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Abstract: The purpose of this article was to establish manifold versions of existence theorems for
generalized vector quasi-equilibrium problems in locally compact and σ-compact spaces without any
continuity assumption. The fixed-point theorem in a product Hadamard manifold is the key focus of
our discussion. We further applied our theorems to saddle point and minimax problems.
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1. Introduction

Equilibrium theory is as an essential branch of applied mathematics and has become
a main inspiration for research in diverse research, such as fixed point theory, variational
inequalities, complementarity problems, convex optimization problems, saddle point
problems, and metric fixed-point applications; for example, see Aussel et al. [1], Blum and
Oettli [2], Bueno et al. [3], Cotrina and García [4], Debnath et al. [5], Noor and Oettli [6],
Park [7], and Todorčević [8].

Recently, numerous researchers have investigated vector equilibrium problems, such
as Ansari [9] and Balaj [10]. Given two nonempty sets X and Y and a Hausdorff topological
vector space E, let F : X × Y × X → 2E, Q : X → 2X and S : X → 2Y be multifunctions.
Suppose that C : X → 2E is a multifunction such that for each x ∈ X, C(x) is a closed
pointed convex cone in E with int C(x) 6= ∅. We are most interested in the following two
types of generalized vector quasi-equilibrium problems (GVQEPs):

1. GVQEP-I: find (x0, y0) ∈ X×Y such that x0 ∈ Q(x0), y0 ∈ S(x0) and

F(x0, y0, z) * −int C(x0), for all z ∈ Q(x0).

2. GVQEP-II: find (x0, y0) ∈ X×Y such that x0 ∈ Q(x0), y0 ∈ S(x0) and

F(x0, y0, z) ⊆ C(x0) for all z ∈ Q(x0).

Every solution of GVQEP-II must be a solution of GVQEP-I. Suppose that E = R, C(x) =
[0, ∞) for all x ∈ R, and ψ : X × Y× X → R is a real-valued function. In this case, we let
F(x, y, z) = ψ(x, y, z) for (x, y, z) ∈ X×Y×X. Then, both problems (I) and (II) are reduced
to the same generalized quasi-equilibrium problem (GQEP): find (x0, y0) ∈ X × Y such
that x0 ∈ Q(x0), y0 ∈ S(x0) and

ψ(x0, y0, z) ≥ 0 for all z ∈ Q(x0).

In 1987, Parida and Sen [11] first considered GQEPs in finite-dimensional spaces.
Our primary goal is to develop new existence theorems for GVQEPs of types I and II in

Hadamard manifolds without any continuity or monotonicity assumption on F. Hadamard
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manifolds are introduced in Section 2. We confine our attention to the case where each of X
and Y is a locally compact and σ-compact set in a Hadamard manifold. Because mathe-
maticians typically work with multifunctions from a compact space to a topological vector
space, this setting will be technically challenging. Nevertheless, we intend to generalize the
notion of cone-convexities for multifunctions in topological vector spaces to manifolds (see
Definition 1) and pursue a fixed-point theorem approach in a product Hadamard manifold
(see Theorem 3) to overcome these topological and geometric difficulties. To the best of
our knowledge, no previous research has investigated existence theorems for GVQEPs
associated to locally compact and σ-compact sets in Hadamard manifolds.

Many real-life problems can be equivalently formulated as variational inequalities or
boundary value problems on Riemannian manifolds. It turns out that the generalization of
topological concepts and techniques on topological vector spaces to Riemannian manifolds
is extremely important in the theory of variational inequalities. The main reference for
this material is Németh [12]. Numerous recent works have sought to determine which
Riemannian manifolds provide a useful framework for research on related optimization
and equilibrium problems. Moreover, many concepts and techniques regarding fitting in
Euclidean spaces have been extended to Riemannian manifolds. Most of these generalized
methods require the sectional curvature of a Riemannian manifold to be nonpositive.
Hence, Hadamard manifolds, which have these characteristics, have drawn attention
from researchers as a suitable framework for problems in diverse disciplines. Examples
include Ansari and Babu [13], Huang [14,15], Iusem and Mohebbi [16], Park [17], and
Upadhyay et al. [18].

This paper is organized as follows. In Section 2 we define the notation and provide
some background information. Sections 3 and 4 outline existence results for GVQEP-I and
GVQEP-II, respectively, in a Hadamard manifold; see Theorems 4, 5, 9, and 10. Finally,
in Section 5 the results established in Sections 3 and 4 are applied to study the GQEP
(Theorem 13) and minimax problems (Theorems 14 and 15 and Corollary 3).

A still unsolved question is whether we can extend our results for multifunctions with
topological vector range space to a Riemannian manifold. One of the tough challenges for
all researchers in this domain is there is no natural way to define a cone on a Riemannian
manifold. Our results can be regarded as a crucial first step to the study of this topic.

2. Preliminaries

In the rest of this article, unless otherwise specified, R+ denotes the set of all non-
negative real numbers and E denotes a Hausdorff topological vector space. Let X and Y
be topological spaces. We denote the family of all subsets of X as 2X, and the interior of
a subset E of X is denoted as int E. Let S : X → 2Y be a multifunction. The image of a
set A ⊆ X under S is the set S(A) =

⋃{S(x) : x ∈ A}; S is compact if its range S(X) is
contained in a compact subset of Y; S|A is the restriction of S to A; the graph of S is the
set Gr(S) = {(x, y) ∈ X × Y : y ∈ S(x)}. The (lower) inverse of S is the multifunction
S− : Y → 2X defined by S−(y) = {x ∈ X : y ∈ S(x)}; the inverse image of a set B ⊆ Y
under S is the set S−(B) = {x ∈ X : S(x) ∩ B 6= ∅} . The values S−(y) for y ∈ Y are also
called the fibers of S. The multifunction S is upper semicontinuous (u.s.c.) if S−(B) is closed
for each closed subset B of Y, and S is closed if its graph Gr S = {(x, y) ∈ X×Y : y ∈ Sx}
is a closed subset of X×Y. When Y = X, an element x ∈ X is a fixed point of S if x ∈ S(x);
the set of all fixed points of S is denoted Fix(S).

The next result is a basic property of closed multifunctions, which can be found in [19]
(Chap. 17).

Theorem 1. Let A be a subset of a topological space X. If S : A → 2X is a closed multifunction,
then Fix(S) is closed in A.
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For a multifunction with a compact Hausdorff range space, the question of whether
the multifunction is u.s.c. is equivalent to the question of whether its graph is closed [19]
(Theorem 17.11).

Theorem 2. (closed graph theorem) A multifunction with a compact Hausdorff range space is
closed if and only if it is a closed-valued u.s.c. multifunction.

In this paper, the term “smooth” always means “of class C∞”. Let M be a connected
Riemannian manifold endowed with a Riemannian metric g, let Tx M be the tangent space
of M at x, and let TM =

⋃
x∈M Tx M be the tangent bundle of M. The distance between x

and y, denoted by d(x, y), is defined as the infimum of the lengths of all piecewise smooth
curves from x to y. With the distance function d, M is a metric space with the same metric
topology as the original manifold topology.

Let ∇ be the Riemannian connection associated with (M, g). A smooth curve γ : I →
M is a geodesic if ∇γ̇γ̇ = 0 for all t ∈ I, where I is an open interval. If γ is a geodesic, then
‖γ̇‖ is constant; we say that γ is normalized when ‖γ̇‖ = 1. Recall that for every x ∈ M
and v ∈ Tx M, there exists a unique maximal geodesic γv : I → M satisfying γv(0) = x
and γ̇v(0) = v. Furthermore, the geodesic γv(t) depends smoothly on t, x, and v ∈ Tx M;
see [20] (Chap. 3, Proposition 2.7). Let

E = {(x, v) ∈ TM : γv(t) is defined on an interval containing [0, 1]}.

The exponential map exp : E → M is given by exp(x, v) = γv(1), (x, v) ∈ E . Evidently, exp
is smooth. For each x ∈ M, the restriction expx of exp to the set Ex = E ∩ Tx M is defined as
expx v = exp(x, v). The manifold (M, g) is geodesically complete if any geodesic of M can
be extended to a geodesic defined on all R. A geodesic joining x and y in M is minimizing if
its length is equal to d(x, y). The Hopf–Rinow theorem [20] (Chap. 7, Theorem 2.8) asserts
that if a connected Riemannian manifold M is complete, then any pair of points in M can
be joined by a (not necessarily unique) minimizing geodesic.

A Hadamard manifold is a complete simply connected Riemannian manifold with a
nonpositive sectional curvature. For the remainder of this article, M denotes a Hadamard
manifold. The Cartan–Hadamard theorem [20] (Chap. 7, Theorem 3.1) states that expx :
Tx M → M is a diffeomorphism at any point x ∈ M, and any pair of points in M can be
joined by a unique normalized minimizing geodesic. Geodesics in this article are unique
normalized minimizing geodesics unless stated otherwise. A subset A of M is convex if,
for any two points x, y ∈ A, the geodesic joining x and y is contained in A.

A topological space is paracompact if every open covering of the space admits a
locally finite open refinement. Every locally compact and σ-compact Hausdorff space is
paracompact. A Hadamard manifold is σ-compact (i.e., a countable union of compact
subsets) and hence is paracompact.

The notions of cone-convexities for multifunctions in [21] can be defined in manifold
settings.

Definition 1. Let X ⊆ M be a nonempty convex set, and C be a closed pointed convex cone in E
with int C 6= ∅. A multifunction F : X → 2E is said to be

1. above-properly C-quasiconvex on X if for all x1, x2 ∈ X and all λ ∈ [0, 1],

either F(expx1
(λ exp−1

x1
x2)) ⊆ F(x1)− C,

or F(expx1
(λ exp−1

x1
x2)) ⊆ F(x2)− C;

2. below-properly C-quasiconvex on X if for all x1, x2 ∈ X and all λ ∈ [0, 1],

either F(x1) ⊆ F(expx1
(λ exp−1

x1
x2)) + C,

or F(x2) ⊆ F(expx1
(λ exp−1

x1
x2)) + C.
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Consider E = R and C = R+ in Definition 1. When F is a single-valued function, both
(i) and (ii) reduce to the usual definition of convexity for real-valued functions.

Unless otherwise stated, C : X → 2E denotes a multifunction such that for each x ∈ X,
C(x) is a closed pointed convex cone in E with int C(x) 6= ∅. The following proposition is
the basic result concerning convexity for multifunctions.

Proposition 1. Let X be a nonempty set, let Y ⊆ M be a nonempty convex set, and let F :
X×Y → 2E be a multifunction. Define A, B : X → 2Y by

A(x) = {z ∈ Y : F(x, z) ⊆ −int C(x)},
B(x) = {z ∈ Y : F(x, z) * C(x)}.

For each x ∈ X, we have the following:

1. If F(x, z) is above-properly C(x)-quasiconvex in z, then A(x) is convex.
2. If F(x, z) is below-properly C(x)-quasiconvex in z, then B(x) is convex.

Proof. (i) Let z1, z2 ∈ A(x) and λ ∈ [0, 1]. Then F(x, z1) and F(x, z2) are contained in
−int C(x). Because F(x, z) is above-properly C(x)-quasiconvex in z, F(x, expz1

(λ exp−1
z1

z2))

is contained in either F(x, z1)−C(x) or F(x, z2)−C(x) and hence is contained in−int C(x)−
C(x) = −int C(x). Thus expz1

(λ exp−1
z1

) ∈ A(x), and A(x) is convex.
(ii) Let z1, z2 ∈ B(x) and λ ∈ [0, 1]. Because F(x, z) is below-properly C(x)-quasiconvex

in z, we have

either F(x, z1) ⊆ F(x, expz1
(λ exp−1

z1
z2)) + C(x), (1)

or F(x, z2) ⊆ F(x, expx1
(λ exp−1

x1
x2)) + C(x). (2)

The inclusion (1) implies that F(x, expz1
(λ exp−1

z1
z2)) * C(x); otherwise

F(x, expz1
(λ exp−1

z1
z2)) ⊆ C(x)

yields F(x, z1) is contained in C(x) + C(x) = C(x). Similarly, the inclusion (2) implies that
F(x, expz1

(λ exp−1
z1

z2)) * C(x). In either case we have expz1
(λ exp−1

z1
) ∈ B(x), so B(x) is

convex.

The next theorem [22], (Theorem 4.1) provides the topological conditions that guaran-
tee the existence of fixed points for a multifunction in a product Hadamard manifold.

Theorem 3. Let X1, . . . , Xk be locally compact and σ-compact convex sets, each in a Hadamard
manifold, and let X = ∏k

i=1 Xi. For i = 1, . . . , k, let Ti : X → 2Xi be a compact multifunction
with nonempty convex values such that X =

⋃
y∈Xi

int T−i (y). Then, there exists a point x̂ =

∏k
i=1 x̂i ∈ X such that x̂i ∈ Ti(x̂) for i = 1, . . . , k, that is, x̂ ∈ T(x̂) = ∏k

i=1 Ti(x̂).

3. Existence Results for (GVQEP-I)

This section outlines the development of existence theorems for GVQEP-I under various
topological conditions (without continuity). Theorem 3 plays a key role in this discussion.

Theorem 4. Let X and Y be locally compact and σ-compact convex sets, each in a Hadamard
manifold. Let F : X × Y × X → 2E, Q : X → 2X and S : X → 2Y be three multifunctions
satisfying the following conditions:

1. Q is compact with convex values such that X =
⋃

z∈X int Q−(z);
2. S is compact with convex values such that X =

⋃
u∈Y int S−(u);

3. S|Fix(Q) is closed;
4. for each x ∈ X, F(z, u, z) * −int C(x) for all (z, u) ∈ Q(x)× S(x);
5. for each (x, y) ∈ X×Y, the set {z ∈ X : F(x, y, z) ⊆ −int C(x)} is convex;
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6.
⋃

z∈X{(x, y) ∈ Q−(z)×Y : F(x, y, z) ⊆ −int C(x)}
=
⋃

z∈X int {(x, y) ∈ Q−(z)×Y : F(x, y, z) ⊆ −int C(x)}.
Then, there exists (x0, y0) ∈ X×Y such that x0 ∈ Q(x0), y0 ∈ S(x0) and

F(x0, y0, z) * −int C(x0), for all z ∈ Q(x0).

Proof. Consider the multifunctions T1 : X×Y → 2X and T2 : X×Y → 2Y defined by

T1(x, y) = {z ∈ Q(x) : F(x, y, z) ⊆ −int C(x)}, for (x, y) ∈ X×Y,

T2(x, y) = S(x), for (x, y) ∈ X×Y.

For each (x, y) ∈ X×Y, the set

T1(x, y) = Q(x) ∩ {z ∈ X : F(x, y, z) ⊆ −int C(x)}

is convex. Because

T−1 (z) = {(x, y) ∈ Q−(z)×Y : F(x, y, z) ⊆ −int C(x)}, for z ∈ X,

T−2 (u) = S−(u)×Y, for u ∈ Y,

applying conditions (ii) and (vi) reveals that⋃
z∈X

T−1 (z) =
⋃

z∈X
int T−1 (z),

⋃
u∈Y

T−2 (u) =
⋃

u∈Y
int T−2 (u) = X×Y.

(3)

Let H : X × Y → 2X×Y be the product multifunction of T1 and T2 defined by H(x, y) =
T1(x, y)× T2(x, y). Because T1 and T2 are compact with convex values, so too is H.

Let Ω = Gr
(

S|Fix(Q)

)
= {(x, y) ∈ Fix(Q)× Y : y ∈ S(x)}; Ω is rendered nonempty

by Theorem 3 and is closed in X × Y by condition (iii). We assume that H(x0, y0) = ∅
for some (x0, y0) ∈ Ω; it then follows that T1(x0, y0) = ∅ or T2(x0, y0) = ∅, and from
hypothesis S(x0) 6= ∅, we have x0 ∈ Q(x0), y0 ∈ S(x0) and

F(x0, y0, z) * −int C(x0), for all z ∈ Q(x0).

To prove this statement, assume by way of contradiction that H(x, y) 6= ∅ for all (x, y) ∈ Ω.
Define a multifunction P : X×Y → 2X×Y by

P(x, y) =
{

H(x, y) if (x, y) ∈ Ω,
Q(x)× S(x) if (x, y) ∈ (X×Y) \Ω;

it is compact with nonempty convex values. The multifunction P can be viewed as the
product of P1 : X×Y → 2X and T2 : X×Y → 2Y, where P1 is given by

P1(x, y) =
{

T1(x, y) if (x, y) ∈ Ω,
Q(x) if (x, y) ∈ (X×Y) \Ω.

Observe that

X×Y =
⋃

z∈X
P−1 (z) =

⋃
z∈X

int P−1 (z). (4)
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We first note that P1 has nonempty values; hence, the first equality holds. It remains to
show that the left-hand side of the second equality is contained in the right-hand side. Fix
an arbitrary point z0 ∈ X. Because T−1 (z0) ⊆ Q−(z0)×Y, we have

P−1 (z0) = [T−1 (z0) ∩Ω] ∪ {[Q−(z0)×Y] ∩ [(X×Y) \Ω]}
= T−1 (z0) ∪ {[Q−(z0)×Y] ∩ [(X×Y) \Ω]}.

By (3) we infer that

T−1 (z0) ⊆
⋃

z∈X
T−1 (z) =

⋃
z∈X

int T−1 (z) ⊆
⋃

z∈X
int P−1 (z).

Since (X×Y) \Ω is open, it follows from condition (i) that

[Q−(z0)×Y] ∩ [(X×Y) \Ω] ⊆
[⋃

z∈X
Q−(z)

]
×Y ∩ [(X×Y) \Ω]

=
⋃

z∈X
int {[Q−(z)×Y] ∩ [(X×Y) \Ω]}

⊆
⋃

z∈X
int P−1 (z).

Hence, (4) holds. This result, together with (3) and Theorem 3, yields a fixed point (x0, y0)
of P. Indeed, (x0, y0) must be in Ω; thus, (x0, y0) ∈ Q(x0)× S(x0) and

F(x0, y0, x0) ⊆ −int C(x0),

contradicting condition (iv). This concludes the proof.

As an application of the preceding result, we present some notable cases of vector
equilibrium (or quasi-equilibrium) problems. The following result is a stronger version of
Theorem 4 for closed multifunctions in a compact Hausdorff space (hence, it is equivalent
to upper semicontinuity).

Theorem 5. Let X and Y be locally compact and σ-compact convex sets, each in a Hadamard
manifold. Let F : X × Y × X → 2E, Q : X → 2X and S : X → 2Y be three multifunctions
satisfying the following conditions:

1. Q is closed and compact with convex values such that X =
⋃

z∈X int Q−(z);
2. S is closed and compact with convex values such that X =

⋃
u∈Y int S−(u);

3. For each x ∈ X, F(z, u, z) * −int C(x) for all (z, u) ∈ Q(x)× S(x);
4. For each (x, y) ∈ X×Y, F(x, y, z) is above-properly C(x)-quasiconvex in z;
5.

⋃
z∈X{(x, y) ∈ Q−(z)×Y : F(x, y, z) ⊆ −int C(x)}

=
⋃

z∈X int {(x, y) ∈ Q−(z)×Y : F(x, y, z) ⊆ −int C(x)}.
Then, there exists a solution (x0, y0) ∈ X×Y of GVQEP-I.

Proof. By condition (iv) and Proposition 1, for each (x, y) ∈ X × Y, the set {z ∈ X :
F(x, y, z) ⊆ −int C(x)} is convex. Theorem 1 ensures that the set Fix(Q) is closed. Hence,
the closed graph Theorem 2 states that Q and S are closed-valued u.s.c. multifunctions.
Therefore, S|Fix(Q) is u.s.c. with closed values and is closed (again, this accords with
Theorem 2). Theorem 4 is now applied.

The following explicit example in the hyperbolic upper-half plane H2 (with constant
Gaussian curvature −1) illustrates the practical application of Theorem 4.

Example 1. We consider the hyperbolic upper-half plane H2. Let (p, q] denote the geodesic con-
necting two points p, q ∈ H2; we use a square bracket when the geodesic includes the endpoint and
a parenthesis to indicate that the endpoint is not included. Let X = Y = (eπi/4, e3πi/4); they are
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locally compact and σ-compact convex sets in H2. Let I1 = (eπi/4, eπi/2] and I2 = (eπi/2, e3πi/4);
so X = I1 ∪ I2. Let Q : X → 2X and S : X → 2Y be defined by

Q(eit) = S(eit) =

{
I1 if eit ∈ I1,

{eπi/2} if eit ∈ I2.

Take E to be the complex plane C and let Λ(w1, w2) denote a closed pointed convex cone in C
spanned by two vectors w1 and w2; in particular, it is a ray issuing from the origin when w1 = w2.
Define F : X×Y× X → 2C by

F(eit, eiu, eiv) = Λ(ei(t+v), ei(u+v));

it is obtained by rotating the cone Λ(eit, eiu) about the origin through an angle v. Let Λ1 =
Λ(eπi, e3πi/2) and Λ2 = Λ(e−πi/2, 1), and define C : X → 2C by

C(eit) =

{
Λ1 if eit ∈ I1,
Λ2 if eit ∈ I2.

Notice that−int C(eit) is the first quadrant−int Λ1 for eit ∈ I1 and is the second quadrant−int Λ2
for eit ∈ I2, and F(eit, eiu, eiv) is disjoint from −int Λ1 for all (eit, eiu, eiv) ∈ X×Y× X.

In order to apply Theorem 4, we need to verify the following facts concerning the characteriza-
tions of the multifunctions Q (or S) and F.

(1) Q and S are compact with convex values, and

X = Q−(eπi/2) =
⋃

v∈X
int Q−(v) =

⋃
v∈Y

int S−(v).

(2) Fix(Q) = I1 is closed and hence S|Fix(Q) = I1 × I1 is closed.
(3) Fix any eit ∈ X and let (eiv, eiu) ∈ Q(eit)× S(eit). Observe that

F(eiv, eiu, eiv) * −int C(eit).

To see this, we consider two cases. First, if eit ∈ I1, then (eiv, eiu) ∈ I1 × I1 and

F(eiv, eiu, eiv) = Λ(e2iv, ei(u+v)) ⊆ Λ(eπi/2, eπi) * −int Λ1.

Second, if eit ∈ I2, then (eiv, eiu) ∈ {eπi/2} × {eπi/2} and therefore

F(eiv, eiu, eiv) = Λ(eπi, eπi) * −int Λ2.

(4) To prove the validity of condition (v) in Theorem 4, let (eit, eiu) ∈ X×Y. As we remarked
earlier, it suffices to assume eit ∈ I2. Then choose α = max{t, u} so that

F(eit, eiu, eiv) ⊆ −int Λ2 for all v ∈ (π/4, π − α);

this proves condition (v).
(5) To prove condition (vi) in Theorem 4 is satisfied, we observe that for any v ∈ X,

{(eit, eiu) ∈ Q−(eiv)×Y : F(eit, eiu, eiv) ⊆ −int C(eit)} = ∅. (5)

To see this, note that Q−(eiv) = ∅ for all eiv ∈ I2. Thus we need only consider the case where
eiv ∈ I1. Let eit ∈ Q−(eiv). If eiv ∈ I1 \ {eπi/2}, then Q−(eiv) = I1 \ {eπi/2}, and since
t + v > π/2, the Equation (5) holds. Now we assume that eiv = eπi/2, so Q−(eiv) = I1 ∪ I2.
Similarly, if eit ∈ I1, (5) is true. If eit ∈ I2, it follows that t + (π/2) > π, and again (5) is true.

Consequently, Theorem 4 yields a solution (eit0 , eiu0) ∈ Q(eit0) × S(eit0) to GVQEP-I
such that F(eit0 , eiu0 , eiv) * −int C(eit0) for all eiv ∈ Q(eit0). In particular, we can choose
points eit0 = eπi/3 and eiu0 = e5πi/12 so that (eπi/3, e5πi/12) ∈ Q(eπi/3) × S(eπi/3) and
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F(eπi/3, e5πi/12, eiv) * −int Λ1 for all eiv ∈ Q(eπi/3). Moreover, it is also worth noting that
(eπi/3, e5πi/12) is a solution to GVQEP of type I but not of type II.

As a corollary of Theorem 4, we offer an existence theorem for VQEPs in Hadamard
manifolds.

Theorem 6. Let X be a locally compact and σ-compact convex set in M. Let F : X× X → 2E and
Q : X → 2X be two multifunctions satisfying the following conditions:

1. Q is compact with convex values such that X =
⋃

z∈X int Q−(z);
2. Q|Fix(Q) is closed;
3. for each x ∈ X, F(z, z) * −int C(x) for all z ∈ Q(x);
4. for each x ∈ X, the set {z ∈ X : F(x, z) ⊆ −int C(x)} is convex;
5.

⋃
z∈X{x ∈ Q−(z) : F(x, z) ⊆ −int C(x)}

=
⋃

z∈X int {x ∈ Q−(z) : F(x, z) ⊆ −int C(x)}.
Then, there exists x0 ∈ Q(x0) such that F(x0, z) * −int C(x0) for all z ∈ Q(x0).

Proof. If Y = X, S = Q, and G : X × Y × X → 2E defined by G(x, y, z) = F(x, z), the
multifunctions G, Q, and S satisfy all conditions in Theorem 4. Therefore, we can apply
Theorem 4.

The following fact is revealed using Proposition 1 and Theorem 6.

Theorem 7. Let X be a locally compact and σ-compact convex set in M. Let F : X× X → 2E and
Q : X → 2X be two multifunctions satisfying the following conditions:

1. Q is compact with convex values such that X =
⋃

z∈X int Q−(z);
2. Q|Fix(Q) is closed;
3. for each x ∈ X, F(z, z) * −int C(x) for all z ∈ Q(x);
4. for each x ∈ X, F(x, z) is above-properly C(x)-quasiconvex in z;
5.

⋃
z∈X{x ∈ Q−(z) : F(x, z) ⊆ −int C(x)}

=
⋃

z∈X int {x ∈ Q−(z) : F(x, z) ⊆ −int C(x)}.
Then, there exists x0 ∈ Q(x0) such that F(x0, z) * −int C(x0) for all z ∈ Q(x0).

We consider the case where X is compact (hence paracompact) in Theorem 7.

Theorem 8. Let X be a compact convex set in M. Let F : X× X → 2E and Q : X → 2X be two
multifunctions satisfying the following conditions:

1. Q is closed with convex values such that X =
⋃

z∈X int Q−(z);
2. for each x ∈ X, F(z, z) * −int C(x) for all z ∈ Q(x);
3. for each x ∈ X, F(x, z) is above-properly C(x)-quasiconvex in z;
4.

⋃
z∈X{x ∈ Q−(z) : F(x, z) ⊆ −int C(x)}

=
⋃

z∈X int {x ∈ Q−(z) : F(x, z) ⊆ −int C(x)}.
Then, there exists x0 ∈ Q(x0) such that F(x0, z) * −int C(x0) for all z ∈ Q(x0).

Proof. According to Theorem 1, Fix(Q)× Y is closed, and hence Q|Fix(Q) is closed. The
conclusion follows immediately from Theorem 7.

If Q is identically equal to X in Theorem 8, then condition (i) is automatically satisfied
and can be removed. In this case, the VQEP is reduced to a vector equilibrium problem
(VEP). We can obtain the following result under a stronger hypothesis than (iv) in the
preceding theorem.

Corollary 1. Let X be a compact convex set in M and C be a closed pointed convex cone in E with
int C 6= ∅. Suppose that F : X× X → 2E is a multifunction satisfying the following conditions:

1. for each x ∈ X, F(x, x) * −int C;
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2. for each x ∈ X, F(x, z) is above-properly C-quasiconvex in z;
3. for each z ∈ X, F(x, z) is u.s.c. in x.

Then, there exists x0 ∈ X such that F(x0, z) * −int C for all z ∈ X.

Proof. Fix any z ∈ X. Because F(x, z) is u.s.c. in x and E \ −int C is closed, the set

{x ∈ X : F(x, z) ⊆ −int C} = X \ {x ∈ X : F(x, z) ∩ (E \ −int C) 6= ∅}

is open. Therefore, condition (iv) of Theorem 8 is satisfied, and the conclusion follows.

4. Existence Results for (GVQEP-II)

The main objective of this part of the study was to investigate GVQEP-II by using
the techniques developed in establishing the various existence results for GVQEP-I and
present the corresponding theorems for GVQEP-II. Our treatment of GVQEP-II is similar to
the approach to GVQEP-I; therefore, we omit the relevant details and summarize several of
the existence theorems. Recall that a solution to GVQEP-II is also a solution to GVQEP-I.

Theorem 9. Let X and Y be locally compact and σ-compact convex sets, each in a Hadamard
manifold. Let F : X × Y × X → 2E, Q : X → 2X and S : X → 2Y be three multifunctions
satisfying the following conditions:

1. Q is compact with convex values such that X =
⋃

z∈X int Q−(z);
2. S is compact with convex values such that X =

⋃
u∈Y int S−(u);

3. S|Fix(Q) is closed;
4. for each x ∈ X, F(z, u, z) ⊆ C(x) for all (z, u) ∈ Q(x)× S(x);
5. for each (x, y) ∈ X×Y, the set {z ∈ X : F(x, y, z) * C(x)} is convex;
6.

⋃
z∈X{(x, y) ∈ Q−(z)×Y : F(x, y, z) * C(x)}

=
⋃

z∈X int {(x, y) ∈ Q−(z)×Y : F(x, y, z) * C(x)}.
Then, there exists (x0, y0) ∈ X×Y such that x0 ∈ Q(x0), y0 ∈ S(x0) and

F(x0, y0, z) ⊆ C(x0), for all z ∈ Q(x0).

Proof. The method used for this proof is similar to that used for Theorem 4. Let T1 :
X×Y → 2X and T2 : X×Y → 2Y be defined by

T1(x, y) = {z ∈ Q(x) : F(x, y, z) * C(x)}, for (x, y) ∈ X×Y,

T2(x, y) = S(x), for (x, y) ∈ X×Y;

both T1 and T2 have convex values. The argument given in Theorem 4 is repeated
to conclude that there exists (x0, y0) ∈ X × Y such that x0 ∈ Q(x0), y0 ∈ S(x0) and
F(x0, y0, z) ⊆ C(x0) for all z ∈ Q(x0).

The preceding theorem has the following two useful corollaries for GVQEP-II and
VQEP.

Theorem 10. Let X and Y be locally compact and σ-compact convex sets, each in a Hadamard
manifold. Let F : X × Y × X → 2E, Q : X → 2X and S : X → 2Y be three multifunctions
satisfying the following conditions:

1. Q is closed and compact with convex values such that X =
⋃

z∈X int Q−(z);
2. S is closed and compact with convex values such that X =

⋃
u∈Y int S−(u);

3. For each x ∈ X, F(z, u, z) ⊆ C(x) for all (z, u) ∈ Q(x)× S(x);
4. For each (x, y) ∈ X×Y, F(x, y, z) is below-properly C(x)-quasiconvex in z;
5.

⋃
z∈X{(x, y) ∈ Q−(z)×Y : F(x, y, z) * C(x)}

=
⋃

z∈X int {(x, y) ∈ Q−(z)×Y : F(x, y, z) * C(x)}.
Then, there exists a solution (x0, y0) ∈ X×Y of GVQEP-II.
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Proof. First, observe from condition (iv) and Proposition 1 that for each (x, y) ∈ X × Y,
the set {z ∈ X : F(x, y, z) * C(x)} is convex; this guarantees condition (v) in Theorem 9 is
satisfied. Now, we apply Theorems 1, 2, and 9.

Theorem 11. Let X be a locally compact and σ-compact convex set in M. Let F : X × X → 2E

and Q : X → 2X be two multifunctions satisfying the following conditions:

1. Q is compact with convex values such that X =
⋃

z∈X int Q−(z);
2. Q|Fix(Q) is closed;
3. For each x ∈ X, F(z, z) ⊆ C(x) for all z ∈ Q(x);
4. For each x ∈ X, the set {z ∈ X : F(x, z) * C(x)} is convex;

5.
⋃

z∈X
{x ∈ Q−(z) : F(x, z) * C(x)} =

⋃
z∈X

int {x ∈ Q−(z) : F(x, z) * C(x)}.

Then, there exists x0 ∈ Q(x0) such that F(x0, z) ⊆ C(x0) for all z ∈ Q(x0).

Proof. This corollary follows from Theorem 9 if we let Y = X, S = Q, and G : X×Y×X →
2E be defined by G(x, y, z) = F(x, z).

The following result is a special case of Theorem 11 if X is compact.

Theorem 12. Let X be a compact convex set in M. Let F : X× X → 2E and Q : X → 2X be two
multifunctions satisfying the following conditions:

1. Q is closed with convex values such that X =
⋃

z∈X int Q−(z);
2. For each x ∈ X, F(z, z) ⊆ C(x) for all z ∈ Q(x);
3. For each x ∈ X, the set {z ∈ X : F(x, z) * C(x)} is convex;

4.
⋃

z∈X
{x ∈ Q−(z) : F(x, z) * C(x)} =

⋃
z∈X

int {x ∈ Q−(z) : F(x, z) * C(x)}.

Then, there exists x0 ∈ Q(x0) such that F(x0, z) ⊆ C(x0) for all z ∈ Q(x0).

Proof. According to Theorem 1 and the closedness of Q, condition (ii) in Theorem 11 is
satisfied; therefore, we apply Theorem 11.

If Q is identically equal to X, a corollary of this theorem for the VEP follows immediately.

Corollary 2. Let X be a compact convex set in M and let F : X × X → 2E be a multifunction
satisfying the following conditions:

1. For each x ∈ X, F(x, x) ⊆ C(x);
2. For each x ∈ X, the set {z ∈ X : F(x, z) * C(x)} is convex;

3.
⋃

z∈X
{x ∈ X : F(x, z) * C(x)} =

⋃
z∈X

int {x ∈ X : F(x, z) * C(x)}.

Then, there exists x0 ∈ X such that F(x0, z) ⊆ C(x0) for all z ∈ X.

5. Applications

As stated previously, if E = R, C(x) = R+ for all x ∈ R and F : X × Y× X → R is a
real-valued function, both GVQEP-I and GVQEP-II are reduced to the same GQEP. The
next result is an immediate outcome of applying Theorem 4 (or Theorem 9).

Theorem 13. Let X and Y be locally compact and σ-compact convex sets, each in a Hadamard
manifold. Let ψ : X × Y × X → R be a function and Q : X → 2X and S : X → 2Y be two
multifunctions satisfying the following conditions:

1. Q is compact with convex values such that X =
⋃

z∈X int Q−(z);
2. S is compact with convex values such that X =

⋃
u∈Y int S−(u);

3. S|Fix(Q) is closed;
4. For each x ∈ X, ψ(z, u, z) ≥ 0 for all (z, u) ∈ Q(x)× S(x);
5. For each (x, y) ∈ X×Y, the set {z ∈ X : ψ(x, y, z) < 0} is convex;
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6.
⋃

z∈X{(x, y) ∈ Q−(z)×Y : ψ(x, y, z) < 0}
=
⋃

z∈X int {(x, y) ∈ Q−(z)×Y : ψ(x, y, z) < 0}.
Then, there exists (x0, y0) ∈ X×Y such that x0 ∈ Q(x0), y0 ∈ S(x0) and

ψ(x0, y0, z) ≥ 0, for all z ∈ Q(x0).

The following result is a special case of Theorem 13 that has applicability to minimax
problems.

Theorem 14. Let X be a compact convex set and Y a locally compact and σ-compact convex set,
each in a Hadamard manifold, and α ∈ R. Let ϕ : X × Y → R be a function and S : X → 2Y a
multifunction satisfying the following conditions:

1. S is closed and compact with convex values such that X =
⋃

u∈Y int S−(u);
2. For each x ∈ X, ϕ(z, u) ≥ α for all (z, u) ∈ X× S(x);
3. For each y ∈ Y, the set {z ∈ X : ϕ(z, y) < α} is convex;
4.

⋃
z∈X{y ∈ Y : ϕ(z, y) < α} = ⋃

z∈X int {y ∈ Y : ϕ(z, y) < α}.
Then, there exists a point y0 ∈ S(X) such that ϕ(z, y0) ≥ α for all z ∈ X.

Proof. We can apply Theorem 13 with Q(x) = X for all x ∈ X, ψ(x, y, z) = ϕ(z, y)− α for
all (x, y, z) ∈ X×Y× X; Fix(Q) = X; hence, condition (iii) in Theorem 13 is satisfied.

We close this section on equilibrium problems with a discussion of minimax problems.

Theorem 15. Let X and Y be compact convex sets, each in a Hadamard manifold, and α ∈ R. Let
ϕ : X×Y → R be a function and S : X → 2Y and T : Y → 2X two multifunctions satisfying the
following conditions:

1. S is closed with convex values such that X =
⋃

u∈Y int S−(u);
2. T is closed with convex values such that Y =

⋃
z∈X int T−(z);

3. For each x ∈ X, ϕ(z, u) ≥ α for all (z, u) ∈ X× S(x);
4. For each y ∈ Y, ϕ(z, u) ≤ α for all (z, u) ∈ T(y)×Y;
5. For each y ∈ Y, the set {x ∈ X : ϕ(x, y) < α} is convex;
6. For each x ∈ X, the set {y ∈ Y : ϕ(x, y) > α} is convex;
7.

⋃
x∈X{y ∈ Y : ϕ(x, y) < α} = ⋃

x∈X int {y ∈ Y : ϕ(x, y) < α};
8.

⋃
y∈Y{x ∈ X : ϕ(x, y) > α} = ⋃

y∈Y int {x ∈ X : ϕ(x, y) > α}.
Then, there exists a point (x0, y0) ∈ T(Y)× S(X) such that

ϕ(x0, y) ≤ ϕ(x0, y0) = α ≤ ϕ(x, y0), for all (x, y) ∈ T(Y)× S(X).

Moreover, infx∈T(Y) supy∈S(X) ϕ(x, y) = supy∈S(X) infx∈T(Y) ϕ(x, y).

Proof. It follows from Theorem 14 together with conditions (i), (iii), (v), and (vii) that there
exists a point y0 ∈ S(X) such that ϕ(x, y0) ≥ α for all x ∈ X. Again, using Theorem 14 and
conditions (ii), (iv), (vi), and (viii), we obtain a point x0 ∈ T(Y) such that ϕ(x0, y) ≤ α for
all y ∈ Y. In particular, ϕ(x0, y0) = α. From these inequalities, we have

ϕ(x0, y) ≤ ϕ(x0, y0) = α ≤ ϕ(x, y0), for all (x, y) ∈ T(Y)× S(X);

hence,
inf

x∈T(Y)
sup

y∈S(X)

ϕ(x, y) ≤ sup
y∈S(X)

inf
x∈T(Y)

ϕ(x, y).

The reverse inequality is always true; therefore,

inf
x∈T(Y)

sup
y∈S(X)

ϕ(x, y) = sup
y∈S(X)

inf
x∈T(Y)

ϕ(x, y),

as desired.
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The point (x0, y0) in Theorem 15 is called a saddle point of ϕ in T(Y)× S(X). Theorem 15
includes a standard manifold version of minimax theorem as a corollary if S(x) = Y for all
x ∈ X and T(y) = X for all y ∈ Y. We recall that a function f : X → R on a topological space
X is lower semicontinuous (l.s.c.) if for each λ ∈ R the set {x ∈ X : f (x) ≤ λ} is closed.

Corollary 3. Let X and Y be compact convex sets, each in a Hadamard manifold. Let ϕ : X×Y →
R be a function satisfying the following conditions:

1. For each x ∈ X, ϕ(x, y) ≥ 0 for all y ∈ Y;
2. For each y ∈ Y, ϕ(x, y) ≤ 0 for all x ∈ X;
3. ϕ(x, y) is quasiconvex in x and u.s.c. in y;
4. ϕ(x, y) is quasiconcave in y and l.s.c. in x.

Then, there exists a saddle point (x0, y0) ∈ X×Y such that

ϕ(x0, y) ≤ ϕ(x0, y0) = 0 ≤ ϕ(x, y0), for all (x, y) ∈ X×Y.

Moreover, infx∈X supy∈Y ϕ(x, y) = supy∈Y infx∈X ϕ(x, y).

6. Conclusions

The vector quasi-equilibrium problems have been extensively studied by many re-
searchers in compact or noncompact topological vector spaces. However, the traditional
techniques in the literature cannot be easily extended to the manifold settings because geo-
metric intuition is more difficult to rigorize in such cases. This paper presents a new fixed-
point method for formulating existence theorems for generalized vector quasi-equilibrium
problems in locally compact and σ-compact spaces (not necessarily compact) without any
continuity or coercivity assumptions. This approach is achieved by using the key fixed-
point theorem on product Hadamard manifolds. The main results of this paper can provide
useful material for future research on minimax problems in Hadamard manifolds.
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