* = %54 3bMH2’

U is the unique solution to Problem (17) if H = Hj(Q)) and U is the unique solution to
Problem (18) if H = H{(2). The proof is completed. [

where

4. Conclusions

In this paper, the Kirchhoff-type problem is considered with a negative modulus
and different fractional Laplacian operators in an unified framework. First, we state the
definitions of two fractional Laplacian operators and some properties of two fractional-
order Hilbert spaces. Second, we list the main results for the existence, uniqueness, and
multiplicity of the solutions for the considered problem. Moreover, we show the recent
research on this kind of problem. Finally, we provide proof of the main results using the
variational method and algebraic analysis. As a result, we obtain a constant A*, which
makes the problems have only one, two, or three solutions, respectively, when A > A%,
A =A%, 0r0 < A < A* In particular, we calculate the expression of the constant A*.
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