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Abstract: The vertex-degree function index Hy(T') is defined as H¢(I') = ¥y (r) f(d(v)) for a function
f(x) defined on non-negative real numbers. In this paper, we determine the extremal graphs with
the maximum (minimum) vertex degree function index in the set of all n-vertex chemical trees, trees,
and connected graphs. We also present the Nordhaus-Gaddum-type results for Hy(T') + H(T) and
Hg(T) - He(T).

Keywords: vertex degree function index; tree; cemical tree; connected graph; Nordhaus-Gaddum-
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1. Introduction

In this paper, the graphs we discuss are simple graphs without multiple edges and
loops. The vertex and edge set of I' will be denoted by V(I') and E(T'), and the order and
size of I' will usually be denoted by 1 and m, respectively. Let a vertex v € V(I'); we denote
the degree of v by dr(v) in T. The neighbors of vin V(T') are denoted by Nr(v). For a graph
I', we denote the maximum and minimum degree of ' by A(T') and 6(I'), respectively. A
leaf v € V(T') is a vertex v satisfied dr(v) = 1. We call a connected graph without a cycle a
tree, denoted by T. A tree whose maximum degree is no more than 4 is called a chemical
tree. The star graph with order n, denoted by S, is a tree with one center vertex and n — 1
leaves. The disjoint union of two vertex-disjoint graphs I'y and I'; will be denoted by I'; U T,
whose vertex and edge sets are V(I'1) U V(I';) and E(T7) U E(T'2), respectively. We denote
the union of k copies of a graph I' by kT. The join of I'y and I'; is obtained by joining edges
between each vertex of I'; and all vertices of I'y, denoted by I'y V I';. For a graph I, the edge
uv € E(T) and the vertex w € V(T'), I — uv mean removing uv from I' and I' — w, which
means removing w from I'.

A universal vertex of I with order n is a vertex v that have d(v) = n — 1. An (n, m)-graph
is the graph with n vertices and m edges. We denote by I'(n, m) the set of (1, m)-graphs. The
cyclomatic number of a graph I' is the minimum number of edges whose deletion transforms
I into an acyclic graph, denoted by «(I"). The set of graphs with order n and cyclomatic
number 7y is denoted by I';; .. We have y(I') = m — n + 1 for a connected graph T’ € T, .

The vertex-degree function index H(T') is denoted by

Hp(T)= ) f(d(v))

veV(T)

for a function f(x) defined on non-negative real numbers in [1]. For example, the first
Zagreb index [2] is defined as M1(I') = Loey(r) d(v)? when f(x) = x?, and the forgotten
topological index [3] is defined as F(I') = Yyey(r) d(v)® when f(x) = x°. The general first
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Zagreb index, denoted by "R, (T), was defined in [4,5] as R, (T) = Yoev(r) d(v)*, where
« is a real number, « ¢ {0,1}. For the mathematical properties of the above topological
indices, see [6-11] and the references therein. Let v be a leaf of S,;,, where n > 3. For
0 < v < n —2, the graph obtained from S, by joining edges v with 7 other pendant
vertices is denoted by Hj, 4 in [12]. Deng [10] obtained the bounds of the Zagreb indices
for trees, unicyclic graphs, and bicyclic graphs. Hu and Li determined the connected
(n, m)-graphs with the minimum and maximum zeroth-order general Randi¢ index in [13].
Li and Zheng [5] obtained a unified approach to the extremal trees for different indices.
Some extremal results concerning the general zeroth-order Randi¢ index were deduced
in [14-16]; also see the survey [12].

In [17], Tomescu obtained that the function f(x) has property (P »; P« ) if ¢(i 4-1) >
¢(i); (i +1) < ¢(i), respectively, for every integer i > 0, where ¢(x) = f(x+2)+
f(x) —2f(x+1), and he obtained the maximum (minimum) vertex degree function index
Hy(T) in the set of all n-vertex connected graphs that have the cyclomatic number v
when 0 < ¢ <n —2if f(x) is strictly convex (concave) and satisfies the property P »; P\ .
Tomescu [18] obtained some structural properties of connected (1, m)-graphs which are
maximum (minimum) with respect to vertex-degree function index Hy(T), when f(x) is
a strictly convex (concave) function. In the same paper, it is also shown that the unique
graph obtained from the star S, by adding < edges between a fixed pendant vertex v and y
other pendant vertices has the maximum general zeroth-order Randi¢ index °R, in the set
of all n-vertex connected graphs that have the cyclomatic number y when1 <y <n -2
and a > 2.

Tomescu obtained the following results.

Theorem 1 ([18]). In the set of connected (n,m)-graphs T that have m > n, the graph that

maximizes (minimizes) Hy(T') where f(x) is strictly convex (concave) possesses the following

properties:

(1) T has a universal vertex v;

(2)  The subgraph I — v consists of some isolated vertices and a nontrivial connected component
C, which is maximum (minimum) relatively to Hg, where g(x) = f(x +1). C also contains
a universal vertex and no induced subgraph isomorphic to Py or C,, where p > 4.

Theorem 2 ([17]). Ifn > 3,1 < < n —2, f(x) is strictly convex and has property P », and T
is a connected n-vertex graph with cyclomatic number vy, then

Hy(T) < f(n =)+ fly +1) +7f(2) + (n =7 =2)f(1),
with equality if and only if T = Hy, o, = Ky V (Ky, U (n — 7 — 2)Ky).

In Section 2, we give upper and lower bounds for the vertex degree function index
of connected graphs if f(x) is a convex and increasing function that has property P ». We
obtain sharp upper and lower bounds for the vertex degree function index of trees and
chemical trees if f(x) is a convex and increasing function.

Let f(T') be a graph invariant and n be a positive integer. The Nordhaus—Gaddum
Problem is to determine sharp bounds for f(T) + f(T) and f(T') - f(T) as T ranges over the
class of all graphs of order #, and to characterize the extremal graphs, i.e., graphs that
achieve the bounds. Nordhaus-Gaddum-type relations have received wide attention; see
the recent survey [19] by Aouchiche and Hansen and the book chapter by Mao [20].

Denote by G(n) the class of connected graphs of order n whose complements are also
connected. In Section 3, the upper and lower bounds for H¢(T) + Hf(T) and H¢(T) - H¢(T)
are given for I' € G(n).

2. Bounds on H(T)
At first, we give the following upper bound for H(T').
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Theorem 3. Let T be an n-vertex (n > 5), m-edge graph with a cyclomatic number <y such that
v € [2n—t—3,3n—2t—7|, where t (1 <t < n —4) is the number of pendant vertices in I'. If
f(x) is a strictly convex function that has property P », then
HiT) <f(n—1)+tf)+ f(n—t)+ f(y —n+t+5)+ (y —n+t+4)f(3)
+(2n—-2t—v—-5)f(2)

with equality if and only if T = Ky V ((Kl v (Kllnr2 U(ng—72 — 2)K1)> U tKl), where ny =
n—t—1,y=y—-—n+t+2

Proof. LetI" € 'y such that H¢(I') is maximum. By (1) of Theorem 1, a universal vertex
v1 € V(I') exists, and hence

Hf(F) = f(n—1) 4 Hg, (T —vy),

where ¢1(x) = f(x+1). By (2) of Theorem 1, I — v1 consists of some isolated vertices and
a nontrivial connected component C. Let I'y = I' — v1. Note that ¢ is the number of isolated
vertices of I' — v1; we have

Hg1 (F — 01) = i’gl(O) + Hgl (C)

Suppose that mq,n1,v; and my, ny, 72 are the number edges, vertices, and cyclomatic
number of I'1, I';, respectively, whereI'y =I' — vy and I, = C. Since yp = mp —np+1,mp =
m—n+1L,n =nm—tm =m—-n+1,n =n—1, we have my = m —2n + 3 and
ny =n—t—1,it follows that 7 = v —2n +t 4+ 4; note that y € 2n — —3,3n — 2t — 7],
sol < v < np —2and ny > 3, which implies m, > ny. Then, we know that I'; is a
connected np-vertex graph with cyclomatic number vy, and 1 < 9, < np —2, 1, > 3. So,
we can apply Theorem 2 for I'; and we have

Hg (T2) < g1(n2 —1) +g1(r2 +1) +7281(2) + (n2 — 12 — 2)g1(1)

with equality if only if I', = K; V (KM2 U(ng — 72 — 2)K1>.
Hence, we have
Hy(T) =f(n — ) +181(0) + Hg, (I'2)
<f(n—=1)+1tg1(0) + g1(n2 = 1) + g1 (72 + 1) + 71281(2) + (n2 — 72 — 2)g1(1)
=f(n— )+tf( )+ fn—t)+fy—n+t+5 +(y—n+t+4)f(3)
+(2n—2t— ¢ —5)f(2)
with equality if only if T = Ky V ((K1 v (Klﬁz U(np — 2 — Z)Kl)) U tKl), where 1, =
n—t—1,y=y—-—n+t+2. 0O
A similar result holds for strictly concave functions f(x), which have property P : the
minimum of H¢(T) is reached in I'y  if and only if I' = K; V ((K1 vV (KLAY2 U(ng — 72—
2)K1)> UtKl),wherenz =n—t—1,yp=7y—n+t+4+2

Lemma 1. If f(x) is a convex function, then f(x) — f(x —a) > f(x —b) — f(x — b — a) with
equality if and only if b = 0, where a,b > 0.

Proof. Let h(x) = f(x) — f(x — a). Since f(x) is a convex function, it follows that f'(x) is
an increasing function and #’(x) = f'(x) — f'(x —a) > 0. So, h(x) is an increasing function
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and h(x) > h(x — b) with equality if and only if b = 0, and therefore f(x) — f(x —a) >
flx—b)—f(x—b—a). O

We now give a lower bound for H¢(T).

Theorem 4. Let T be a tree of order n (n > 4). If f(x) is a convex function, then He(T) >
(n—2)f(2) +2f(1) with equality if and only if T = P,,.

Proof. If n = 4,then T = 5S4 or T = P4. One can easily check that

H(S4) = 3f(1) + f(3) >2f(2) +2f(1) = Hf(Py)
as f(3) — f(2) > f(2) — f(1), by Lemma 1. The result holds for n = 4.

We now suppose that n > 5. We prove this result by the induction on n. Assume
that the result holds for n — 1 and prove it for n. Let T’ be a tree of order n — 1 such that
T — U]' = T’, where dT(Z)]) =1, 0 = NT(’U]') and dT’(vi) = dT(ZJi) —-1= p— 1. Thus, we
have H¢(T') > (n —3)f(2) +2 f(1) with equality if and only if T" = P, ;. One can easily
see that

Hy(T) = Hy(T") + f(p) = f(p = 1) + f(1).

Since f(x) is a convex function, it follows from Lemma 1 that f(p) — f(p — 1) > f(2) — f(1)
with equality if and only if p = 2. Therefore, by the induction hypothesis with the above
results, we obtain

Hp(T) = He(T') + f(p) = f(p = 1) + f(1)
> (n=3)f(2)+3f(W)+f(p) - f(p-1)
> (n=2)f(1)+2f(1)

and the result holds by induction. Moreover, the equality holds if and only if T' = P,_;
and dr(v;) = p = 2, thatis,ifand only if T = P,. [

Corollary 1. Let T be a chemical tree of order n (n > 4). If f(x) is a convex function, then
Hf(T) > (n—2) f(2) +2 f(1) with equality if and only if T = P,.

Using Theorem 4, we obtain a lower bound for H(T).

Theorem 5. Let T’ be a connected graph of order n (n > 4). If f(x) is a convex and increasing
function, then Hg(T') > (n —2) f(2) + 2f (1) with equality if and only if T = Py,

Proof. Since f(x) is an increasing function, it follows that f(x +1) + f(y+1) > f(x) +
f(y), and hence H¢(T +e¢) > H¢(T), where ¢ is an edge joining between two non-adjacent
vertices in I'. Clearly, for the graph I' of order 1, we have H¢(I') > H¢(T), where T is a tree
of order n. This result with Theorem 4, we obtain H¢(I') > Hf(T) > (n —2) f(2) +2 f(1).
Moreover, the equality holds if and only if T = P,,. O

A complete split graph CS(n, a) is defined as the graph join K, V K;,—,, where « is the
independence number of graph CS(#n, «).

Theorem 6. Let I be a connected graph of order n (n > 4) with independence number w. If f(x)
is a strictly increasing function, then Hg(T') < (n —a) f(n — 1) + a f(n — &) with equality if
and only if T = CS(n, ).

Proof. Since f(x) is a strictly increasing function, it follows that f(x +1) + f(y +1) >
f(x) + f(y), and hence H¢(T +e) > H¢(T'), where e is an edge joining between two non-
adjacent vertices in I'. Since I' is a graph of order n with independence number &, we must
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have that T is a subgraph of CS(n,a). If T = CS(n,a), then Hf(T) = (n —a) f(n —1) +
« f(n — a); hence, the equality holds. Otherwise, I' 2 CS(n, «). Since I’ is a subgraph of
CS(n, ) and H¢ (T +e) > Hy(T'), we obtain H¢(I') < Hy(T' +e) < --- < Hf(CS(n,&) —e1)
< H¢(CS(n,a)) = (n—a) f(n —1)+a f(n — a), where e; is an edge in CS(n,«). This
completes the proof of the theorem. O

Let C be the set of pendant vertices, and let A be the set of non-leaf vertices that have
at least 2 neighbor vertices, each of which are not leaves. Let B be the set of non-leaf vertices
that have only one neighbor vertex, which is not a leaf. Note that V(I') = AUB UC.

Lemma 2. Let T be a graph of order n, and f(x) be a convex function.

(1) Ifue A we B,and xw € E(T) such that dr(x) = 1, dr(u) = 2 or 3, dr(w) = 2 or 3,
then Hg(T'y1) > Hg(T'), where Ty = T — wx + ux.

(2) Ifue A we B, and xw,yw € E(T) such that dr(x) = dr(y) =1, dr(u) = 2, dr(w) =4,
then Hg(T2) = Hg(T), where Ty = T — wx — wy + ux + uy.

(3) Ifue A, w e B,and xw € E(T) such that dr(x) = 1, dr(u) = 3, dr(w) = 4, then
H¢(T3) = Hf(T'), where I3 = T — wx + ux.

(4 Ifu,v € B, and xu € E(T) such that dr(x) = 1, dr(u) = 2 or 3, dr(v) = 3, then
Hf(Ty) > Hy(T), where Ty =T — ux + ox.

(5) Ifu,v,w € B, and xu,yv € E(T') such that dr(x) = dr(y) = 1, dr(u) = dr(v) =
dr(w) = 2, then Hg(T's) > Hy(T'), where I's = T — xu — yv + wx + wy.

(6) Ifu,v € B, and xu € E(T) such that dr(x) = 1, dr(u) = 2 and dr(v) = 2, then
H¢(T6) > Hf(T), whereTg =T — ux + vx.

Proof. Suppose that I' is the graph of order n and f(x) is convex.
For (1), from Lemma 1, f(dr(u) + 1) — f(dr(u)) + f(dr(w) — 1) — f(dr(w)) > 0 holds for
dr(u) = 2,3 and dr(w) = 2,3, and hence

Hy () = Hp(T) + f(dr(u) +1) = f(dr(u)) + f(dr(w) = 1) = f(dr(w)) = Hg(T).
For (2), we can easily obtain
Hy(T2) = He(T) + f(dr (u) +2) = f(dr(u)) + f(dr(w) = 2) = f(dr(w))
= Hp() + f(4) = f(2) + f(2) — f(4) = Hf(T).
For (3), we have
Hy(T3) = He () + f(dr(u) +1) = f(dr(u)) + f(dr(w) = 1) — f(dr(w))
= Hp() + f(4) = f(3) + f(3) — f(4) = Hf(T).

For (4), from Lemma 1, we know that f (dr(v) +1) — f(dr(v)) + f(dr(u) — 1) — f(dr(u)) >
0 holds for dr(u) = 2,3 and dr(v) = 3, and hence

Hy(Ty) = Hp(T) + f(dr(v) +1) — f(dr(v)) + f(dr(u) = 1) — f(dr(u)) = Hp(T).

For (5), since f(x) is a convex function, it follows that f(1) + f(3) > 2f(2). From Lemma 1,
we have f(1) + f(4) > f(2) + f(3), and hence 2f (1) + f(4) > 3f(2). Then,

Hy(T's) =Hg(T) + f(dr(v) = 1) = f(dr(v)) + f(dr(u) — 1) — f(dr(u))
+ fldr(w) +2) — f(dr(w))
=Hy([) +2f(1) = 2f(2) + f(4) - f(2)
=Hp([) +2f(1) + f(4) = 3f(2) = Hy(I).
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For (6), from Lemma 1, we know that f(dr(v) +1) — f(dr(v)) + f(dr(u) —1) — f(dr(u)) >
0 holds for dr(#) = 2 and dr(v) = 2, and hence

Hy(Ts) = Hy(T') + f(dr(v) +1) = f(dr(v)) + f(dr(u) = 1) = f(dr(u)) > Hg(T).
O

For chemical trees, we have the following upper bound.

Theorem 7. Let T be a chemical tree of order n (n > 5). If f(x) is a convex function, then three
integers (my, my, m3) exist such that

mif(4)+ (m—my —1)f(1)+ f(2) ifi=0,
Hf(T) < myf(4) + (n—my—1)f(1)+ f(3) ifi=1,
maf(4) + (n — ma) £(1) ifi =2

with equality if and only if T contains only one 2-degree vertex but contains no 3-degree vertices for
i = 0; T contains only one 3-degree vertex but contains no 2-degree vertices for i = 1; and T only
contains 1-degree vertices and 4-degree vertices for i = 2, where n =i (mod 3).

Proof. Suppose that T is a chemical tree of order n and f(x) is a convex function. By
operations (1), (2), and (3) of Lemma 2, we can obtain a new tree T’ with V(T") = V(T)
containing no 2-degree vertices or 3-degree vertices in A. That is to say, all of the 2-degree
vertices and 3-degree vertices are in B. Suppose that n =i (mod 3) and 1y, 1y, n3, n4 are
the number of vertices with degree 1,2, 3,4, respectively, in T'.

Note that He(T') > H¢(T). We distinguish the following cases to show this theorem.

Casel.i =0.

We claim that 1y # 0 or n3 # 0; otherwise, T’ contains only 1-degree and 4-degree
vertices. Since 11 + nq = n and ny +4ny = 2(n — 1), we have n = 3n4 + 2, contradicting
the fact thatn =0 (mod 3).

Since ny +ny +n3+ng = nand ny +2ny +3n3+4ny = 2(n —1), wehavenp, +2n3 = 1
(mod 3),and so ny —n3 =1 (mod 3) and n3 —ny =2 (mod 3).

If np, > n3, then it follows from (4) of Lemma 2 that

He(T') =n1f(1) +naf(2) + naf (3) + naf(4)
<(n1 +n3)f(1) + (n2 — n3) f(2) + (n4 + n3) f (4).
Suppose that 1y — n3 = 3k + 1. From (5) of Lemma 2, we have
Hp(T') < (ny + n3 +2k1) f(1) + f(2) + (ng +n3 4+ k1) f(4).

Let mq = ng4 + n3 + k1, and thus we are done.

If ny < n3, then it follows from (4) of Lemma 2 that H¢(T') = nyf(1) +naof(2) +
n3f(3) +naf(4) < (ny+mnp)f(1)+ (n3 —ny)f(3) + (nga + ny) f(4). Suppose that n3 — np =
301 + 2. From (4) of Lemma 2, we have

Hp(T') < (n1+m2)f(1) + (1 +1)f(2) + 41 (3) + (na + mp + L1 + 1) f(4)

<
< (m+na+6)f(1)+ f(2) + (ng +n2+ 26 +1)f(4).

Let mq = ng + ny + 201 + 1, and thus we are done.

Case2.i = 1.
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We claim that 1y # 0 or n3 # 0; otherwise, T’ contains only 1-degree and 4-degree
vertices. Since n1 + nq = n and ny +4ny = 2(n — 1), we have n = 3n4 + 2, contradicting
the fact thatn =1 (mod 3).

Since 11 + ny + n3 + ng = nand ny + 2n, + 3nz +4ng = 2(n — 1), we have np +2n3 =
2 (mod 3),and so n; —n3 =2 (mod 3),n3 —ny =1 (mod 3).

If np, > n3, then it follows from (4) of Lemma 2 that

Hp(T') = n1f(1) +naf (2) +n3f(3) + naf(4)
< (m+n3)f(1) + (n2 — n3) f(2) + (ng +n3)f(4).
If ny — n3 = 3ky + 2, it follows from (5) and (6) of Lemma 2 that
Hp(T') < (ny + n3 +2k2) f(1) +2f(2) 4 (ng + 13+ k2) f(4)

<
< (m 4342k +1)f(1) + f(3) + (na + 13+ ka) f(4).

Let my = ny4 + n3 + ky, and thus we are done.
If np < n3, then it follows from (4) of Lemma 2 that

Hp(T') = nf(1) +naf (2) +n3f(3) + naf(4)
< (m+n2)f(1) + (n3 — n2) f(3) + (ng +n2) f(4).
If ng — np = 30, + 1, then it follows from (4) of Lemma 2 that
(n1+n2)f(1) + (3l +1)f(3) + (ng +n2) f(4)

<
< (np+n2)f(1) + 42 f(2) + (2 +1)f(3) + (ng +na + £2) f(4)
< (m +na+46)f(1) + f(3) + (na + np + 262) f(4).

Hf(T’)

Let my = ny + n, + 245, and thus we are done.

Case3.i = 2.

Since 11 + np + n3 + ny = nand ny + 2ny + 3nz +4ny = 2(n — 1), we have ny +2n3 =
0 (mod 3),and sony; —n3 =0 (mod 3), n3 —np =0 (mod 3).

If ny > n3, then it follows from (4) of Lemma 2 that H¢(T') = nyf(1) +naf(2) +

n3f(3) +naf(4) < (np+n3)f(1) + (np —n3)f(2) + (nga + n3) f(4). Suppose that n, — nz =
3ks. By (5) of Lemma 2, we have

Hf(T,) < (1’11 +n3 + 2k3)f(1) + (1’14 +n3 + k3)f(4)

Let m3 = n4 + n3 + k3, and thus we are done.
If np < n3, then it follows from (4) of Lemma 2 that

He(T') =n1f(1) +naf(2) + n3f (3) + nyf(4)
<(n1+m2) f(1) + (13 —n2) f(3) + (na + n2) f(4).
Suppose that n3 — 1y = 3¢3. By (4) of Lemma 2, we have

Hy(T') < (m +n2) f(1) + 303£(3) + (n4 + n2) f(4)

<
< (m +n2)f(1) +43f(2) + 3£ (3) + (ng +n2+£3)f(4)
< (np+mny+403)f(1) + (ng +n2 +263) f(4).

Let m3 = (nq4 + np + 2¢3), and thus we are done. O

For trees, we have the following upper bound.
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Theorem 8. Let T be a tree of order n (n > 4). If f(x) is a convex function, then H(T) <
(n—1)f(1) + f(n — 1) with equality if and only if T = S,,.

Proof. If n = 4, then by the proof of Theorem 4, we obtain H¢(S4) > Hy(Py). The result
holds for n = 4.

We now suppose that n > 5. We prove this result by induction on n. Assume that the
result holds for  — 1 and prove it for . Let T’ be a tree of order n — 1 such that T —v; = T,
where dr(v;) = 1, v; = Nr(v;) and dp(v;) = dr(v;) —1 = p — 1, (say). Thus, we have
H¢(T') < (n—=2)f(1) + f(n — 2) with equality if and only if 7" = S, 1. One can easily
see that

Hy(T) = Hg(T') + f(p) = f(p — 1) + f(1).

Since f(x) is a convex function, it follows from Lemma 1 that f(n — 1) — f(n —2) >
f(p) — f(p — 1) with equality if and only if p = n — 1. Therefore, by the induction
hypothesis with the above results, we obtain

Hy(T) = Hg(T') + f(p) = f(p — 1) + f(1)

< -=DfMW)+fn=2)+f(p)—flp-1)
<(=1fW)+f(n-1)

and the result holds by induction. Moreover, the equality holds if and only if T" & S,,_;
and dr(v;) = p =n —1, thatis,ifand only if T = S,,. O

Remark 1. If f(x) is a convex function, then by Theorems 4 and 8, we conclude that the path Py
gives the minimum Hy(T) and the star gives the maximum H¢(T) among all trees of order n.

3. Nordhaus-Gaddum-Type Results

In this section, we give the Nordhaus—Gaddum-type results for the vertex degree
function index.

Theorem 9. Let T be a graph of order n. If f(x) is a convex function, then
2n f(251) if n is odd,
H(T)+ Hf(T) >
7O+ Hy (@) n{f(%)—l—f(%—l)] if n is even.
Moreover, the equality holds if and only if T is a | % |-regular graph.

Proof. We have
1)

We consider two cases.

Case 1. nis odd.
First, we assume that 5! < dr(v;) < n — 1. Setting x = dr(v;), a = b = dr(v;) — 5%
in Lemma 1, we obtain

flanto)) —f("57) 2 ("5 ) ~ Fln—delon — ),
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that is,

Fdr (o) + fn —dr(o;) — 1) > zf<n 5 1)

with equality if and only if dr(v;) = ”T’l From (1), we obtain

) <o)

-regular graph, that is, if and only if T is a [ 5 ]-

Hy(T) + He(T >2Zf<

with equality if and only if T is an ( 1)

regular graph.
Next, we assume that 0 < dr(v;) < ”—51 —1, that is, ”—El < dp(v;) < n— 1. Setting
x =dp(v;), a = b = dr(v;) — 5! in Lemma 1, we obtain

Flare) - £ (") 2 (") - 5 (- doton 1),
(o)) + £ (n = deto) ~1) 2 27( "5

with equality if and only if dp(v;) = “;1. Hence, Hf(T) + Hf(T) = i [f (dr(vi)) +
i=1

f(df(vi))] = i [f(n—l— (v )) —l—f( (v ))} Zan(”—_l) with equality if and only

i=1
( L -regular graph, that is, if and only if I' is a | 5 |-regular graph.

that is,

ifI'is an

Case 2. n is even.
In this case, first we assume that & < dr(v;) < n —1. Setting x = dr(v;), a =
dr(v;) =5 +1, b = dr(v;) — 5§ in Lemma 1, we obtain

flr@)) —f(5-1) = f(5) = fln—dr(o) = 1)

with equality if and only if dr(v;) = %, and hence

)+ 102 ¥ (0 (5) (5 1)) 20 1 (5) (5 - 1))

with equality if and only if T is an 5-regular graph, that is, if and only if T'is a | § |-regular
graph.

Next, we assume that 0 < dr(v;
X = df(vj), a= df(vj) —5+1,b=dp(

far(e) = £(5-1) 2 £(5) = f(n—dr(o) 1),

v;) < 5 —1, thatis, 7 < dp(v;) < n—1. Setting
v

j) — 4 in Lemma 1, we obtain

(
dr

that is,
£ (@) + £ (n—dr(e) —1) = £(5) +£(5 1)
with equality if and only if d(v;) = 7. Hence,

0= 3 [ 1 (aro0)] = 55 101 -to) ()]

i=1 i=1

=nlr(3) (3 -1)]
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with equality if and only if T is an 5-regular graph, that is, if and only if T'is a | § |-regular
graph. O

Theorem 10. Let I be a graph of order n with maximum degree A. If f(x) is a convex function,
then

Hy(T) + Hy(T) < n [f(8) + f(n—1- )]

with equality if and only if T is a reqular graph or graph I has only two type of degrees A and
n—1-AA>(n-1)/2).

Proof. Settingx = A, a = A —dr(v;) and b = A+ dr(v;) — (n — 1), by Lemma 1 we obtain
fldr(vi)) + f(n =1 —dr(v;)) < f(A) + f(n=1-4)

with equality if and only if dr(v;) =n —1— A ori = 1. Hence,

n

fldr(vi)+ Y f(n—1—dr(v;))

i=1

M-

l
—

Hy(T) + Hy(T) =

IN
=

Il
_

FB) +f(n—=1=8)] =n [f(8) + f(n—1-8)].

Moreover, the equality holds if and only if dr(v;) = A or dr(v;) = n — 1 — A for any vertex
v; € V(T), thatis, if and only if I is a regular graph or graph I has only two type of degrees
Aandn—1-A(A>(n—1)/2). O

Corollary 2. Let T be a graph of order n. If f(x) is a convex function, then

Hy(T) + Hy(T) < n [f(n—1) + £(0)]
with equality if and only if I is a complete graph or I is an empty graph.
Proof. Settingx =n—1,a=n—-1—Aand b = A, by Lemma 1 we obtain

fB)+fn=1-A) < f(n—1)+ f(0)

with equality if and only if A = 0 or A = n — 1. Using this result with Theorem 10, we
obtain the result. Moreover, the equality holds if and only if I is a complete graph or I' is
an empty graph. 0O

The following is the well-known Jensen inequality.
Lemma 3 (Jensen Inequality [21]). If f(x) is convex function, for all x1,xy,...,x, € [a,b], then

n
X

() > nf| |
=0

1

with equality ifand only if x; = x0 = - -+ = x.

Theorem 11. Let I be a graph of order n and size m. If f(x) is a convex function, then

HAD) + HAT) 2 (2) (M= D220)

n n
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and ) ( 2
- m nn—1)—2m
Hy(T) - Hy(T) > nzf(n > -f(n )
with equality if and only if T is a reqular graph.

n
Proof. Since f(x) is a convex function and Y dr(v;) = 2m, it follows from Lemma 3 that
i=1

1 i dr (v;)
= 2m
Y flarton) 2 nf | S | =ns ()
and )
& L df(vz) 2l —1) — 2m
Y fdr(o) > nf| = —nf< : i) 2 )
i=1
Hence,

i=1 i=1 n
and
W@VW@FdZWNM%iﬂ%m»zﬁ%??j(“”f?dm)
i=1 i=1

Moreover, the equality holds if and only if dr(v;) = dr(v;) for 1 < i,j < n, which means
that I' is a regular graph. [

Theorem 12. Let I be a graph of order n with maximum degree A and minimum degree 6. If f(x)
is an increasing function, then

Hy(T) - Hy(T) <(n =12 f(8) f(n =1~ 8) + (n = 1) f(8) f(n = 1-0)
+ =1 f(A) f(n=1=4)+f(d) f(n—1-4)

with equality if and only if T is a reqular graph.

Proof. Since A is the maximum degree and ¢ is the minimum degree, we can assume that
A =dr(v1) > dr(vy) > --- > dr(v,) = 6. Moreover, we obtain

n—1-6>n—-1—dr(v;) >n—1-A for v; € V(T).

Since f(x) is an increasing function with the above results, we obtain

n n n—2
Hy(T) - Hy(T) = Yo fdr(0)) - Yo fn =1 = dr(@) = [£(8)+ X fdr(@)) + £(0)
n—2

fln=1=0)+ Y fln=1—dr(;)+ f(n—1-4)]

|
<[fO) + =1 f@)] [fr=1=8)+(n=1) f(n —1-0)]
(

n—=1)%f(A) f(n—1-6)+ (n—1) f(6) f(n—1-0)
+ =1 f(A) f(n=1=4)+f(d) f(n=1=A).
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Moreover, the above equality holds if and only if dr(v;) = A for all v; € V(T) (i =
1,2,...,n—1),and dr(v;) = é forallv; € V(') (i =2,3,...,n), and hence A = J, that is, if
and only if I is a regular graph. [

Corollary 3. Let T be a graph of order n with maximum degree A and minimum degree 6. If f(x)
is an increasing function, then

H,(T) - Hy(T) < n2f(A)f(n =1 9)
with equality if and only if T is a reqular graph.

Proof. Since f(x) is an increasing function, we have f(J) < f(A) and f(n —1—A) <
f(n—1—19). Using these results in Theorem 12, we obtain the required result. Moreover,
the equality holds if and only if I is a regular graph. [

Theorem 13. Let I be a graph of order n with maximum degree A and minimum degree &. If f(x)
is an increasing function, then

Hf(T) - Hp(T) 2(n—1)* f(6) f(n =1~ A) + (n = 1) f(6) f(n =1~
+ =1 f(A)f(n=1=A)+ f(A) f(n—1-79)

with equality if and only if T is a reqular graph.

Proof. The proof is similar to the proof of Theorem 12. Since f(x) is an increasing function,
we obtain

n—2

n—2
Hy(T) - Hy(T) =|£(8) + X fdr(00)+ FQO)] [f(n=1=0)+ 1 f(n =1~ dr(v)

i=2
+f(n—1-n)]
> [f(8)+(n=1) f(6)] [f(n=1=8)+ (1= 1) f(n =1 = 1)]

=(n—1)2f(8) f(n =1~ )+ (n—=1) f(8) f(n —1-0)
+ =1 f(A)f(n=1=A)+ f(A) f(n=1-79).

Moreover, the equality holds if and only if I' is a regular graph. [

Corollary 4. Let T be a graph of order n with maximum degree A and minimum degree 6. If f(x)
is an increasing function, then

Hy(T) - Hy(T) = 2 (0)f(n — 1~ )
with equality if and only if T is a reqular graph.

4. Concluding Remarks

In this report, the vertex-degree function index H¢(T') has been investigated for a different
class of graphs. Tight bounds of the vertex-degree function index Hy(T') have been set up for
any n vertex-connected graphs, trees, and chemical trees. The extremal graphs where the
bounds attain have also been identified. Moreover, we present the Nordhaus-Gaddum-
type results for Hy(T) + H(T) and Hf(T') - H¢(T), and the characterization of the extremal
graphs. We now pose the following problem related to the work presented in this paper, as
a potential topic for further research .
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Problem 1. To find the lower and upper bounds on the vertex-degree function index H¢(T') and
characterize corresponding extremal graphs for other significant classes of graphs such as bicyclic,
tricyclic graphs, etc.
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