
Citation: Ekici, B. A Sound

Definitional Interpreter for a Simply

Typed Functional Language. Axioms

2023, 12, 43. https://doi.org/

10.3390/axioms12010043

Academic Editor: Mircea Merca

Received: 6 September 2022

Revised: 12 December 2022

Accepted: 26 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

A Sound Definitional Interpreter for a Simply Typed
Functional Language
Burak Ekici

Department of Computer Engineering, Muğla Sıtkı Koçman University, Muğla 48000, Turkey;
burakekici@mu.edu.tr

Abstract: In this paper, we develop, in the proof assistant Coq, a definitional interpreter and a
type-checker for a simply typed functional language, and formally prove that the mentioned type-
checker is sound with respect to the definitional interpreter via progress and preservation. To
represent binders, we embark on the choice of “concrete syntax” in which parameters are just names
(or strings).

Keywords: definitional interpreters; simply typed functional languages; formal soundness proofs;
the Coq proof assistant

MSC: 68N15; 03F03; 68V05; 68V15

1. Introduction

In the domain of programming language semantics, interpreters [1] constitute the
bases for the abstract specification of higher-order programming languages. This spec-
ification is simply handled by defining the semantics of an object language in terms of
the semantics of a target (or host) language. An interpreter is said to be definitional if it
is computational; that is, if it could be executed to test and validate the semantics of the
object language programs in the “trusted” target language with well-known semantics.
Functional programming languages that support algebraic data types (such as Haskell,
OCaml, Coq, etc.), especially those serving dependent types, are suitable targets to imple-
ment interpreters. We definitionally formalize small-step operational semantics of a simply
typed functional language, a variant of simply typed Lambda calculus (λ→) [2], alongside
a type-checker in the Coq proof assistant [3]. In such an approach, one needs to bridge
the interpreter and the type-checker together simply by proving that the type system is
sound, potentially embarking on the approach proposed by Wright and Felleisen [4]. In
more formal terms, one needs to make sure that the following properties hold.

(i) If an arbitrarily given term is well-typed, then it either reduces in a single step into
some other term or it is already a value. That is, well-typed terms are never stuck;

(ii) the type of a given term does not vary under reduction/evaluation.

The former property is called progress while the latter is known as preservation.
Putting all related technical machinery together and obtaining these proofs even for a not-
so-rich object language might very well be tedious and, thus, error-prone. This underpins
the main target of the paper, where we carefully investigate and prove the properties (i) and
(ii) for a simply typed functional language (extending λ→) both in a pen-and-paper setting
and in a Coq formalization. We detail and present technical machinery that constructs those
proofs in both contexts and relate one to the other. To the best of the author’s knowledge,
such a Coq development does not exist out there with a similar extent of technicality (as
well as the approach). Related formalization is not definitional and does not prove the
soundness via (i) and (ii).

Axioms 2023, 12, 43. https://doi.org/10.3390/axioms12010043 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12010043
https://doi.org/10.3390/axioms12010043
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-6602-7906
https://doi.org/10.3390/axioms12010043
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12010043?type=check_update&version=3

Axioms 2023, 12, 43 2 of 27

1.1. Related Work and Contributions

The approach employed by [5–8] benefits from intrinsically typed abstract syntax
definitions when it comes to encoding the object language terms into a dependently typed
target language. This way, the type checker of the target language is enabled to automati-
cally verify the safety type of the interpreter. The approach has been extended in [9] such
that it supports linearly typed languages as well.

Darais et al. [10,11] studied abstract definitional interpreters written in a monadic
style, which makes it possible to capture operations that interact with the outside world.
Therefore, languages with impure features (e.g., use of local/global state, mechanisms to
handle exceptions, etc.) could also be nicely interpreted. This approach has close relations
with that of [12–16] where definitional interpreters mimic state machines, especially non-
deterministic pushdown automata.

With all of these mentioned, the main contribution of this paper lies in the Coq
formalization of an interpreter for a simply typed language alongside its soundness proof
captured by progress and preservation properties. In these lines, novelties are a ’few
folded’, as mentioned below:

• The presented interpreter is implemented to be computational; not living in Coq’s
Prop. Amin et al. [17] definitionally implemented a similar interpreter; however, the
attached soundness proof was not handled by progress and preservation. Moreover,
the approach conducted in Software Foundations [18] and Koprowski’s paper [19] makes
use of non-definitional interpreters, living in Coq’s Prop, it, however, obtains soundness
proof via progress and preservation. In essence, we combine these approaches.

• We aimed to have complete literature on the Coq formalization surrounding the
definitional interpreters for simply typed languages, alongside [20,21]. We discuss the
technical machinery that closes the soundness proof of the interpreter. Even though
the main message of the paper is well-known, to the author’s best knowledge, there is
no Coq formalization that implements both type-checking and reduction (for some
extension of λ→) in a definitional fashion (outside Coq’s Prop), formally relating to
one another.

• Our λ→ extension involves a ’fixpoint’, branching constructors, and a few binary
operations over natural numbers and Booleans.

The Coq formalization already deals with an extension of λ→ interpreted as a case
study. We could make use of the same approach presented here (https://github.com/
ekiciburak/Lambda2, accessed on 8 December 2022) (a definitional interpreted for a poly-
morphically typed functional language coded in Haskell), enriching the current state of our
interpreter. The extension is very easily adaptable, as discussed in [17]; it brings over new
cases as part of the soundness and will be targeted in the near future.

In this regard, the milestones of the formalization are explained in Sections 2.3, 2.4
and 3 while the whole library is accessible at https://github.com/ekiciburak/extSTLC/
tree/master (accessed on 17 December 2020). For the file organization of the library, please
refer to Appendix A.

1.2. Organization of the Paper

In Section 2, we first give a quick recap of the untyped Lambda calculus. We then
present an extension with natural numbers, Booleans, branching, and fixpoint constructors.
Afterward, we introduce a definitional interpreter based on small-step call-by-value seman-
tics, and a type-system employing simple (or non-dependent) types. Along the same lines,
we give a taste of such functions in a Coq formalization. In Section 3, we discuss, in deep
technical details, the soundness of the type system with respect to the interpretation via
both pen-and-paper and Coq-certified proofs.

2. A Quick Recap of the λ Calculus

The λ calculus is a mathematical formalism that expresses computations as function
evaluations. It treats functions in an intensional viewpoint in which a function simply is

https://github.com/ekiciburak/Lambda2
https://github.com/ekiciburak/Lambda2
https://github.com/ekiciburak/extSTLC/tree/master
https://github.com/ekiciburak/extSTLC/tree/master

Axioms 2023, 12, 43 3 of 27

an abstraction composed of input arguments and a body. The equality over functions is
syntactically tested in between function bodies modulo renaming (α-equivalence or renam-
ing) of the bound arguments. The principle of functional extensionality cannot be directly
proven there but can be taken as an axiom whenever needed. The functions with multiple
input arguments can be rewritten as sequences of functions using a single argument. This
technique is known as Currying or Schonfinkeling. We now state below the syntax of the λ
calculus in an inductive fashion:

t := x term variable/identifier
| λx. t function abstraction
| t t function application

An abstraction λx. t is indeed a representation of a function with the bound input
argument x and the body t separated by the period ‘.’ symbol. For instance, thinking of
a function f (a) := a + 1, with argument a ranging over natural numbers, one can simply
encode it as λa. a + 1 within the Lambda terms. Here, the Greek letter λ is chosen to
anonymously name functions as it does not matter whether to name functions. Thus, all of
them are uniquely named λ.

To express a computation within the scope of λ calculus, the function applications of
the form t t are employed. It is not possible to evaluate terms under the binder Lambda.
Namely, an abstraction alone cannot be evaluated. It is necessary to have an abstraction
applied to a term (reducible term or redex) when it comes to speaking of function evaluations:

(λx. M) N →β M[x := N]

This one step of the evaluation is known as β-reduction and is denoted by the right-
arrow with the letter β sub-scripted: ‘→β’. The β-reduction can be viewed as a single step
of the computation in which an application of the form (λx. M) N evaluates or reduces into
a term M[x := N] denoting a variant of M in which every occurrence of the argument x is
substituted by the applicant term N.

Example 1. The term (λx. x+ y) 10 evaluates in one beta-step into 10+ y. Notice that the variable
y here is not bound by the binder Lambda. These kinds of terms in Lambda expressions are known as
free variables.

Example 2 (Church Encoding). It is possible to encode natural numbers in λ calculus in such
a way that the term λ f . λn. f n denotes the natural number 1 while λ f . λn. f f f n denotes the
natural 3. Namely, the number of applications of the term f over the term n defines the corresponding
natural number.

Example 3. Let t := λx. λy. x in 1 t = (λ f . λn. f n) t→β λn. t n = λn. (λx. λy. x) n
→β λn. (λx. λy. x) n.

Example 4. Let Ω := λx. x x in Ω Ω = λx. x x (λx. x x)→β Ω Ω→β Ω Ω→β ΩΩ . . .

Example 5. There are two ways to beta-reduce the term Ω 1 t: (i) into 1 1 t if the application on the
left is accounted for first; (ii) into Ω λn. t n if the one on the right.

Notice that the expression Ω Ω in Example 4 loops under beta-reduction returning
itself. Such an evaluation never reaches a final or termination state. Moreover, the Example 5
aims at presenting the fact that non-deterministic evaluations can also be encoded within
the scope of λ calculus. The goal to have them is to informally show that λ calculus is
indeed Turing complete. Namely, any computation that could be simulated by a Turing
machine could also be implemented within Lambda terms. This conclusion can also be
inferred from the famous Church–Turing Thesis but cannot be formally proven as it is not
mathematically stated. However, one can disprove it just by refutation. Namely, it suffices

Axioms 2023, 12, 43 4 of 27

for one to come up with a computation that can be simulated with one model but not with
the other.

2.1. Evaluation Strategies

In order to impose an order of evaluation for a deterministic reduction of Lambda
terms, several strategies are put forward. We discuss in this section, the strategy named
call-by-value (CBV) and skip the others as it constitutes a basis for our Coq development.
The CBV permits an application to reduce only after reducing its argument into a value.
Namely, considering the term e1 e2, CBV ensures that e2 is fully evaluated until no further
reduction steps are possible (into the normal form), and then the application takes place.
That could formally be stated as:

isvalue e2 = true
(app1)

(λx. e1) e2 →β e1[x := e2]

isvalue e2 = false e2 →β e′2
(app2)

(λx. e1) e2 →β (λx. e1) e′2

such that the isvalue and substitution (denoted ?[? :=?]) functions are formally given
in Definitions 1 and 2, respectively.

Definition 1. The isvalue function is defined as follows:

isvalue (λx. e) ⇒ true
isvalue _ ⇒ false

Definition 2. The substitution function is recursively implemented as follows:

Ident x[s := v] ⇒ if x = s then v else Ident x
(λx. e)[s := v] ⇒ if x 6= s then λx. e[s := v] else λx. e

2.2. Extensions

For a more involved calculus, let us now extend the set of Lambda terms, and ac-
cordingly, the accompanying evaluation strategy. We drop in natural numbers, Booleans,
a technique to handle branching and a fixpoint combinator. Moreover, we include three
operations over natural numbers, addition, subtraction, and multiplication, together with a
pair of Boolean comparison operators: equality and greater-than checks. The extended set
of terms are lsited in Figure 1:

t := Ident x term variable/identifier
| λx. t function abstraction
| t t function application
| NVal n natural numbers
| BVal b Booleans
| ITE t t t if-then-else branching
| Fix t fixpoint combinator
| Plus t t addition over natural
| Minus t t subtraction over natural
| Mult t t multiplication over natural
| Eq t t equality check over Booleans
| Gt t t greater-than check over Booleans

Figure 1. Extended Lambda terms.

In Figure 2, we extend the CBV strategy, such that it covers the newly introduced
terms as well.

Definition 3. The isvalue function is updated into:

isvalue (λx. e) ⇒ true
isvalue (NVal n) ⇒ true
isvalue (BVal b) ⇒ true
isvalue _ ⇒ false

Axioms 2023, 12, 43 5 of 27

isvalue e1 = true e2 →β e′2
(app1)

e1 e2 →β e1 e′2

isvalue e1 = false e1 →β e′1
(app2)

e1 e2 →β e′1 e2
isvalue e2 = true

(app3)
(λx. e1) e2 →β e1[x := e2]

isvalue e2 = false e2 →β e′2
(app4)

(λx. e1) e2 →β (λx. e1) e′2
(f ix1)

Fix (λx. e1)→β e1[x := Fix (λx. e1)]

f →β f ′
(f ix2)

Fix f →β Fix f ′
(ite1)

ITE (BVal true) e2 e3 →β e2
(ite2)

ITE (BVal false) e2 e3 →β e3
(e1 →β e′1)

(ite3)
ITE e1 e2 e3 →β ITE e′1 e2 e3

(plus1)
Plus (NVal n) (NVal m)→β NVal (n + m)

isvalue a = true b→β b′
(plus2)

Plus a b→β Plus a b′

isvalue a = false a→β a′
(plus3)

Plus a b→β Plus a′ b

(minus1)
Minus (NVal n) (NVal m)→β NVal (n−m)

isvalue a = true b→β b′
(minus2)

Minus a b→β Minus a b′
isvalue a = false a→β a′

(minus3)
Minus a b→β Minus a′ b

(mult1)
Mult (NVal n) (NVal m)→β NVal (n×m)

isvalue a = true b→β b′
(mult2)

Mult a b→β Mult a b′

isvalue a = false a→β a′
(mult3)

Mult a b→β Mult a′ b

(eq1)
Eq (NVal a) (NVal b)→β BVal (a = b)

isvalue a = true b→β b′
(eq2)

Eq a b→β Eq a b′
isvalue a = false a→β a′

(eq3)
Eq a b→β Eq a′ b

(gt1)
Gt (NVal a) (NVal b)→β BVal (a > b)

isvalue a = true b→β b′
(gt2)

Gt a b→β Gt a b′

isvalue a = false a→β a′
(gt3)

Gt a b→β Gt a′ b

Figure 2. Small-step CBV semantics.

Definition 4. Moreover, the substitution function is extended in the following cases:

(t1 t2)[s := v] ⇒ (t1[s := v]) (t2[s := v])
(ITE t1 t2 t3)[s := v] ⇒ ITE (t1[s := v]) (t2[s := v]) (t3[s := v])
(Fix t1)[s := v] ⇒ Fix (t1[s := v])
(Plus t1 t2)[s := v] ⇒ Plus (t1[s := v]) (t2[s := v])
(Minus t1 t2)[s := v] ⇒ Minus (t1[s := v]) (t2[s := v])
(Mult t1 t2)[s := v] ⇒ Mult (t1[s := v]) (t2[s := v])
(Eq t1 t2)[s := v] ⇒ Eq (t1[s := v]) (t2[s := v])
(Gt t1 t2)[s := v] ⇒ Gt (t1[s := v]) (t2[s := v])
(NVal n)[s := v] ⇒ NVal n
(BVal b)[s := v] ⇒ BVal b

Notice that the symbols ‘+’, ‘−’ and ‘×’ appearing in the conclusions of the rules plus1,
minus1, and mult1 are, respectively, denoting addition, subtraction, and multiplication over
natural numbers. Similarly, the symbols ‘=’ and ‘>’ used in the conclusions of the rules
eq1 and gt1 are employed to denote Boolean equality and greater-than checks. The rules to
define branching ite1, ite2, and ite3 are indeed folklore. The term ITE e1 e2 e3 evaluates in a
single step into e2 if e1 is the Boolean value true; into e3 if e2 is the Boolean false. Otherwise,
it reduces to ITE e′1 e2 e3 if e1 evaluates into e′1. There is a fixpoint combinator Fix that takes
a term f and, in a single beta-step, replaces every occurrence of the variable (or identifier) x
with the term f itself in e if f is a Lambda term, such as λx. e. Otherwise, if f is evaluated
into f ′ in a single beta-step then the term Fix f reduces into Fix f ′. The rules governing
operations over ’naturals’ and Booleans are also very usual. The term Plus x y reduces into
the natural number a + b (denoted NVal (a + b)) if x is a natural number a (NVal a) and y is
a natural number b (NVal b). If this is not the case, plus x y evaluates into Plus x y′ if x is a
value; into Plus x′ y, otherwise, given that x reduces to x′ and y reduces to y′ in a single
step. The other rules concerning subtraction, multiplication, equality, and greater-than
checks should be read in the same manner as addition. Note also that the terms that are
marked values (by the isvalue function) do not evaluate any further, similar to variables
(or identifiers).

Axioms 2023, 12, 43 6 of 27

2.3. A Type System with a Coq Implementation

Looking back at Example 3 in Section 2, one could easily notice that applying the
constant term 1 to the first projection function t makes no sense in a reasonable sort of
mathematics. It is possible to make a similar comment for the term Ω in Example 4: self-
application might be decently awkward. Therefore, to avoid these kinds of unintended
cases, and to prune them out, one may follow a syntactic approach that categorizes terms
according to the types of values they compute. This eventually allows for the proof of
the fact that there are no more questions about the aforementioned unintended program
behaviors. The set of Lambda terms presented in Figure 1, this time, with the typing
information injected-in, is listed in Figure 3.

τ := Int
| Bool
| τ → τ arrow types

t :=
| λx : τ. t typed function abstraction
|

Figure 3. Type-extended Lambda terms.

The Lambda binder is indeed the only constructor where typing information appears
within the term declarations. This simply is to well-type the input variable of a given
Lambda term in the construction phase. The rest of the terms are indeed the same as they
are given before in Figure 1. It is not cumbersome to reflect these into a Coq implementation:

Inductive type: Type ,
| Int
| Bool
| Arrow: type → type → type.

Inductive term: Type ,
| Ident : string → term
| Lambda: string → type → term → term
| App : term → term → term
| NVal : nat → term
| BVal : bool → term
| ITE : term → term → term → term
| Fix : term → term
| Plus : term → term → term
| Minus : term → term → term
| Mult : term → term → term
| Eq : term → term → term
| Gt : term → term → term.

One crucial point to underline is that the type system here allows only for ordinary
function/arrow types leaving aside dependent and polymorphic function types. Namely,
it is a variant and an extension of the simply typed Lambda calculus; not as expressive
as, other calculi in Barendregt’s cube [22], such as System F [23], System Fω nor λC [24].
The type system involves two base types Int and Bool with the possibility of inductively
constructing “Arrow” types out of them. Notice also that in implementing binders, we
embark on the choice of “concrete syntax” due to Church [2], in which the identifiers of
Lambda terms are just strings. This choice definitely requires some extra care when it comes
to avoid variable capture. See Section 2.4, especially the text following the subst function,
for a further explanation. Another point to draw attention to is that the term constructor
NVal adds to the set of terms the natural numbers (nat) of Coq. Similarly, the constructor
BVal enriches the set of terms with the Coq Booleans (bool).

Let us now take a closer look into the typing judgments, formally stated in Figure 4,
which are supposed to govern term evaluations just by allowing well-typed terms to
reduce only.

We assume that there exists some context Γ that is interpreted as a list of typing
relations, such as x : ø, respecting the shadowing property. Namely, if the same variable
appears more than once in the context, the leftmost appearance is considered: the one
on the left shadows others. For instance, suppose we have a context Γ in the form of
[(x : ø1) :: (y : ø2) :: (x : ø3)], we consider the type of the instance x to be ø1 not ø3. There-
fore, under some context Γ (denoted “Γ `?”), to obtain the type of a given variable x,

Axioms 2023, 12, 43 7 of 27

a lookup (starting from the left end of the context), denoted Γ(x), is employed (idt). Simi-
larly, under some context Γ extended with the fact that some variable x ranging over the
type τ1, if it is possible to deduce that some term e is of type τ2 then the Lambda term
λx : τ. e has the arrow type τ1 → τ2 under the same context Γ (lamt), accordingly denoted
Γ, x : t1 ` e : t2. To apply an arbitrary term e1 to a term e2, one needs to make sure that the
former term is of an arrow type such that the domain of this type matches with the type of
the latter. Moreover, the application e1 e2 is now an instance of e1’s co-domain type (appt).

If f is a term of some arrow type τ → τ, then the term Fix f is thought to be a fix-point
f , and must be of type τ (f ixt). The term Plus e1 e2 is of the base type Int only if both e1
and e2 are of type Int (plust). Similarly, the term Eq e1 e2 is of the base type Bool only if
both e1 and e2 are of type Int (eqt). Remark also that ` t : τ denotes the fact that the term t
is of type τ under the empty context. In a Coq formalization, we implement the rules stated
in Figure 4, using a recursive function named typecheck, as follows:

Fixpoint typecheck (m: ctx) (e: term): option type ,
match e with

| Ident s ⇒ lookup m s
| NVal n ⇒ Some Int
| BVal b ⇒ Some Bool
| Lambda x t e1 ⇒ let n , extend m x t in

let te1 , typecheck n e1 in
match te1 with

| Some te1 ⇒ Some (Arrow t te1)
| None ⇒ None

end
| App e1 e2 ⇒ let te1 , typecheck m e1 in

let te2 , typecheck m e2 in
match te1, te2 with

| Some (Arrow te1s te1t), Some te2 ⇒
if type_eqb te1s te2 then Some te1t else None

| _, _ ⇒ None
end

| ITE e1 e2 e3 ⇒ let te1 , typecheck m e1 in
let te2 , typecheck m e2 in
let te3 , typecheck m e3 in
match te1, te2, te3 with

| Some nte1, Some nte2, Some nte3 ⇒
if type_eqb nte1 Bool && type_eqb nte2 nte3
then Some nte2 else None

| _, _, _ ⇒ None
end

| Fix f ⇒ let tf , typecheck m f in
match tf with

| Some (Arrow t1 t2) ⇒ if type_eqb t1 t2
then Some t2 else None

| _ ⇒ None
end

| Plus a b ⇒ let t1 , typecheck m a in
let t2 , typecheck m b in
match t1, t2 with

| Some Int, Some Int ⇒ Some Int
| _, _ ⇒ None

end
| ...

end.

where the context ctx is a list of string-type pairs which always is extended on the
left-hand side to obtain the shadowing property (explained above) satisfied.

Definition ctx , list (string * type)%type.
Definition extend (c: ctx) (x: string) (t: type), (x, t):: c.
Fixpoint lookup {A: Type} (c: list (string * A)) (s: string): option A ,

match c with
| nil ⇒ None
| (x, t):: r ⇒ if eqb x s then Some t else (lookup r s)

end.

Axioms 2023, 12, 43 8 of 27

In our implementation, lookups are always performed by/starting from the left end
of a given context. This matches with the idea that designates the shadowing feature. The
output type of the lookup function is wrapped by the option type (or monad [25]) of Coq,
just in case that the input variable is absent from the provided context: the function ends
up returning None.

The function typecheck takes a term along with a context, and outputs the type of the
term under the input context. Similar to that of the lookup, the instances returned by the
typecheck function are also wrapped with the option type so that upon ill-typed inputs,
such as App (NVal 5) (BVal false), the function returns None.

(idt)
Γ ` Ident x : Γ(x)

Γ, x : τ1 ` e : τ2
(lamt)

Γ ` λx : τ1. e : τ1 → τ2

(nvalt)
Γ ` NVal n : Int

(bvalt)
Γ ` BVal b : Bool

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
(appt)

Γ ` e1 e2 : τ2

Γ ` f : τ → τ
(f ixt)

Γ ` Fix f : τ

Γ ` e1 : Bool Γ ` e2 : τ Γ ` e3 : τ
(itet)

Γ ` ITE e1 e2 e2 : τ

Γ ` e1 : Int Γ ` e2 : Int
(plust)

Γ ` Plus e1 e2 : Int

Γ ` e1 : Int Γ ` e2 : Int
(minust)

Γ ` Minus e1 e2 : Int

Γ ` e1 : Int Γ ` e2 : Int
(multt)

Γ ` Mult e1 e2 : Int

Γ ` e1 : Int Γ ` e2 : Int
(eqt)

Γ ` Eq e1 e2 : Bool

Γ ` e1 : Int Γ ` e2 : Int
(gtt)

Γ ` Gt e1 e2 : Bool

Figure 4. Typing judgments.

2.4. A Definitional Interpreter in Coq

We first adapt the rules stated in Figure 2, such that the typing information explicitly
appears in reduction steps. To do so, it suffices to add types to the terms where the Lambda
binder is involved as it is the only constructor that embodies syntactical typing information.
Therefore, only the rules app3 and app4 are re-designated and presented in Figure 5.

isvalue e2 = true
(app3)

(λx : τ. e1) e2 →β e1[x := e2]

isvalue e2 = false e2 →β e′2
(app4)

(λx : τ. e1) e2 →β (λx : τ. e1) e′2

Figure 5. Typing-adapted small-step CBV semantics.

A small-step CBV interpreter based on the typing-adapted versions of the rules (as in
Figure 5) stated in Figure 2 is definitionally implemented in Coq as follows:

Fixpoint beta (e: term): option term ,
match e with

| Ident s ⇒ None
| Lambda x t e ⇒ None
| NVal n ⇒ None
| BVal b ⇒ None
| (Fix (Lambda x t e1)) as f ⇒ Some (subst e1 x f)
| Fix f ⇒ let bf , beta f in

match bf with
| Some sbf ⇒ Some (Fix sbf)
| None ⇒ None

end
| App (Lambda x t e1) e2 ⇒ if isvalue e2 then Some (subst e1 x e2)

else
let e2’ , beta e2 in
match e2’ with

| Some e2’’ ⇒ Some (App (Lambda x t e1) e2’’)
| None ⇒ None

end
| App e1 e2 ⇒ if isvalue e1 then

let e2’ , beta e2 in
match e2’ with

| Some e2’’ ⇒ Some (App e1 e2’’)
| None ⇒ None

end

Axioms 2023, 12, 43 9 of 27

else
let e1’ , beta e1 in
match e1’ with

| Some e1’’ ⇒ Some (App e1’’ e2)
| None ⇒ None

end
| ITE (BVal true) e2 e3 ⇒ Some e2
| ITE (BVal false) e2 e3 ⇒ Some e3
| ITE e1 e2 e3 ⇒ let e1’ , beta e1 in

match e1’ with
| Some e1’’ ⇒ Some (ITE e1’’ e2 e3)
| None ⇒ None

end
| Plus (NVal n) (NVal m) ⇒ Some (NVal (n + m))
| Plus a b ⇒ if isvalue a then

let b’ , beta b in
match b’ with

| Some b’’ ⇒ Some (Plus a b’’)
| None ⇒ None

end
else
let a’ , beta a in
match a’ with

| Some a’’ ⇒ Some (Plus a’’ b)
| None ⇒ None

end
| ...

end.

where the substitution function subst (Definition 4) is formalized to be:

Fixpoint subst (e: term) (x: string) (n: term): term ,
match e with

| Ident s ⇒ if String.eqb s x then n else e
| Lambda y t m ⇒ if (Bool.eqb (String.eqb y x) false)

then Lambda y t (subst m x n) else e
| Fix f ⇒ Fix (subst f x n)
| App t r ⇒ App (subst t x n) (subst r x n)
| ITE t1 t2 t3 ⇒ ITE (subst t1 x n) (subst t2 x n) (subst t3 x n)
| Plus a b ⇒ Plus (subst a x n) (subst b x n)
| ...

end.

The point that this interpreter being definitional stems from the fact that it takes a
term, and computes in real time a reduced term out of it. This is in fact the point where
our interpreter differs from that of ’Software Foundations’ [18] in which interpretation is
not computational as it is developed in Coq’s Prop. The return type of the function beta
is wrapped by the option type for stuck (see Definition 6) terms, such as App (NVal 5)
(BVal false), the function returns None, meaning no further reduction steps on this term
is possible. Notice that we skipped in the above definition the match-cases for operators,
such as Minus, Mult, Eq and Gt because they are very similar to that of Plus. Please refer to
the accompanying Coq library for the complete definition. Considering the substitution,
we implement a function (named subst above) that is capture avoiding but in a restricted
form: only to be used in handling beta-reduction of closed terms; namely terms that do not
involve free variables. To generalize the implementation so that it also handles terms with
free variables requires extra care at the match-case “Lambda y t m”:

1. Substitution would be applicable not only when y 6= x but also when y /∈ fv(n) to
avoid the bound variable y being captured by any free variable present in the substi-
tuted term n.

2. If the bound variable y is somehow captured by either of the cases y = x and y ∈ fv(n),
one possibility to avoid the capture is to introduce a fresh variable and replace it with
the bound variable y. Another choice may be to completely discard the naming bound
variables by employing de Bruijn indices [26] in the Lambda binder, or alternatively
pick a locally nameless strategy [27], or maybe embark on (parametric) higher-order
abstract syntax [28]. Opting one of these methods, and adjusting the implementation
accordingly is set as a future goal.

Axioms 2023, 12, 43 10 of 27

3. Type Soundness

We devote this section to step-by-step explore the soundness proof of the type system
presented in Figure 4. It may be beneficial to first look into the chart in Figure 6 that exhibits
the dependency among statements proven further in this section, and then read the proof
terms in detail.

Figure 6. Dependency among proof terms.

Remark that the definition, lemma, and theorem names in the upcoming text are
indeed links to the corresponding formalization in the Coq library. Please click on the
names to browse the related code.

Lemma 1 (istypechecked_app). ∀t1 t2 τ, ` (t1 t2) : τ =⇒ ∃υ, ` t1 : υ→ τ ∧ ` t2 : υ.

Proof. The statement is just the inversion of the (appt) rule presented in Figure 4. Notice
that we are trying to show ∃υ, ` t1 : υ→ τ ∧ ` t2 : υ assuming ` (t1 t2) : τ (H). The proof
proceeds with nested case distinctions over the statements, i.e., whether the terms t1 and t2
are well-typed under the empty context:

1. ` t1 : κ → τ for some arbitrary type κ.

(a) ` t2 : ρ for some arbitrary type ρ. In this case, both t1 and t2 are individually
well-typed under the empty context. By employing this fact, the rule (appt)
and the hypothesis (H), it is easy to deduce that κ = ρ. Under the same set of
assumptions, we could show ∃υ, ` t1 : υ→ τ ∧ ` t2 : υ holds just by plugging
in the type ρ (or equivalently κ) for υ. The hypothesis (H) would not hold
otherwise.

(b) 0 t2 : ρ. Given that the application (t1 t2) is well-typed, under the empty
context, the term t2 must be well-typed as well. This case is a violation thus
the goal is closed by contradiction.

2. 0 t1 : κ → ρ. Similar to the item above, if the application (t1 t2) is well-typed, the term
t1 must also be well-typed under the empty context context. This case is a violation,
thus, the goal is closed by contradiction as well.

Lemma 2 (istypechecked_ite). ∀t1 t2 t3 τ, ` ITE t1 t2 t3 : τ =⇒ ` t1 = Bool ∧ `
t2 : τ ∧ ` t3 : τ.

Proof. The statement is the inversion of the rule (itet) stated in Figure 4. We aim to prove
` t1 = Bool ∧ ` t2 : τ ∧ ` t3 : τ provided ` ITE t1 t2 t3 : τ (H). The proof we present here
proceeds with nested case distinctions over the statements, whether the terms t1, t2 and t3
are well-typed under the empty context:

1. ` t1 : κ1 for some arbitrary type κ1.

(a) ` t2 : κ2 for some arbitrary type κ2.

https://github.com/ekiciburak/extSTLC/blob/master/Typecheck.v#L81-L84
https://github.com/ekiciburak/extSTLC/blob/master/Typecheck.v#L103-L104

Axioms 2023, 12, 43 11 of 27

i. ` t3 : κ3 for some arbitrary type κ3. In this case, the terms t1, t2, and
t3 are all individually well-typed under the empty context. With this,
the hypothesis (H), and the rule (itet), we could simply deduce the facts
that κ1 must be Bool, and both κ2 and κ3 must be τ. Any other choice
of κs would contradict the hypothesis (H).

ii. 0 t3 : κ3. If the term ITE t1 t2 t3 is well-typed, under the empty context,
the term t3 must also be well-typed. This case is a violation, thus, the
goal is closed by contradiction.

(b) 0 t2 : κ2. The goal in this case similarly holds by contradiction.

2. 0 t1 : κ1. The goal in this case is closed by contradiction in a similar manner with that
of the above item.

Lemma 3 (istypechecked_fix). ∀t τ, ` Fix t : τ =⇒ ` t : τ → τ

Proof. The statement is the inversion of the rule (f ixt) stated in Figure 4. The goal here
is to show that ` t : τ → τ holds, assuming Fix t : τ (H). The proof proceeds with a case
distinction over the statement whether the term t is well-typed under the empty context:

1. ` t : κ for some arbitrary type κ. Thanks to the hypothesis (H) and the rule (f ixt), we
could easily reason that κ must be τ → τ; the hypothesis (H) would not hold other-
wise.

2. 0 t : κ. If the term Fix t is well-typed, under the empty context, the term t must also
be well-typed. This case is a violation, thus, the goal is closed by contradiction.

Lemma 4 (istypechecked_plus). ∀t1 t2 τ, ` Plus t1 t2 : τ =⇒ τ = Int ∧ ` t1 : Int
∧ ` t2 : Int

Proof. The statement is indeed the inversion of the rule (plust) in Figure 4. We aim to
prove τ = Int ∧ ` t1 : Int ∧ ` t2 : Int provided that ` Plus t1 t2 : τ (H). The proof we
present here proceeds with nested case distinctions over the statements, i.e., whether the
terms t1 and t2 are well-typed under the empty context:

1. ` t1 : κ1 for some arbitrary type κ1.

(a) ` t2 : κ2 for some arbitrary type κ2. In this case, the terms t1 and t2 are indi-
vidually well-typed under the empty context. With this, the hypothesis (H),
and the rule (plust), it is easy to deduce the fact that the types τ, κ1 and κ2
must be Int. Any other choice of κs and τ would be in contradiction with the
hypothesis (H).

(b) 0 t2 : κ2. If the term Plus t1 t2 is well-typed, under the empty context, the term
t2 must also be well-typed. This case is a violation, thus, the goal is closed by
contradiction.

2. 0 t1 : κ1. The goal in this case is closed by contradiction in a similar manner with that
of the above item.

The progress statement claims that if an arbitrary term t type-checks under the empty
context then it either reduces in a single step into some term t′ or it is already a value. That
is, well-typed terms are never stuck (see Definition 6 for a formal explanation of being stuck
for a term). The terms that are well-typed and do not reduce at the same time are those
marked values (see Definition 3).

Theorem 1 (Progress). ∀t, ` t : τ =⇒ isvalue t = true ∨ ∃t′, t→β t′ for some type τ.

https://github.com/ekiciburak/extSTLC/blob/master/Typecheck.v#L128
https://github.com/ekiciburak/extSTLC/blob/master/Typecheck.v#L142-L143

Axioms 2023, 12, 43 12 of 27

Proof. The proof proceeds with structural induction on the term t. The cases with Ident
x, λx : τ. t, NVal n and BVal b are indeed trivial: the first assumes false by ` Ident x : τ for
some type τ, and the rest are already values.

1. The case with the application (t1 t2), for some terms t1 and t2, is more involved.
There, we aim to prove that isvalue (t1 t2) = true ∨ ∃t′, (t1 t2) →β t′ given `
(t1 t2) : τ (Htc) for some type τ, along with two induction hypotheses ` t1 : τ1 =⇒
isvalue t1 = true ∨ ∃t′1, t1 →β t′1 (IHt1) for some type τ1, and ` t2 : τ2 =⇒
isvalue t2 = true ∨ ∃t′2, t2 →β t′2 (IHt2) for some type τ2. Notice that isvalue
(t1 t2) = f alse; therefore, we consider showing the right disjunction ∃t′, (t1 t2)→β t′

here. It is easy to demonstrate that the Boolean function isvalue is decidable. That
is, ∀t, isvalue t = true ∨ isvalue t = f alse. We start off with a case analysis,
specializing this fact on the term t1, and throw two individual subgoals to close the
assuming isvalue t1 = true and isvalue t1 = f alse, independently:

(a) isvalue t1 = true. We proceed with a case analysis specializing the decidabil-
ity of the isvalue function, this time with the term t2 and obtain two more
subgoals to prove, given isvalue t2 = true and isvalue t2 = f alse separately:

i. isvalue t2 = true. On a case analysis over the term t1, we in fact have
to prove the below three cases in which t1 is a value (other cases, such
as t1 being ITE e1 e2 e3, are trivial just because t1s are not values that
yield in contradictory cases):

• t1 = λx : τx. e, for some type τx. Mind that the goal here turns out
to be ∃t′, (λx : τx e) t2 →β t′. There obviously exists some t′; that
is the substitution e[x := t2], closing the goal thanks to the rule
(app3) in Figure 2.

• t1 = NVal n. In this case, the hypothesis (Htc) takes the following
shape: ` (NVal n) t2 : τ, which is indeed false and yields in a
contradiction as the first term in an application needs to be of
some arrow-type but it is of type Int here.

• t1 = BVal b. This case is proven in a similar fashion to that of the
above item.

ii. isvalue t2 = f alse. Thanks to Lemma 1, we have ` t2 : τ2, for some
type τ2 out of ` (t1 t2) : τ. We use this fact to specialize the induction
hypothesis (IHt2) to turn it into isvalue t2 = true ∨ ∃t′, t2 →β t′.
We destruct this, and are supposed to prove the below statements,
assuming isvalue t2 = true and ∃t′2, t2 →β t′2 individually:

A. isvalue t2 = true. This case holds by contradiction.
B. ∃t′2, t2 →β t′2. On a case analysis over the term t1, we in fact

have to prove the below three cases in which t1 is a value (other
cases, such as t1 being ITE e1 e2 e3, are trivial just because t1s are
not values that yield in contradictory cases):

• t1 = λx : τx. e, for some type τx. The goal we aim to show
in this case is ∃t′, (λx : τx. e) t2 →β t′. Such a t′ obviously
exists as (λx : τx. e) t′2 due to the rule (app4) in Figure 2.

• t1 = NVal n. In this case, the hypothesis (Htc) takes the
following shape: ` (NVal n) t2 : τ, which is a contradiction,
because in an application, the first term needs to be of some
arrow-type, but it is Int here.

• t1 = BVal b. This case is proven in a similar manner to that
of the above item.

(b) isvalue t1 = f alse. Thanks to Lemma 1, we have ` t1 : τ1, for some type τ1 out
of ` (t1 t2) : τ. We use this fact to specialize the induction hypothesis (IHt1)
to turn it into the shape isvalue t1 = true ∨ ∃t′, t1 →β t′. We destruct this,

Axioms 2023, 12, 43 13 of 27

and are supposed to prove the below statements, assuming isvalue t1 = true
and ∃t′1, t1 →β t′1 separately:

i. isvalue t1 = true. The statement in this case trivially holds by contra-
diction.

ii. ∃t′1, t1 →β t′1. In a case analysis over the term t1, we in fact have to
prove subgoals in which t1 is not a value (other cases such as t1 being
λx : τ. e are trivial just because t1s are values that yield in proofs by
contradiction):

• Recall that we are trying to show ∃t′, (t1 t2)→β t′ such that t1 is
not a value. We close all such cases uniformly: there definitely
exists a t′ being (t′1 t2) given t1 →β t′1, due to the rule (app2) in
Figure 2.

2. Looking into the case with ITE t1 t2 t3, we need to show isvalue ITE t1 t2 t3 = true
∨ ∃t′, ITE t1 t2 t3 →β t′ given ` ITE t1 t2 t3 : τ (Htc) for some type τ, along with three
induction hypotheses ` t1 : τ1 =⇒ isvalue t1 = true ∨ ∃t′1, t1 →β t′1 (IHt1) for
some type τ1, ` t2 : τ2 =⇒ isvalue t2 = true ∨ ∃t′2, t2 →β t′2 (IHt2) for some type
τ2, and ` t3 : τ3 =⇒ isvalue t3 = true ∨ ∃t′3, t3 →β t′3 (IHt3) for some type τ3.
Notice that the sole case we are supposed to demonstrate is ∃t′, ITE t1 t2 t3 →β t′ as
isvalue ITE t1 t2 t3 = f alse. Plugging the hypothesis (Htc) into Lemma 2, we deduce
the facts that ` t1 : Bool (Ha), ` t2 : τ (Hb), and ` t3 : τ (Hc). We then specialize the
induction hypothesis (IHt1) with (Ha), and obtain isvalue t1 = true ∨ ∃t′1, t1 →β t′1.
Destructing this hypothesis, we are supposed to prove the goal ∃t′, ITE t1 t2 t3 →β t′

twice, assuming isvalue t1 = true and ∨ ∃t′1, t1 →β t′1 individually:

(a) isvalue t1 = true. On a case analysis over the term t1, we in fact have to prove
the below three cases in which t1 is a value (other cases such as t1 being Fix f
are trivial just because t1s are not values that yield in contradictory cases):

• t1 = λx : τx. e, for some type τx. It is possible to show that ∃t′, ITE (λx : τx. e)
t2 t3 →β t′ holds just by contradiction as the hypothesis (Ha), namely
` (λx : τx. e) : Bool proves False. The Lambda terms are of the arrow-type.

• t1 = NVal n. In this case, it is similarly possible to prove False within the
set of hypotheses: considering the hypothesis (Ha), namely ` NVal n : Bool,
we deduce False as it in fact is ` NVal n : Int.

• t1 = BVal b. If the Boolean variable b is true, then the statement
∃t′, ITE (BVal true) t2 t3 →β t′ could easily be proven by plugging the
term t2 in place of t′ due to the rule (ite1). If b is the Boolean false, then t′

is chosen to be t3 to close the goal due to the rule (ite2) in Figure 2.

(b) ∃t′1, t1 →β t′1. The term t1 is obviously not a value as it reduces at least
one step. Therefore, it cannot be BVal b, NVal n, and λx : τx. e. We prove
the statement ∃t′, ITE t1 t2 t3 →β t′ uniformly for the other choices of t1
as follows: just plug in the term ITE t′1 t2 t3 for the term t′ within the goal,
and obtain ITE t1 t2 t3 →β ITE t′1 t2 t3, which trivially holds thanks to the rule
(ite3) presented in Figure 2.

3. For the case with Fix f , we need to prove that isvalue Fix f = true ∨ ∃t′, Fix f →β

t′ given ` Fix f : τ (Htc) for some type τ, along with the induction hypothesis `
f : τ =⇒ isvalue f = true ∨ ∃ f ′, f →β f ′ (IH f). Lemma 3 gives proof of the fact
that ` f : τf , for some type τf out of (Htc). We specialize in the induction hypothesis
(IH f) with this fact and handle isvalue f = true ∨ ∃ f ′, f →β f ′. By destructing this,
we are supposed to prove the goal ∃t′, Fix f →β t′ (as isvalue Fix f = f alse) twice
for both isvalue f = true and ∃ f ′, f →β f ′.

(a) isvalue f = true. On a case analysis over the term f , we in fact have to
prove the below three cases in which f is a value (other cases, such as f being

Axioms 2023, 12, 43 14 of 27

Plus t1 t2 are trivial just because f s are not values that yield in contradic-
tory cases):

• f = λx : τx. e, for some type τx. It suffices to plug the term e[x :=
Fix (λx : τx. e)] into the formula ∃t′, Fix (λx : τx. e)→β t′, and then apply
the rule (f ix1) in Figure 2 to have this case proven.

• f = NVal n. In this case, it is possible to prove False within the current
context: considering (Ha), namely ` Fix (NVal n) : τ is simply false as it
is an ill-typed term according to the rules in Figure 4. See the rule (f ixt)
that states that terms of the form Fix f are well-typed only when f is of
some arrow-type with the same domain and co-domain. This does not
match with the fact that ` NVal n : Int.

• f = BVal b. This case holds due to the same reason as that of t1 = NVal n
given above.

(b) ∃ f ′, f →β f ′. Given the rule (f ix2) in Figure 2, one can reason that ∃t′, Fix f →β

t′ holds simply by plugging the term Fix f ′ in, for t′ except for the cases where
f is a value. These cases are contradictory as there is no f ′ into which f
evaluates.

4. Considering the case involving Plus t1 t2, we need to show isvalue Plus t1 t2 = true
∨ ∃t′, Plus t1 t2 →β t′ given ` Plus t1 t2 : τ (Htc) for some type τ, along with two
induction hypotheses ` t1 : τ1 =⇒ isvalue t1 = true ∨ ∃t′1, t1 →β t′1 (IHt1) for
some type τ1, and ` t2 : τ2 =⇒ isvalue t2 = true ∨ ∃t′2, t2 →β t′2 (IHt2) for
some type τ2. Notice that we are supposed to prove only ∃t′, Plus t1 t2 →β t′ as
isvalue Plus t1 t2 = f alse. Employing Lemma 4, we deduce the facts that ` t1 : Int
(Ha), and that ` t2 : Int (Hb) out of the hypothesis (Htc). Specializing the induction
hypotheses (IHt1) with (Ha) and (IHt2) with (Hb), we obtain isvalue t1 = true
∨ ∃t′1, t1 →β t′1 and isvalue t2 = true ∨ ∃t′2, t2 →β t′2. We carry on with a case
analysis on the decidability of the isvalue function parameterized by the term t1. We,
therefore, need to prove the aforementioned goal twice for two distinct cases with
isvalue t1 = true and isvalue t1 = f alse:

(a) isvalue t1 = true. Applying a case analysis on the term t1, we are supposed
to prove the below three cases (others, such as t1 being Fix f , are trivial just
because t1s are not values that yield in contradictions):

i. t1 = λx : τx. e, for some type τx. Notice that in this case, the goal turns
out to be ∃t′, Plus (λx : τx. e) t2 →β t′. This holds by contradiction just
because the type of λx : τx. e is an arrow-type while it is expected to be
Int by the hypothesis (Ha). Please check out the rule (lamt) given in
Figure 4 for a justification.

ii. t1 = NVal n. In this case, we start off destructing the induction hypoth-
esis (IHt2), and are in the need of proving the goal ∃t′, Plus NVal n t2
→β t′ twice provided isvalue t2 = true and ∃t′2, t2 →β t′2 individually:

A. isvalue t2 = true. We proceed with the case analysis of the term
t2, we are supposed to prove the below three cases (others, such
as t2 being Fix f , are trivial just because t2s are not values that
yield in contradictions):

• t2 = λx : τx. e, for some type τx. Here, we need to show that
∃t′, Plus (NVal n) (λx : τx. e) →β t′ holds. This is doable
again by contradiction as the term λx : τx. e is of an arrow-
type, while it is expected to be Int by the hypothesis (Hb).

• t2 = NVal m. In this case, we could simply show that
∃t′, Plus (NVal n) (NVal m) →β t′ holds by first plugging
in the term NVal (n+m) for t′, and then employing the rule
(plus1) presented in Figure 2.

Axioms 2023, 12, 43 15 of 27

• t2 = BVal b. The goal ∃t′, Plus (NVal n) (BVal b) →β t′ in
this case holds also by contradiction: the type of (BVal b) is
Bool while it is expected to be Int by the rule (Hb).

B. ∃t′2, t2 →β t′2. In this case, ∃t′, Plus (NVal n) t2 →β t′ needs
to be shown. In cases where t2 is a value, we close the goal
by contradiction, as ∃t′2, t2 →β t′2 allows for proving False:
values do not evaluate any further. For the rest, we plug the term
Plus (NVal n) t′2 into the goal, for the term t′, and solve it with
the rule (plus2) stated in Figure 2.

iii. t1 = BVal b. It is possible to show that ∃t′, Plus (BVal b) t2 →β t′ by
contradiction as the type of (BVal b) is Bool while it is here expected to
be Int by the rule (Ha).

(b) isvalue t1 = f alse. On a case analysis over the term t1, we in fact have to
prove subgoals where t1 is not a value (other cases such as t1 being λx : τ. e are
trivial just because t1s are values that yield in contradictory cases):

• Recall that we are trying to show ∃t′, Plus t1 t2 →β t′, such that t1 is not
a value. We close all such cases uniformly: there definitely exists a t′ as
Plus t′1 t2 given t1 →β t′1, thanks to the rule (plus3) presented in Figure 2.

5. The remaining cases with, for instance, Minus t1 t2, could be proven by employing a
very similar idea presented in the above item 4.

We summarize below the given Coq implementation, proof of Theorem 1, in such a
way that we highlight the crucial points itemized in the above pen-and-paper proof by
comment-outs. Please refer to the accompanying library for the complete proof.

Lemma progress: ∀ t T,
typecheck nil t = Some T →
(isvalue t = true) ∨ (∃ t’, beta t = Some t’).

Proof. intros t.
induction t; intros T Htc.
- ...
- ... (*1*)

apply istypechecked_app in Htc. (*Lemma 3.1*)
destruct Htc as (U, (Ha, Hb)).
specialize (isvalue_dec t1); intros it1. (*1-a*)
+ specialize (IHt2 _ Hb).

specialize (isvalue_dec t2) as [it2 | it2]. (*1-a-i*)
++ case_eq t1; intros.

* ...
* ...
∃ (subst e x t2). (*1-a-i-bullet_1*)
...

* intros n Ht1. rewrite Ht1 in Htc.
contradict Htc; easy. (*1-a-i-bullet_2*)

* intros n Ht1. rewrite Ht1 in Htc.
contradict Htc; easy. (*1-a-i-bullet_3*)

* ...
++ specialize (IHt2 _ Hb).(*1-a-ii*)

destruct IHt2 as [it2’ | Hstep].
+++ rewrite it2 in it2’. easy. (*1-a-ii-A*)
+++ ... (*1-a-ii-B*)

case_eq t1.
* ...
* ... (*1-a-ii-B-bullet_1*)
∃ (App (Lambda x tx e) t2’).
...

* ...
contradict Htc; easy. (*1-a-ii-B-bullet_2*)

* ...
contradict Htc; easy. (*1-a-ii-B-bullet_3*)

+ specialize (IHt1 _ Ha). (*1-b*)
destruct IHt1 as [IHt1 | IHt1].
++ rewrite it1 in IHt1. contradict IHt1; easy. (*1-b-i*)
++ destruct IHt1 as (t1’, Hstep). cbn.

...
case_eq t1; try (intros; ∃ (App t1’ t2); easy). (*1-b-ii-bullet*)

Axioms 2023, 12, 43 16 of 27

...
- ... (*2*)

apply istypechecked_ite in Htc. (*Lemma 3.2*)
destruct Htc as (Ha, (Hb, Hc)).
specialize (IHt1 _ Ha).
specialize (IHt2 _ Hb).
specialize (IHt3 _ Hc).
destruct IHt1 as [t1’| Hstep]. (*2-a*)
+ case_eq t1.

++ ...
++ intros x tx e Ht1. (*2-a-bullet_1*)

rewrite Ht1 in Ha. contradict Ha. cbn.
case_eq (typecheck (extend nil x tx) e); easy.

++ intros. rewrite H in Ha. contradict Ha; easy. (*2-a-bullet_2*)
++ ... (*2-a-bullet_3*)

case_eq b; intros.
* ∃ t2. easy.
* ∃ t3. easy.

+ ... (*2-b*)
case_eq t1; intros; try (∃ (ITE t1’ t2 t3); easy).
...

- apply istypechecked_fix in Htc. (*3*) (*Lemma 3.3*)
specialize (IHt _ Htc).
destruct IHt as [IHt | IHt].
+ ... (*3-a*)

case_eq t.
++ ...
++ ...
∃ (subst e x (Fix (Lambda x tx e))). easy (*3-a-bullet_1*)
...

++ intros n Ht; rewrite Ht in Htc; (*3-a-bullet_2*)
contradict Htc; easy.

++ intros b Ht; rewrite Ht in Htc; (*3-a-bullet_3*)
contradict Htc; easy.

+ ...
case_eq t; try (∃ (Fix t’); easy). (*3-b*)
...

- ... (*4*)
apply istypechecked_plus in Htc. (*Lemma 3.4*)
destruct Htc as (Ha, (Hb, Hc)).
specialize (IHt1 _ Ha).
specialize (IHt2 _ Hb).
...
destruct it1 as [it1 | it1]. (*4-a*)
+ case_eq t1; try (intros; rewrite H in it1; cbn in it1; easy).

++ ... (*4-a-i*)
case_eq (typecheck (extend nil x tx) e); intros;
rewrite H in Ha; contradict Ha; easy.

++ destruct IHt2 as [IHt2 | IHt2]. (*4-a-ii-A*)
+++ case_eq t2; try (intros; rewrite H in IHt2; cbn in IHt2; easy).

* ... (*4-a-ii-A-bullet_1*)
case_eq (typecheck (extend nil x tx) e); intros;
rewrite H in Hb; contradict Hb; easy.

* ... (*4-a-ii-A-bullet_2*)
∃ (NVal (m + n)).
...

* ... (*4-a-ii-A-bullet_3*)
rewrite Ht2 in Hb.
contradict Hb; easy.

+++ (*4-a-ii-B*)
case_eq t2; try (∃ (Plus (NVal n) t2’); easy).
...

++ ... (*4-a-iii*)
contradict Ha; easy.

+ ... (*4-b*)
case_eq t1; try (∃ (Plus t1’ t2); easy).
...

- ... (*5*)
Qed.

Lemma 5 (subst_preserves_typing). ∀x t v τ υ Γ, Γ, x : υ ` t : τ =⇒ ` v : υ =⇒
Γ ` t[x := v] : τ.

Proof. The statement informally says that under some context Γ, substitution of the string x
with some term v within the term t, the type of t remains unchanged, provided Γ, x : υ ` t : τ
(Ha) and ` v : υ (Hb). We argue by structural induction on the term t:

https://github.com/ekiciburak/extSTLC/blob/master/Typecheck.v#L545-L548

Axioms 2023, 12, 43 17 of 27

1. t = Ident s for some arbitrary string s. If x = s, the hypothesis Ha takes the following
shape: Γ, s : υ ` Ident s : τ which implies that υ = τ. The goal Γ ` (Ident s)[s := v] : υ
simplifies into Γ ` v : υ by Definition 2 of the substitution function. Employing the fact
that ∀Γ Λ e κ, Γ ` e : κ =⇒ (∀y, y /∈ fv y =⇒ Γ(y) = Λ(y)) =⇒ Λ ` e : κ (named
context_invariance in the Coq code), we deduce Γ ` v : υ out of the hypothesis
Hb, and the goal is closed. Else if x 6= s then (Ha) turns into Γ(s) = τ. The goal
Γ ` (Ident s)[x := v] : τ simplifies into Γ(s) = τ again by Definition 2. This is in fact
the hypothesis (Hb) itself.

2. t = λs : κ. e for some arbitrary string s, type κ, and term e. The goal we aim to prove
is Γ ` (λs : κ. e)[x := v] : τ, provided an induction hypothesis ∀x v τ υ Γ, Γ, x : υ `
e : τ =⇒ ` v : υ =⇒ Γ ` e[x := v] : τ (IHe). If x = s then we have (λs : κ. e)[s := v]
amounts to λs : κ. e by Definition 2. Therefore, the goal turns out to be Γ ` λs : κ. e : τ.
Using the fact that ∀Γ Λ e κ, Γ ` e : κ =⇒ (∀y, y /∈ fv y =⇒ Γ(y) = Λ(y))
=⇒ Λ ` e : κ (context_invariance in the Coq code) over the contexts Γ, s : υ and Γ
with the hypothesis Ha (namely, Γ, s : υ ` λs : κ. e : τ), we manage to extend the list of
assumptions with Γ ` λs : κ. e : τ, and have the goal closed. If x 6= s, we need to show
that Γ ` λs : κ. e[x := v] : τ or better that Γ, s : κ ` e[x := v] : τ thanks to Definition 2
and to the (appt) rule in Figure 4. Remark that in this case, the hypothesis (Ha) first
takes the shape Γ, x : υ ` λs : κ. e : τ then simplifies into Γ, x : υ, s : κ ` e : τ again by
the (appt) rule. Specializing the induction hypothesis (IHe) with the context Γ, s : κ,
simplified version of (Ha) and (Hb), we close this goal.

3. t = (t1 t2) for some terms t1 and t2. We try proving Γ ` (t1 t2)[x := v] : τ given
∀x v τ υ Γ, Γ, x : υ ` t1 : τ =⇒ ` v : υ =⇒ Γ ` t1[x := v] : τ (IHt1) and
∀x v τ υ Γ, Γ, x : υ ` t2 : τ =⇒ ` v : υ =⇒ Γ ` t2[x := v] : τ (IHt2) as induction hy-
potheses. We deduce Γ, x : υ ` t1 : κ → τ (H) and Γ, x : υ ` t2 : κ (H0), for some type κ,
by inversion over the hypothesis (Ha), namely Γ, x : υ ` (t1 t2) : τ. Using (H) and (Hb)
in (IHt1), and (H0) and (Hb) in (IHt2), we, respectively, obtain Γ ` t1[x := v] : κ → τ
and Γ ` t2[x := v] : κ, which prove the goal thanks to Definition 4 of the substitution
function and the rule (appt) in Figure 4.

4. t = ITE t1 t2 t3 for some terms t1, t2, and t3. The statement we intend to show in this
case turns out to be Γ ` (ITE t1 t2 t3)[x := v] : τ given ∀x v τ υ Γ, Γ, x : υ ` t1 : τ =⇒
` v : υ =⇒ Γ ` t1[x := v] : τ (IHt1), ∀x v τ υ Γ, Γ, x : υ ` t2 : τ =⇒ ` v : υ =⇒ Γ `
t2[x := v] : τ (IHt2) and ∀x v τ υ Γ, Γ, x : υ ` t3 : τ =⇒ ` v : υ =⇒ Γ ` t3[x := v] : τ
(IHt3) as induction hypotheses. It is quite easy to infer Γ, x : υ ` t1 : Bool (H), Γ, x : υ `
t2 : τ (H0), and Γ, x : υ ` t3 : τ (H1) by inversion over the hypothesis (Ha), namely
Γ, x : υ ` ITE t1 t2 t3 : τ. We then specialize (IHt1) with (H) and (Hb), (IHt2) with (H0)
and (Hb), and (IHt3) with (H1) and (Hb) to respectively obtain Γ ` t1[x := v] : Bool,
Γ ` t2[x := v] : τ and Γ ` t3[x := v] : τ. These are adequate to prove the statement
due to Definition 4 of the substitution function and the rule (itet) in Figure 4.

5. t = Fix t1 for some term t1. The goal of the case is of the following shape:
Γ ` (Fix t1)[x := v] : τ. We additionally have a single induction hypothesis
∀x v τ υ Γ, Γ, x : υ ` t1 : τ =⇒ ` v : υ =⇒ Γ ` t1[x := v] : τ (IHt1). The hy-
pothesis (Ha), Γ, x : υ ` Fix t1 : τ, entails by inversion that Γ, x : υ ` t1 : τ → τ (H).
We then specialize (IHt1) with (H) and (Hb) to have Γ ` t1[x := v] : τ → τ. This is
enough to close the goal thanks to Definition 4 of the substitution function and the
rule (f ixt) in Figure 4.

6. t = Plus t1 t2 for some terms t1 and t2. The goal we aim to close in this case is
Γ ` (Plus t1 t2)[x := v] : τ along with two induction hypotheses ∀x v τ υ Γ, Γ, x : υ `
t1 : τ =⇒ ` v : υ =⇒ Γ ` t1[x := v] : τ (IHt1), ∀x v τ υ Γ, Γ, x : υ ` t2 : τ =⇒ `
v : υ =⇒ Γ ` t2[x := v] : τ (IHt2). We infer Γ, x : υ ` t1 : Int (H) and Γ, x : υ ` t2 : Int
(H0) inverting the hypothesis (Ha). Lastly, we specialize (IHt1) with (H) and (Hb),
(IHt2) with (H0) and (Hb) to handle Γ ` t1[x := v] : Int, Γ ` t2[x := v] : Int which
prove the goal due to Definition 4 and the rule (plust) in Figure 4.

https://github.com/ekiciburak/extSTLC/blob/master/Typecheck.v#L230-L233
https://github.com/ekiciburak/extSTLC/blob/master/Typecheck.v#L230-L233

Axioms 2023, 12, 43 18 of 27

7. The cases with t, being either Minus t1 t2, Mult t1 t2, Eq t1 t2, or Gt t1 t2 follow the
same lines with the proof given in the above item 6. The cases where t = NVal n and
t = BVal b are trivial just because the substitution function has no impact on these
terms.

The preservation statement claims that the type of a given term does not vary under
beta-reduction.

Theorem 2 (Preservation). ∀t t′, ` t : τ ∧ t→β t′ =⇒ ` t′ : τ.

Proof. The proof proceeds by a structural induction over the term t. The cases involving
Ident x, λx : τ. e, NVal n, and BVal b trivially hold by contradiction: these terms do not
reduce any further, contradicting the assumption t→β t′.

1. The case with the application (t1 t2), for some arbitrary terms t1 and t2, are more
appealing and, thus, deserve a closer look. Here, we are supposed to show (for
all types τ) that ` t′ : τ holds; provided (t1 t2) : τ (H), (t1 t2) →β t′ (H0), and a
pair of induction hypotheses ∀t′ τ, ` t1 : τ ∧ t1 →β t′ =⇒ ` t′ : τ (IHt1) and
∀t′ τ, ` t2 : τ ∧ t2 →β t′ =⇒ ` t′ : τ (IHt2). Notice that by plugging in the
hypothesis (H) into Lemma 1, we can deduce the facts that ` t1 : υ → τ (H1) and
` t2 : υ (H2), for some type υ. At this stage, we apply a case analysis on the term t1
(below the goals) to close:

(a) t1 = λx : υ. e for some term e and type υ. We definitely obtain some t′ after
beta-reducing the term inhabited by the hypothesis (H) (λx : υ. e) t2 depending
on the choice of whether t2 is a value or not:

i. isvalue t2 = true. In this case, t′ amounts to e[x := t2], due to the
rule (app3) presented in Figure 2, and we are expected to prove that
` e[x := t2] : τ. Thanks to Lemma 5, to obtain ` e[x := t2] : τ (proven),
we need to close two goals, which are x : υ ` e : τ and ` t2 : υ:

• x : υ ` e : τ. Recall that we have ` λx : υ. e : υ → τ due to (H1).
We solve the goal just by inverting the rule (lamt) in Figure 4.

• ` t2 : υ. This one is exactly (H2).

ii. isvalue t2 = f alse. Thanks to Progress Theorem 1 and the hypothesis
(H1), we have isvalue t2 = true ∨ ∃t′2, t2 →β t′2. As the left side of
the disjunction is contradictory to the assumption of the case, we focus
on the right side, which tells us that there exists some t′2, such that t2 →β

t′2. Therefore, t′ amounts to (λx : υ. e) t′2 due to the rule (app4) presented
in Figure 2. Namely, we are supposed to show that ` (λx : υ. e) t′2 : τ
holds. By properly specializing the induction hypothesis (IHt2), we
end up with ` t′2 : υ. With this information in hand, just by employing
the rule (appt) in Figure 4, we ensure that the application (λx : υ. e) t′2
is of type τ under the empty context.

(b) t1 = (e1 e2) for some arbitrary terms e1 and e2. It is known by (H1) that the
application (e1 e2) is of type υ → τ under the empty context. Passing this
well-typed information to Progress Theorem 1, we have isvalue (e1 e2) =
true ∨ ∃t′1, (e1 e2) →β t′1. Due to the fact that isvalue (e1 e2) = f alse, we
are left with ∃t′1, (e1 e2) →β t′1. Therefore, the goal that we aim to prove in
this case takes the following shape: ` t′1 t2 : τ due to the rule (app2) presented
in Figure 2. Specializing the induction hypothesis (IHt1) with the correct
ingredients gives us ` t′1 : υ→ τ. Making use of the hypothesis (H2) and the
rule (appt) placed in Figure 4, we conclude that ` t′1 t2 : τ holds.

(c) t1 = ITE e1 e2 e3 for some arbitrary terms e1, e2 and e3. Similar to the proof
in the above item, we know that the term ITE e1 e2 e3 is of type υ → τ under

Axioms 2023, 12, 43 19 of 27

the empty context. This, Progress Theorem 1 gives us isvalue ITE e1 e2 e3 =
true∨ ∃t′1, ITE e1 e2 e3 →β t′1. Just that isvalue ITE e1 e2 e3 = true is incorrect,
we focus on ∃t′1, (ITE e1 e2 e3)→β t′1. This heads us toward proving ` t′1 t2 : τ
due to the rule (app2) presented in Figure 2. Similar to that of the above item (b),
we specialize in the induction hypothesis (IHt1) with the correct ingredients,
and have ` t′1 : υ → τ. We close this goal just by employing the hypothesis
(H2) and the rule (appt) appearing in Figure 4.

(d) t1 = Fix e1 for some arbitrary term e1. By chasing the exact same steps demon-
strated in the above items (b) and (c), we end up retaining ∃t′1, Fix e1 →β t′1
to show ` t′1 t2 : τ, which we solve again by putting the induction hypothesis
(IHt2) together with the rule (appt) in operation.

(e) t1 = (Plus e1 e2) for some arbitrary terms e1 and e2. The goal in this case is
proven by contradiction as due to the hypothesis (H1), the term t1 needs to be
of some arrow-type υ→ τ, but it is of type Int.

(f) The other cases in which the term t1 appears to be either NVal n, Minus e1 e2,
Mult e1 e2, Eq e1 e2, or Gt e1 e2, and could be proven in a similar manner with
that of the above item (e). The goal where t1 amounts to BVal b is similarly
proven with a single difference, where t1 is of type Bool, not Int. Lastly, the goal
with t1 = Ident x holds by contradiction as the term t1 is ill-typed under the
empty context.

2. t = ITE t1 t2 t3 for some terms t1, t2 and t3. In this case, we aim to prove for all types
τ that ` t′ : τ holds; given that ITE t1 t2 t3 : τ (H), ITE t1 t2 t3 →β t′ (H0) along with
three induction hypotheses ∀t′ τ, ` t1 : τ ∧ t1 →β t′ =⇒ ` t′ : τ (IHt1), ∀t′ τ, `
t2 : τ ∧ t2 →β t′ =⇒ ` t′ : τ (IHt2), and ∀t′ τ, ` t3 : τ ∧ t3 →β t′ =⇒ ` t′ : τ
(IHt3). Note also that we deduce the facts ` t1 : Bool (Ha), ` t2 : τ (Hb), and ` t3 : τ
(Hc) by specializing Lemma 2 with the hypothesis (H). The proof proceeds with a
case analysis over the term t1, and requires the following cases to be proven:

(a) The goals in which the term t1 is Ident x, NVal n, λx : υ. e, Plus e1 e2, Minus e1 e2,
Mult e1 e2, Eq e1 e2, or Gt e1 e2 are trivially shown by contradictions, as none
of these terms are of type Bool as expected by the hypothesis (Ha).

(b) t1 = (e1 e2) for some arbitrary terms e1 and e2. The hypothesis Ha tells us that
` (e1 e2) : Bool. This, with Progress Theorem 1, entails that isvalue (e1 e2) =
true ∨ ∃t′1, (e1 e2)→β t′1. The left side of the disjunction is obviously incorrect.
We, therefore, obtain ∃t′1, (e1 e2) →β t′1. Accordingly, the goal we intend to
prove in this case turns out to be ` ITE t′1 t2 t3 : τ due to the rule (ite3) presented
in Figure 2. By specializing the induction hypothesis (IHt1) with proper terms
and types, we have ` t′1 : Bool. Thanks to the hypotheses (Hb), (Hc), and the
rule (itet) given in Figure 4, we show that ` (ITE t′1 t2 t3) : τ.

(c) t1 = BVal b for Boolean b. We carry on with a case distinction on b:

• if b is Boolean true: ITE (BVal true) t2 t3 →β t2, thanks to the rule (ite1)
presented in Figure 2. Therefore, the goal takes the shape ` t2 : τ, which
is the hypothesis (Hb).

• if b is Boolean false: similarly, ITE (BVal false) t2 t3 →β t3, thanks to the
rule (ite2) stated in Figure 2. The goal is now ` t3 : τ. This is trivial as it is
exactly the hypothesis (Hc).

(d) t1 = ITE e1 e2 e3 for some arbitrary terms e1, e2 and e3. The hypothesis
(Ha) entails that ` ITE e1 e2 e3 : Bool. Progress Theorem 1 over this fact
gives isvalue ITE e1 e2 e3 = true ∨ ∃t′1, ITE e1 e2 e3 →β t′1. Provided that
isvalue ITE e1 e2 e3 = f alse, we focus on the right side of the disjunction;
that is ∃t′1, ITE e1 e2 e3 →β t′1. In this parallel, the goal we want to close is
` ITE t′1 t2 t3 : τ thanks to the rule (ite3) presented in Figure 2. By specializ-
ing the induction hypothesis (IHt1) with proper terms and types, we have

Axioms 2023, 12, 43 20 of 27

` t′1 : Bool. Thanks to the hypotheses (Hb), (Hc), and the rule (itet) stated in
Figure 4, we show that ` ITE t′1 t2 t3 : τ.

(e) t1 = Fix f for some term f . Similar to case (d) above, the hypothesis (Ha) en-
tails that ` Fix f : τ. This, with Progress Theorem 1, we deduce isvalue Fix f =
true ∨ ∃ f ′, Fix f →β f ′. As it is obvious that isvalue Fix f = f alse, we
are left with ∃ f ′, Fix f →β f ′. The goal we want to close here is that `
ITE f ′ t2 t3 : τ due to the rule (ite3) presented in Figure 2. We now special-
ize the induction hypothesis (IHt1) with proper terms and types, and obtain
` f ′ : Bool. Thanks to the hypotheses (Hb), (Hc), and the rule (itet) appearing
in Figure 4, we prove that ` ITE f ′ t2 t3 : τ.

3. For the case Fix f , we aim to prove for all types τ that ` f ′ : τ holds; given that
Fix f : τ (H), Fix f →β t′ (H0) strengthened with the induction hypothesis ∀ f ′ τ, `
f : τ ∧ f →β f ′ =⇒ ` f ′ : τ (IH f). Moreover, we have ` f : τ → τ (Ha) when
Lemma 3 is applied to the hypothesis (H). The proof proceeds with a case analysis
over the term f , and requires the following cases to be proven:

(a) The goals in which the term t1 is any of Ident x, NVal n, BVal b, Plus e1 e2,
Minus e1 e2, Mult e1 e2, Eq e1 e2 and Gt e1 e2 are trivially demonstrated by
contradiction as none of these terms are of the arrow type τ → τ as expected
by the hypothesis (Ha).

(b) f = λx : υ. e for some term e and type υ. Recall that the rule (f ix1) stated in
Figure 2, we have Fix (λx : υ. e) →β e[x := Fix (λx : υ. e)]. Notice that, on a
side note, the term λx : υ. e needs to be of type τ → τ due to the hypothesis
(Ha). By inversion here, we deduce that υ = τ and x : τ ` e : τ (Hb). Having
said that, let us look into the statement that needs to be proven in this case:
` e[x := Fix (λx : τ. e)] : τ (due to the rule (f ix1) presented in Figure 2). Thanks
to Lemma 5, to prove the mentioned goal, we need to close two goals: x : τ `
e : τ and ` Fix (λx : τ. e) : τ.

• x : τ ` e : τ. This is exactly the hypothesis (Hb).
• ` Fix (λx : τ. e) : τ. This one matches with the hypothesis (H).

(c) f = (e1 e2) for some arbitrary terms e1 and e2. The hypothesis (Ha) entails that
` (e1 e2) : τ → τ. Employing this fact within Progress Theorem 1, we deduce
isvalue (e1 e2) = true ∨ ∃ f ′, (e1 e2) →β f ′. The left side of the disjunction
is obviously incorrect. We therefore obtain ∃ f ′, (e1 e2) →β f ′. Thus the goal
turns out to be ` Fix f ′ : τ due to the rule (f ix2) presented in Figure 2. By
properly specializing the induction hypothesis (IH f), we have ` f ′ : τ → τ.
Now by the rule (f ixt) given in Figure 4, we conclude that Fix f ′ : τ.

(d) f = ITE e1 e2 e3 for some arbitrary terms e1, e2 and e3. Similar to case (c)
above, the hypothesis (Ha) entails that ` ITE e1 e2 e3 : τ → τ. Progress
Theorem 1 specialized with this fact implies that isvalue ITE e1 e2 e3 =
true ∨ ∃t′1, ITE e1 e2 e3 →β t′1. Provided that isvalue ITE e1 e2 e3 = f alse,
we focus on the right side of the disjunction; that is ∃ f ′, ITE e1 e2 e3 →β f ′.
In this parallel, the goal we want to close here is ` Fix f ′ : τ due to the rule
(f ix2) presented in Figure 2. We now specialize the induction hypothesis (IH f),
and obtain ` f ′ : τ → τ. Now by the rule (f ixt) stated in Figure 4, we conclude
that Fix f ′ : τ.

(e) f = Fix e for some arbitrary term e. By following the exact same steps pre-
sented in the above items (c) and (d), we end up having ∃ f ′, Fix e →β f ′ to
show ` Fix f ′ : τ (due to the rule (f ix2) presented in Figure 2) which we solve
again by putting the induction hypothesis (IH f) together with the rule (f ixt)
in use.

4. Concerning the case with t = Plus t1 t2, for some arbitrarily chosen terms, t1 and t2,
we want to prove for all types τ that ` t′ : τ holds, provided that ` Plus t1 t2 : τ (H),
Plus t1 t2 →β t′ (H0) and two induction hypotheses ∀t′ τ, ` t1 : τ ∧ t1 →β t′ =⇒

Axioms 2023, 12, 43 21 of 27

` t′ : τ (IHt1), ∀t′ τ, ` t2 : τ ∧ t2 →β t′ =⇒ ` t′ : τ (IHt2). In addition to these,
we enrich the set of hypotheses with τ = Int (Ha), ` t1 : Int (Hb), and ` t2 : Int (Hc)
just by applying Lemma 4 over the hypothesis (H). The proof proceeds with a case
distinction over the term t1, and throws us cases to prove:

(a) The goals in which term t1 is Ident x, BVal b, (λx : υ. e), (Eq e1 e2), or (Gt e1 e2)
and trivially proven by contradiction as none of these terms are of type Int as
expected by the hypothesis (Hb).

(b) t1 = (e1 e2) for some arbitrary terms e1 and e2. We deduce out of the hypothesis
(Hb) that ` (e1 e2) : Int. With this information, we could further infer that
isvalue (e1 e2) = true ∨ ∃t′1, (e1 e2) →β t′1 thanks to Progress Theorem 1.
Given that isvalue (e1 e2) = f alse, we take ∃t′1, (e1 e2) →β t′1 into account,
and therefore the goal takes the following shape: ` Plus t′1 t2 : Int, due to the
rule (plus3) presented in Figure 2. We could put the induction hypothesis
(IHt1) into the following shape: ` t′1 : Int employing the hypothesis (Hb).
Now, by using the rule (plust), and the hypothesis (Hc), we conclude that
` Plus t′1 t2 : Int holds.

(c) t1 = NVal n for some Coq natural n. Thanks to the hypothesis (Hc), we already
know that ` t2 : Int. Applying Progress Theorem 1 to this fact, we obtain
isvalue t2 = true ∨ ∃t′2, t2 →β t′2. Destructing this disjunction throws us the
following two goals to prove, independently assuming isvalue t2 = true and
∃t′2, t2 →β t′2:

• isvalue t2 = true. The only choice that makes this case non-contradictory
is that of t2 = NVal m for a Coq natural m. Other cases lead to contra-
dictions disobeying either isvalue t2 = true or ` t2 : Int. Using the
rule (plus1) shown in Figure 2, we have Plus (NVal n) (NVal m) →β

NVal (n+m). Therefore, the statement we try proving here is ` NVal (n+
m) : Int, which is entailed by the rule (nvalt) presented in Figure 4.

• ∃t′2, t2 →β t′2. We proceed with a case distinction on the term t2. Note
that the statements where t2 is a value trivially hold, no further reductions
from t2 are possible, which contradicts the assumption of the case. We
have the statement ` Plus (NVal n) t′2 : Int to be proven for the remaining
cases, due to the rule (plus2) stated in Figure 2. To prove this statement,
we specialize the induction hypothesis (IHt2) with proper terms and
types, and turn it into ` t′2 : Int. This fact and the rule (plust) presented
in Figure 4 give us ` Plus (NVal n) t′2 : Int.

(d) t1 = ITE e1 e2 e3 for some arbitrary terms e1, e2 and e3. The hypothesis (Hb)
can be used to infer ` ITE e1 e2 e3 : Int. Using this within Progress Theorem 1,
it is possible to infer isvalue ITE e1 e2 e3 = true ∨ ∃t′1, ITE e1 e2 e3 →β t′1.
Recall that only the right side of this disjunction is useful as the other leads to
a contradiction. Building on this, our goal here turns out to be ` Plus t′1 t2 : Int
due to the rule (plus3) given in Figure 2. We then specialize the induction
hypothesis (IHt1) properly and obtain ` t′1 : Int. By the rule (plust) and the
hypothesis (Hc), we have ` Plus t′1 t2 : Int proven.

(e) t1 = Fix f for some arbitrary term f . We follow the exact same steps pre-
sented in the above items (b) and (d): first infer ∃t′1, Fix f →β t′1 then show
` Plus t′1 t2 : Int by employing the rule (plust), and putting the induction
hypothesis (IHt1) in the intended shape.

(f) t1 = Plus e1 e2 for some arbitrary terms e1 and e2. We follow the same step
with that of the above item (e). That is, we first have ∃t′1, Plus e1 e2 →β t′1 out
of Progress Theorem 1, and aim at proving ` Plus t′1 t2 : Int (thanks to the rule
(plus3) presented in Figure 2). The proof is constructed out of the rule (plust)
and correctly shaped induction hypothesis (IHt1).

Axioms 2023, 12, 43 22 of 27

(g) The other cases in which the term t1 appears to be Minus e1 e2 or Mult e1 e2
could be proven in a similar manner to Plus e1 e2 described in the above
item (f).

5. The remaining cases with, for instance, Mult t1 t2, could be proven, employing a very
similar idea presented in the above item 4.

We summarize below, in a Coq implementation, a proof of Theorem 2 marking the
items presented in the above pen-and-paper proof with comment-outs. Please refer to the
accompanying library for the complete proof.

Lemma preservation: ∀ (t t’: term) (T: type),
typecheck nil t = Some T ∧ beta t = Some t’ → typecheck nil t’ = Some T.

Proof. intro t.
induction t; intros t’ T (H, H0).
...
- ... (*1*)

apply istypechecked_app in H. (*Lemma 3.1*)
destruct H as (U, (H1, H2)).
case_eq t1.
+ ...
+ intros x v e Ht1. (*1-a: t1 = λx : υ. e*)

...
case_eq (isvalue t2); intros.
++ ... (*1-a-i*)

specialize (subst_preserves_typing e t2 x T U nil); intros. (*Lemma 3.5*)
+++ ... (*1-a-i-bullet_1*)

case_eq (typecheck (extend nil x v) e); intros.
* ...
* rewrite H6 in H1. contradict H1; easy.

+++ exact H2. (*1-a-bullet_2*)
++ ... (*1-a-ii*)

specialize (progress t2 U H2); intros. (*Theorem 3.1*)
destruct H3 as [H3 | H3].
+++ ...

contradict H3; easy.
+++ ...

specialize (IHt2 t2’ U (conj H2 H3)).
rewrite IHt2, type_eqb_refl. easy.

+ intros e1 e2 Ht1. (*1-b: t1 = e1 e2*)
...
assert (isvalue (App e1 e2) = false) by easy.
...
specialize (progress t1 (Arrow U T) H1); intros. (*Theorem 3.1*)
destruct H3 as [H3 | H3].
++ ... contradict H3; easy.
++ ...

specialize (IHt1 t1’ (Arrow U T) (conj H1 H3)).
rewrite IHt1, H2, type_eqb_refl. easy.

+ ...
+ intros e1 e2 Ht1. (*1-e: t1 = Plus e1 e2*)

...
case_eq (typecheck nil e1); intros.
++ ...

case_eq (typecheck nil e2); intros.
+++ ... destruct t; contradict H1; easy.
+++ ... contradict H0. easy.
+++ contradict H. easy.
+++ contradict H. easy.

+ ...
- ... (*2*)

apply istypechecked_ite in H. (*Lemma 3.2*)
destruct H as (Ha, (Hb, Hc)).
case_eq t1.
+ ...
+ intros e1 e2 Ht1. (*2-b: t1 = e1 e2*)

...
assert (isvalue (ITE t1 t2 t3) = false) by easy.
...
specialize (progress (App e1 e2) Bool Ha); intros. (*Theorem 3.1*)
destruct H1 as [H1 | H1].
++ ... contradict H1; easy.
++ destruct H1 as (t1’, H1).

...
specialize (IHt1 t1’ Bool (conj Ha H1)).

Axioms 2023, 12, 43 23 of 27

rewrite IHt1, Hb, Hc, !type_eqb_refl. easy.
+ intros b Ht1. (*2-c: t1 = BVal b*)

rewrite Ht1 in H0.
case_eq b; intros.
++ ... rewrite ← H2. easy. (*2-c-bullet_1*)
++ ... rewrite ← H2. easy. (*2-c-bullet_2*)

+ ...
- ... (*3*)

apply istypechecked_fix in H. (*Lemma 3.3*)
case_eq t.
+ ...
+ intros x v e Ht1. (*3-b: t1 = λx : υ. e*)

...
case_eq (typecheck (extend nil x v) e); intros.
++ rewrite H1 in H.

specialize (subst_preserves_typing
e (Fix (Lambda x v e)) x T T nil); intros. (*Lemma 3.5*)

...
+++ ...
+++ inversion H. subst. easy.
+++ rewrite Ht1 in Ha. easy.

++ ...
- apply istypechecked_plus in H. (*4*) (*Lemma 3.4*)

destruct H as (Ha, (Hb, Hc)).
...
case_eq t1.
+ ...
+ intros n Ht1. (*4-c: t1 = NVal n*)

rewrite Ht1 in H0. cbn in H0.
specialize (progress t2 Int Hb); intros. (*Theorem 3.1*)
destruct H as [H | H].
++ ... (*4-c-bullet_1*)

case_eq t2; try (intros; rewrite H1 in H0; contradict H; easy).
...
rewrite Ht2 in H0. inversion H0. cbn. subst. easy.

++ destruct H as (t2’, H). (*4-c-bullet_2*)
rewrite H in H0.
case_eq t2.
+++ ...
+++ ...

specialize (IHt2 t2’ Int (conj Hb H)).
rewrite IHt2, Hc. easy.

- ... (*5*)
- ...

Qed.

Definition 5 (Multi-Step Evaluation). We define the multi-step evaluation function (evaln) as
the reflexive-transitive closure of the beta-reduction upper-bounded by a natural n:

evaln t 0 → t
evaln t (S n) → let t→β t′ in evaln t′ n

In Coq, we wrap the output term of the evaln function with Coq’s option type. By this, we aim
to handle the cases in which t has no further evaluation steps with None:

Fixpoint evaln (t: term) (n: nat): option term ,
match n with

| O ⇒ Some t
| S n ⇒ let t’ , beta t in

match t’ with
| Some t’ ⇒ evaln t’ n
| None ⇒ None

end
end.

Definition 6 (Stuck). A term t is said to be stuck if there exists no t′, such that t→β t′ and t is
not a value. That formally is

∀t, @t′, t→β t′ ∧ isvalue t = f alse.

It is straightforward to reflect this definition into Coq:

Axioms 2023, 12, 43 24 of 27

Definition stuck (t: term), beta t = None ∧ isvalue t = false.

The soundness statement just combines the claims of that of progress and preservation.
Namely, for every well-typed term t, if after n reduction steps, t reduces into some term t′

then t′ cannot be stuck.

Theorem 3 (Type Soundness). ∀n t t′ τ, ` t : τ ∧ evaln t n = t′ =⇒ ¬stuck t′.

Proof. Unfolding the definitions stuck and not, we are supposed to prove False (in
Coq’s Prop) provided that ` t : τ (Ha), evaln t n = t′ (Hb), @t′′, t′ →β t′′ (Hne) and
isvalue t′ = f alse (Hnv). The proof proceeds by a structural induction over the natural
number n throwing us two cases to prove.

1. n = 0. Notice that the hypothesis (Hb) (with n = 0) entails that t = t′. We employ
Progress Theorem 1 specialized by the hypothesis (Ha), and deduce isvalue t = true
∨ ∃t′′, t →β t′′. The goal, in this case, is trivially proven as the left side of the
disjunction contradicts with (Hnv), while the right-hand side contradicts with (Hne).

2. n = S m. In this case, we additionally have the induction hypothesis ∀t t′ τ, `
t : τ =⇒ evaln t m = t′ =⇒ @t′′, t′ →β t′′ ∧ isvalue t′ = f alse =⇒ False
(IHn). We again make use of Progress Theorem 1 specialized by the hypothesis
(Ha), and obtain isvalue t = true ∨ ∃e, t →β e. We now destruct this fact, and are
supposed to prove the goal, which is False here, twice assuming isvalue t = true
and ∃e, t→β e independently:

• isvalue t = true. It is obvious in this case that the term t does not reduce even
a single step further. Namely, there is no t′, such that evaln t (S m) = t′, which
contradicts the hypothesis (Hb), and closes the goal.

• ∃e, t →β e. We know that there is some term e into which the term t reduces
in a single beta-step. We also know by the hypothesis (Hb) that t reduces into
some term t′ in S m (or m + 1) steps. Putting these together, we infer that the
term e reduces into the t′ in m steps, namely evaln e m = t′. Moreover, we
specialize the Preservation Theorem 2 with the hypothesis (Ha) and the fact
that t →β e to retain ` e : τ (Hte). This time, making use of (Hte) and the fact
that evaln e m = t′, we put the induction hypothesis (IHn) into the following
shape: @t′′, t′ →β t′′ ∧ isvalue t′ = f alse =⇒ False. Into this, we plug the
conjunction of the hypotheses (Hne) and (Hnv), and obtain a proof of False,
which literally implies everything.

In a Coq implementation, the proof above could be summarized as follows:

Theorem soundness: ∀ n t t’ T,
typecheck nil t = Some T ∧ evaln t n = Some t’ → ¬ stuck t’.

Proof. unfold stuck, not intro n.
induction n as [| m IHn]; intros t t’ T (Ha, Hb) (Hne, Hnv).
- ... (*1*)

specialize (progress t T Ha); intros Hp. (*Theorem 3.1*)
destruct Hp as [Hp | Hp].
+ ...

contradict Hnv; easy.
+ ...

contradict Hne; easy.
- ... (*2*)

specialize (progress t T Ha); intros Hp. (*Theorem 3.1*)
destruct Hp as [Hp | Hp].
+ ... (*2-bullet_1*)

contradict Hb; easy.
+ ... (*2-bullet_2*)

specialize (preservation t e T (conj Ha He)); intros. (*Theorem 3.2*)
specialize (IHn e t’ T (conj H Hb)).
apply IHn. split; easy.

Qed.

Axioms 2023, 12, 43 25 of 27

4. Discussion

Observe that the detailed interpreter was developed in an extensible fashion. Namely,
it is possible to extend the language of types, such that the object language becomes
polymorphically typed. One can similarly extend the language of terms with other pro-
gramming constructs, such as pairs, lists, match constructs, etc., to handle a richer object
language safely interpreted. The formalization already contains an extension of λ→ in-
terpreted as an application. For a use case that deals with a more involved and richer
language, we kindly ask the reader to refer to a definitional interpreter (Section 1.1) for a
polymorphically typed functional language written in Haskell. The same approach could
easily be followed in the current Coq formalization (with additional cases brought over to
prove) and reserved to be targeted as future work.

Obviously, for an object language that supports dependent types, the presented ap-
proach would not work well. That is because in a dependently typed setting, type-checking
requires an evaluation; thus, it is better to have a single language for terms and types.

Remark also that interpreting object languages with computational side effects is
beyond the scope of the implementation presented here. It is possible to extend the
interpreter’s formalization in Coq with certain monads, as in [29], and handle related
impurities. Moreover, monads could benefit from generating fresh variables to avoid
’variable capture’ that potentially comes up in substituting Lambda terms.

5. Conclusions

We developed (in the proof assistant Coq) a definitional interpreter and a type-checker
for a purely functional language based on (some extension of) the simply typed Lambda
calculus. We formally prove that the type-checker is sound with respect to the evaluation
strategy. Namely, every term that type-checks also evaluates (or reduces) unless it is a value.
We formalized the soundness proof by employing progress and presentation properties,
and discuss the related lemmata in technical detail in the pen-and-paper style containing
pointers to the corresponding Coq code. Moreover, there are a few items that could extend
the development and be set as future goals. We list them below.

• The formalization does not handle de Bruijn indices [26] or other methods [27,28] that
help avoid the variable capture, concerning terms involving free variables. The techni-
cal machinery related to these methods will be implemented.

• Extending the interpreter to handle polymorphically typed Lambda calculus embark-
ing on the same approach presented here (a definitional interpreted for a polymorphi-
cally typed functional language coded in Haskell) is another goal to achieve.

• The interpreter could be expanded and scaled to handle some other programming
blocks, such as pairs, match-end constructs, let bindings, pairs, lists, and records.

The accompanying Coq sources were tested to compile with coqc version coq-8.15.2
within approximately 43 s on an Intel Core i7-7600U machine running Ubuntu 22.04 LTS
over 16 GB of external memory.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available at https://github.
com/ekiciburak/extSTLC (accessed on 4 September 2022).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Organization of the Coq Sources

To declare terms and types, we employ Coq inductive predicates. As mentioned
earlier, type-checking and beta-reduction were implemented, embarking on the definitional
approach. The return types of both definitions are wrapped by Coq’s option type to handle
ill-typed terms and those do not reduce any further. Some relevant Coq files from the
library are itemized below, such that the subsequent file depends on the previously stated
ones. For instance, Soundness.v depends on all files.

https://github.com/ekiciburak/extSTLC
https://github.com/ekiciburak/extSTLC

Axioms 2023, 12, 43 26 of 27

• Auxiliaries.v: includes some simple proofs of statements about contexts that are
indeed defined as lists of pairs.

• Terms.v: involves declarations of terms and types along with decidable equality
among terms and types, and reflection proofs of such equalities into Coq’s Prop.

• Typecheck.v: the file in which the function typecheck is implemented. It also contains
proofs of some properties given in Lemmata 1–5. To exemplify how the typecheck
function works, we implemented the factorial function as follows:

Definition factorial ,
Lambda "f" (Arrow Int Int)
(Lambda "x" Int

(ITE (Gt (Ident "x") (NVal 1))
(Mult (Ident "x") (App (Ident "f") (Minus (Ident "x") (NVal 1))))
(NVal 1))).

One could run the typecheck function on the term Fix factorial under the empty
context (nil) with the Compute vernacular, and monitor the output that is commented
out in the below snippet:

Compute typecheck nil (Fix factorial). (* = Some (Arrow Int Int) *)

Of course, the below computation returns None as the term is ill-typed under the
empty context:

Compute (typecheck nil (App (NVal 5) (ITE (NVal 3) (NVal 5) (NVal 10)))).
(* = None *)

• Eval.v: includes the single-step and multi-step beta-reduction functions, respectively,
named beta and evaln. Observe that in exactly 40 steps, the factorial function
computes the value of factorial 7 to be 5040:

Compute (evaln (App (Fix factorial) (NVal 7)) 40). (* = Some (NVal 5040) *)

Unlikely, the below computation,

Compute (beta (App (NVal 5) (ITE (NVal 3) (NVal 5) (NVal 10)))). (* = None *)

returns None as the input term is stuck.
• Progress.v: contains the proof of Progress Theorem 1.
• Preservation.v: includes the proof of Preservation Theorem 2.
• Soundness.v: contains what it means for a term being stuck (Definition 6) alongside

the proof of Soundness Theorem 3.

References
1. Reynolds, J.C. Definitional Interpreters for Higher-Order Programming Languages. High. Order Symb. Comput. 1998, 11, 363–397.

[CrossRef]
2. Church, A. A Formulation of the Simple Theory of Types. J. Symb. Log. 1940, 5, 56–68. [CrossRef]
3. The Coq Development Team. The Coq Proof Assistant Reference Manual; The Coq Development Team: Paris, France, 2018;

Version 8.8.1.
4. Wright, A.K.; Felleisen, M. A Syntactic Approach to Type Soundness. Inf. Comput. 1994, 115, 38–94. [CrossRef]
5. Poulsen, C.B.; Rouvoet, A.; Tolmach, A.; Krebbers, R.; Visser, E. Intrinsically-typed definitional interpreters for imperative

languages. Proc. ACM Program. Lang. 2018, 2, 16:1–16:34. [CrossRef]
6. Altenkirch, T.; Reus, B. Monadic Presentations of Lambda Terms Using Generalized Inductive Types. In Proceedings of the

Computer Science Logic, 13th International Workshop, CSL ’99, 8th Annual Conference of the EACSL, Madrid, Spain, 20–25
September 1999; Flum, J., Rodríguez-Artalejo, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1683, Lecture Notes
in Computer Science, pp. 453–468. [CrossRef]

7. Reynolds, J.C. The Meaning of Types From Intrinsic to Extrinsic Semantics. BRICS Rep. Ser. 2000, 7, 1–35. [CrossRef]

http://doi.org/10.1023/A:1010027404223
http://dx.doi.org/10.2307/2266170
http://dx.doi.org/10.1006/inco.1994.1093
http://dx.doi.org/10.1145/3158104
http://dx.doi.org/10.1007/3-540-48168-0_32
http://dx.doi.org/10.7146/brics.v7i32.20167

Axioms 2023, 12, 43 27 of 27

8. Augustsson, L.; Carlsson, M. An exercise in dependent types: A well-typed interpreter. In Workshop on Dependent Types in
Programming, Gothenburg; 1999. Available online: https://www.semanticscholar.org/paper/An-exercise-in-dependent-types%
3A-A-well-typed-Augustsson-Carlsson/5dae20b002f4e9d91e60db6af192c69d7fe764c6 (accessed on 4 September 2022).

9. Rouvoet, A.; Poulsen, C.B.; Krebbers, R.; Visser, E. Intrinsically-typed definitional interpreters for linear, session-typed languages.
In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans,
LA, USA, 20–21 January 2020; Blanchette, J., Hritcu, C., Eds.; ACM: New York, NY, USA, 2020; pp. 284–298. [CrossRef]

10. Darais, D.; Labich, N.; Nguyen, P.C.; Horn, D.V. Abstracting definitional interpreters (functional pearl). Proc. ACM Program. Lang.
2017, 1, 12:1–12:25. [CrossRef]

11. Darais, D.; Might, M.; Horn, D.V. Galois transformers and modular abstract interpreters: Reusable metatheory for program
analysis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, 25–30 October 2015; Aldrich, J., Eugster,
P., Eds.; ACM: New York, NY, USA, 2015; pp. 552–571. [CrossRef]

12. Sergey, I.; Devriese, D.; Might, M.; Midtgaard, J.; Darais, D.; Clarke, D.; Piessens, F. Monadic abstract interpreters. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, 16–19
June 2013; Boehm, H., Flanagan, C., Eds.; ACM: New York, NY, USA, 2013; pp. 399–410. [CrossRef]

13. Johnson, J.I.; Sergey, I.; Earl, C.; Might, M.; Horn, D.V. Pushdown flow analysis with abstract garbage collection. J. Funct. Program.
2014, 24, 218–283. [CrossRef]

14. Glück, R. Simulation of Two-Way Pushdown Automata Revisited. In Proceedings of the Semantics, Abstract Interpretation, and
Reasoning about Programs: Essays Dedicated to David A. Schmidt on the Occasion of his Sixtieth Birthday, EPTCS, Manhattan,
KS, USA, 19–20 September 2013; Banerjee, A., Danvy, O., Doh, K., Hatcliff, J., Eds.; 2013; Volume 129, pp. 250–258. [CrossRef]

15. Johnson, J.I.; Horn, D.V. Abstracting abstract control. In Proceedings of the DLS’14, Proceedings of the 10th ACM Symposium on
Dynamic Languages, part of SLASH 2014, Portland, OR, USA, 20–24 October 2014; Black, A.P., Tratt, L., Eds.; ACM: New York,
NY, USA, 2014; pp. 11–22. [CrossRef]

16. Gilray, T.; Lyde, S.; Adams, M.D.; Might, M.; Horn, D.V. Pushdown control-flow analysis for free. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
20–22 January 2016; Bodík, R., Majumdar, R., Eds.; ACM: New York, NY, USA, 2016; pp. 691–704. [CrossRef]

17. Amin, N.; Rompf, T. Type soundness proofs with definitional interpreters. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, 18–20 January 2017; Castagna, G., Gordon, A.D., Eds.; ACM:
New York, NY, USA, 2017; pp. 666–679. [CrossRef]

18. Pierce, B.C.; de Amorim, A.A.; Casinghino, C.; Gaboardi, M.; Greenberg, M.; Hriţcu, C.; Sjöberg, V.; Tolmach, A.; Yorgey, B.
Programming Language Foundations; Software Foundations Series; Electronic textbook; 2022; Volume 2, Version 5.5. Available online:
http://www.cis.upenn.edu/~bcpierce/sf (accessed on 1 August 2019).

19. Koprowski, A. A Formalization of the Simply Typed Lambda Calculus in Coq; INRIA: Le Chesnay-Rocquencourt, France, 2006.
20. Wei, G. A Soundness Proof of STLC by Definitional Interpreters in Agda. 2019. Available online: https://continuation.passing.

style/blog/stlc-soundness.html (accessed on 1 August 2018).
21. van Der Bilt, P. STLC in Coq Extended with a Sound Big-Step Semantics, Functions as Closures and Records as Lists. Coq-Lang-

Playarea. 2015. Available online: https://github.com/pvanderbilt/coq-lang-playarea (accessed on 1 August 2019).
22. Barendregt, H. Introduction to Generalized Type Systems. J. Funct. Program. 1991, 1, 125–154. [CrossRef]
23. Girard, J. The System F of Variable Types, Fifteen Years Later. Theor. Comput. Sci. 1986, 45, 159–192. [CrossRef]
24. Coquand, T.; Huet, G.P. The Calculus of Constructions. Inf. Comput. 1988, 76, 95–120. [CrossRef]
25. Moggi, E. Notions of Computation and Monads. Inf. Comput. 1991, 93, 55–92. [CrossRef]
26. Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with

application to the Church-Rosser theorem. Indag. Math. Proc. 1972, 75, 381–392. [CrossRef]
27. Charguéraud, A. The Locally Nameless Representation. J. Autom. Reason. 2012, 49, 363–408. [CrossRef]
28. Chlipala, A. Parametric higher-order abstract syntax for mechanized semantics. In Proceeding of the 13th ACM SIGPLAN

International Conference on Functional Programming, ICFP 2008, Victoria, BC, Canada, 20–28 September 2008; pp. 143–156.
[CrossRef]

29. Nigron, P.; Dagand, P. Reaching for the Star: Tale of a Monad in Coq. In Proceedings of the 12th International Conference on
Interactive Theorem Proving, ITP 2021, Rome, Italy (Virtual Conference), 29 June–1 July 2021; Cohen, L., Kaliszyk, C., Eds.;
Schloss Dagstuhl-Leibniz-Zentrum für Informatik: Wadern, Germany, 2021; Volume 193, LIPIcs, pp. 29:1–29:19. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.semanticscholar.org/paper/An-exercise-in-dependent-types%3A-A-well-typed-Augustsson-Carlsson/5dae20b002f4e9d91e60db6af192c69d7fe764c6
https://www.semanticscholar.org/paper/An-exercise-in-dependent-types%3A-A-well-typed-Augustsson-Carlsson/5dae20b002f4e9d91e60db6af192c69d7fe764c6
http://dx.doi.org/10.1145/3372885.3373818
http://dx.doi.org/10.1145/3110256
http://dx.doi.org/10.1145/2814270.2814308
http://dx.doi.org/10.1145/2491956.2491979
http://dx.doi.org/10.1017/S0956796814000100
http://dx.doi.org/10.4204/EPTCS.129.15
http://dx.doi.org/10.1145/2661088.2661098
http://dx.doi.org/10.1145/2837614.2837631
http://dx.doi.org/10.1145/3009837.3009866
http://www.cis.upenn.edu/~bcpierce/sf
https://continuation.passing.style/blog/stlc-soundness.html
https://continuation.passing.style/blog/stlc-soundness.html
https://github.com/pvanderbilt/coq-lang-playarea
http://dx.doi.org/10.1017/S0956796800020025
http://dx.doi.org/10.1016/0304-3975(86)90044-7
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/1385-7258(72)90034-0
http://dx.doi.org/10.1007/s10817-011-9225-2
http://dx.doi.org/10.1145/1411204.1411226.
http://dx.doi.org/10.4230/LIPIcs.ITP.2021.29

	Introduction
	Related Work and Contributions
	Organization of the Paper

	A Quick Recap of the Calculus
	Evaluation Strategies
	Extensions
	A Type System with a Coq Implementation
	A Definitional Interpreter in Coq

	Type Soundness
	Discussion
	Conclusions
	Organization of the Coq Sources
	References

