Extremal Graphs to Vertex Degree Function Index for Convex Functions

Dong He ${ }^{1}$, Zhen Ji ${ }^{2}$, Chenxu Yang ${ }^{2(D)}$ and Kinkar Chandra Das ${ }^{3, *}$ (D)
1 School of Mathematics and Statistis, Qinghai Normal University, Xining 810008, China
2 School of Computer, Qinghai Normal University, Xining 810008, China
3 Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea
* Correspondence: kinkardas2003@gmail.com or kinkar@skku.edu

Citation: He, D.; Ji, Z.; Yang, C.; Das, K.C. Extremal Graphs to Vertex Degree Function Index for Convex Functions. Axioms 2023, 12, 31.
https://doi.org/10.3390/
axioms12010031
Academic Editor: Federico G. Infusino

Received: 30 October 2022
Accepted: 23 December 2022
Published: 27 December 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

The vertex-degree function index $H_{f}(\Gamma)$ is defined as $H_{f}(\Gamma)=\sum_{v \in V(\Gamma)} f(d(v))$ for a function $f(x)$ defined on non-negative real numbers. In this paper, we determine the extremal graphs with the maximum (minimum) vertex degree function index in the set of all n-vertex chemical trees, trees, and connected graphs. We also present the Nordhaus-Gaddum-type results for $H_{f}(\Gamma)+H_{f}(\bar{\Gamma})$ and $H_{f}(\Gamma) \cdot H_{f}(\bar{\Gamma})$.

Keywords: vertex degree function index; tree; cemical tree; connected graph; Nordhaus-Gaddumtype result

MSC: 05C07; 05C09; 05C92

1. Introduction

In this paper, the graphs we discuss are simple graphs without multiple edges and loops. The vertex and edge set of Γ will be denoted by $V(\Gamma)$ and $E(\Gamma)$, and the order and size of Γ will usually be denoted by n and m, respectively. Let a vertex $v \in V(\Gamma)$; we denote the degree of v by $d_{\Gamma}(v)$ in Γ. The neighbors of v in $V(\Gamma)$ are denoted by $N_{\Gamma}(v)$. For a graph Γ, we denote the maximum and minimum degree of Γ by $\Delta(\Gamma)$ and $\delta(\Gamma)$, respectively. A leaf $v \in V(\Gamma)$ is a vertex v satisfied $d_{\Gamma}(v)=1$. We call a connected graph without a cycle a tree, denoted by T. A tree whose maximum degree is no more than 4 is called a chemical tree. The star graph with order n, denoted by S_{n}, is a tree with one center vertex and $n-1$ leaves. The disjoint union of two vertex-disjoint graphs Γ_{1} and Γ_{2} will be denoted by $\Gamma_{1} \cup \Gamma_{2}$, whose vertex and edge sets are $V\left(\Gamma_{1}\right) \cup V\left(\Gamma_{2}\right)$ and $E\left(\Gamma_{1}\right) \cup E\left(\Gamma_{2}\right)$, respectively. We denote the union of k copies of a graph Γ by $k \Gamma$. The join of Γ_{1} and Γ_{2} is obtained by joining edges between each vertex of Γ_{1} and all vertices of Γ_{2}, denoted by $\Gamma_{1} \vee \Gamma_{2}$. For a graph Γ, the edge $u v \in E(\Gamma)$ and the vertex $w \in V(\Gamma), \Gamma-u v$ mean removing $u v$ from Γ and $\Gamma-w$, which means removing w from Γ.

A universal vertex of Γ with order n is a vertex v that have $d(v)=n-1$. An (n, m)-graph is the graph with n vertices and m edges. We denote by $\Gamma(n, m)$ the set of (n, m)-graphs. The cyclomatic number of a graph Γ is the minimum number of edges whose deletion transforms Γ into an acyclic graph, denoted by $\gamma(\Gamma)$. The set of graphs with order n and cyclomatic number γ is denoted by $\Gamma_{n, \gamma}$. We have $\gamma(\Gamma)=m-n+1$ for a connected graph $\Gamma \in \Gamma_{n, \gamma}$.

The vertex-degree function index $H_{f}(\Gamma)$ is denoted by

$$
H_{f}(\Gamma)=\sum_{v \in V(\Gamma)} f(d(v))
$$

for a function $f(x)$ defined on non-negative real numbers in [1]. For example, the first Zagreb index [2] is defined as $M_{1}(\Gamma)=\sum_{v \in V(\Gamma)} d(v)^{2}$ when $f(x)=x^{2}$, and the forgotten topological index [3] is defined as $F(\Gamma)=\sum_{v \in V(\Gamma)} d(v)^{3}$ when $f(x)=x^{3}$. The general first

Zagreb index, denoted by ${ }^{0} R_{\alpha}(\Gamma)$, was defined in $[4,5]$ as ${ }^{0} R_{\alpha}(\Gamma)=\sum_{v \in V(\Gamma)} d(v)^{\alpha}$, where α is a real number, $\alpha \notin\{0,1\}$. For the mathematical properties of the above topological indices, see $[6-11]$ and the references therein. Let v be a leaf of S_{n}, where $n \geq 3$. For $0 \leq \gamma \leq n-2$, the graph obtained from S_{n} by joining edges v with γ other pendant vertices is denoted by $H_{n, \gamma}$ in [12]. Deng [10] obtained the bounds of the Zagreb indices for trees, unicyclic graphs, and bicyclic graphs. Hu and Li determined the connected (n, m)-graphs with the minimum and maximum zeroth-order general Randić index in [13]. Li and Zheng [5] obtained a unified approach to the extremal trees for different indices. Some extremal results concerning the general zeroth-order Randić index were deduced in [14-16]; also see the survey [12].

In [17], Tomescu obtained that the function $f(x)$ has property $\left(P_{\nearrow} ; P_{\searrow}\right)$ if $\varphi(i+1)>$ $\varphi(i) ; \varphi(i+1)<\varphi(i)$, respectively, for every integer $i \geq 0$, where $\varphi(x)=f(x+2)+$ $f(x)-2 f(x+1)$, and he obtained the maximum (minimum) vertex degree function index $H_{f}(\Gamma)$ in the set of all n-vertex connected graphs that have the cyclomatic number γ when $0 \leq \gamma \leq n-2$ if $f(x)$ is strictly convex (concave) and satisfies the property $P_{\nearrow} ; P_{\searrow}$. Tomescu [18] obtained some structural properties of connected (n, m)-graphs which are maximum (minimum) with respect to vertex-degree function index $H_{f}(\Gamma)$, when $f(x)$ is a strictly convex (concave) function. In the same paper, it is also shown that the unique graph obtained from the star S_{n} by adding γ edges between a fixed pendant vertex v and γ other pendant vertices has the maximum general zeroth-order Randić index ${ }^{0} R_{\alpha}$ in the set of all n-vertex connected graphs that have the cyclomatic number γ when $1 \leq \gamma \leq n-2$ and $\alpha \geq 2$.

Tomescu obtained the following results.
Theorem 1 ([18]). In the set of connected (n, m)-graphs Γ that have $m \geq n$, the graph that maximizes (minimizes) $H_{f}(\Gamma)$ where $f(x)$ is strictly convex (concave) possesses the following properties:
(1) Γ has a universal vertex v;
(2) The subgraph $\Gamma-v$ consists of some isolated vertices and a nontrivial connected component C, which is maximum (minimum) relatively to H_{g}, where $g(x)=f(x+1)$. C also contains a universal vertex and no induced subgraph isomorphic to P_{4} or C_{p}, where $p \geq 4$.

Theorem 2 ([17]). If $n \geq 3,1 \leq \gamma \leq n-2, f(x)$ is strictly convex and has property P_{γ}, and Γ is a connected n-vertex graph with cyclomatic number γ, then

$$
H_{f}(\Gamma) \leq f(n-1)+f(\gamma+1)+\gamma f(2)+(n-\gamma-2) f(1),
$$

with equality if and only if $\Gamma \cong H_{n, \gamma} \cong K_{1} \vee\left(K_{1, \gamma} \cup(n-\gamma-2) K_{1}\right)$.
In Section 2, we give upper and lower bounds for the vertex degree function index of connected graphs if $f(x)$ is a convex and increasing function that has property P_{\nearrow}. We obtain sharp upper and lower bounds for the vertex degree function index of trees and chemical trees if $f(x)$ is a convex and increasing function.

Let $f(\Gamma)$ be a graph invariant and n be a positive integer. The Nordhaus-Gaddum Problem is to determine sharp bounds for $f(\Gamma)+f(\bar{\Gamma})$ and $f(\Gamma) \cdot f(\bar{\Gamma})$ as Γ ranges over the class of all graphs of order n, and to characterize the extremal graphs, i.e., graphs that achieve the bounds. Nordhaus-Gaddum-type relations have received wide attention; see the recent survey [19] by Aouchiche and Hansen and the book chapter by Mao [20].

Denote by $\mathcal{G}(n)$ the class of connected graphs of order n whose complements are also connected. In Section 3, the upper and lower bounds for $H_{f}(\Gamma)+H_{f}(\bar{\Gamma})$ and $H_{f}(\Gamma) \cdot H_{f}(\bar{\Gamma})$ are given for $\Gamma \in \mathcal{G}(n)$.

2. Bounds on $H_{f}(\Gamma)$

At first, we give the following upper bound for $H_{f}(\Gamma)$.

Theorem 3. Let Γ be an n-vertex $(n \geq 5)$, m-edge graph with a cyclomatic number γ such that $\gamma \in[2 n-t-3,3 n-2 t-7]$, where $t(1 \leq t \leq n-4)$ is the number of pendant vertices in Γ. If $f(x)$ is a strictly convex function that has property P_{\nearrow}, then

$$
\begin{gathered}
H_{f}(\Gamma) \leq f(n-1)+t f(1)+f(n-t)+f(\gamma-n+t+5)+(\gamma-n+t+4) f(3) \\
+(2 n-2 t-\gamma-5) f(2)
\end{gathered}
$$

with equality if and only if $\Gamma \cong K_{1} \vee\left(\left(K_{1} \vee\left(K_{1, \gamma_{2}} \cup\left(n_{2}-\gamma_{2}-2\right) K_{1}\right)\right) \cup t K_{1}\right)$, where $n_{2}=$ $n-t-1, \gamma_{2}=\gamma-n+t+2$.

Proof. Let $\Gamma \in \Gamma_{n, \gamma}$ such that $H_{f}(\Gamma)$ is maximum. By (1) of Theorem 1, a universal vertex $v_{1} \in V(\Gamma)$ exists, and hence

$$
H_{f}(\Gamma)=f(n-1)+H_{g_{1}}\left(\Gamma-v_{1}\right)
$$

where $g_{1}(x)=f(x+1)$. By (2) of Theorem $1, \Gamma-v_{1}$ consists of some isolated vertices and a nontrivial connected component C. Let $\Gamma_{1}=\Gamma-v_{1}$. Note that t is the number of isolated vertices of $\Gamma-v_{1}$; we have

$$
H_{g_{1}}\left(\Gamma-v_{1}\right)=\operatorname{tg}_{1}(0)+H_{g_{1}}(C)
$$

Suppose that m_{1}, n_{1}, γ_{1} and m_{2}, n_{2}, γ_{2} are the number edges, vertices, and cyclomatic number of Γ_{1}, Γ_{2}, respectively, where $\Gamma_{1}=\Gamma-v_{1}$ and $\Gamma_{2}=C$. Since $\gamma_{2}=m_{2}-n_{2}+1, m_{2}=$ $m_{1}-n_{1}+1, n_{2}=n_{1}-t, m_{1}=m-n+1, n_{1}=n-1$, we have $m_{2}=m-2 n+3$ and $n_{2}=n-t-1$, it follows that $\gamma_{2}=\gamma-2 n+t+4$; note that $\gamma \in[2 n-t-3,3 n-2 t-7]$, so $1 \leq \gamma_{2} \leq n_{2}-2$ and $n_{2} \geq 3$, which implies $m_{2} \geq n_{2}$. Then, we know that Γ_{2} is a connected n_{2}-vertex graph with cyclomatic number γ_{2} and $1 \leq \gamma_{2} \leq n_{2}-2, n_{2} \geq 3$. So, we can apply Theorem 2 for Γ_{2} and we have

$$
H_{g_{1}}\left(\Gamma_{2}\right) \leq g_{1}\left(n_{2}-1\right)+g_{1}\left(\gamma_{2}+1\right)+\gamma_{2} g_{1}(2)+\left(n_{2}-\gamma_{2}-2\right) g_{1}(1)
$$

with equality if only if $\Gamma_{2} \cong K_{1} \vee\left(K_{1, \gamma_{2}} \cup\left(n_{2}-\gamma_{2}-2\right) K_{1}\right)$.
Hence, we have

$$
\begin{aligned}
& H_{f}(\Gamma)=f(n-1)+t g_{1}(0)+H_{g_{1}}\left(\Gamma_{2}\right) \\
& \leq f(n-1)+\operatorname{tg}_{1}(0)+g_{1}\left(n_{2}-1\right)+g_{1}\left(\gamma_{2}+1\right)+\gamma_{2} g_{1}(2)+\left(n_{2}-\gamma_{2}-2\right) g_{1}(1) \\
& =f(n-1)+t f(1)+f(n-t)+f(\gamma-n+t+5)+(\gamma-n+t+4) f(3) \\
& \\
& \quad+(2 n-2 t-\gamma-5) f(2)
\end{aligned}
$$

with equality if only if $\Gamma \cong K_{1} \vee\left(\left(K_{1} \vee\left(K_{1, \gamma_{2}} \cup\left(n_{2}-\gamma_{2}-2\right) K_{1}\right)\right) \cup t K_{1}\right)$, where $n_{2}=$ $n-t-1, \gamma_{2}=\gamma-n+t+2$.

A similar result holds for strictly concave functions $f(x)$, which have property P_{\searrow} : the minimum of $H_{f}(\Gamma)$ is reached in $\Gamma_{n, \gamma}$ if and only if $\Gamma \cong K_{1} \vee\left(\left(K_{1} \vee\left(K_{1, \gamma_{2}} \cup\left(n_{2}-\gamma_{2}-\right.\right.\right.\right.$ 2) K_{1})) $\cup t K_{1}$), where $n_{2}=n-t-1, \gamma_{2}=\gamma-n+t+2$.

Lemma 1. If $f(x)$ is a convex function, then $f(x)-f(x-a) \geq f(x-b)-f(x-b-a)$ with equality if and only if $b=0$, where $a, b \geq 0$.

Proof. Let $h(x)=f(x)-f(x-a)$. Since $f(x)$ is a convex function, it follows that $f^{\prime}(x)$ is an increasing function and $h^{\prime}(x)=f^{\prime}(x)-f^{\prime}(x-a) \geq 0$. So, $h(x)$ is an increasing function
and $h(x) \geq h(x-b)$ with equality if and only if $b=0$, and therefore $f(x)-f(x-a) \geq$ $f(x-b)-f(x-b-a)$.

We now give a lower bound for $H_{f}(T)$.
Theorem 4. Let T be a tree of order $n(n \geq 4)$. If $f(x)$ is a convex function, then $H_{f}(T) \geq$ $(n-2) f(2)+2 f(1)$ with equality if and only if $T \cong P_{n}$.

Proof. If $n=4$, then $T \cong S_{4}$ or $T \cong P_{4}$. One can easily check that

$$
H_{f}\left(S_{4}\right)=3 f(1)+f(3)>2 f(2)+2 f(1)=H_{f}\left(P_{4}\right)
$$

as $f(3)-f(2)>f(2)-f(1)$, by Lemma 1. The result holds for $n=4$.
We now suppose that $n \geq 5$. We prove this result by the induction on n. Assume that the result holds for $n-1$ and prove it for n. Let T^{\prime} be a tree of order $n-1$ such that $T-v_{j}=T^{\prime}$, where $d_{T}\left(v_{j}\right)=1, v_{i}=N_{T}\left(v_{j}\right)$ and $d_{T^{\prime}}\left(v_{i}\right)=d_{T}\left(v_{i}\right)-1=p-1$. Thus, we have $H_{f}\left(T^{\prime}\right) \geq(n-3) f(2)+2 f(1)$ with equality if and only if $T^{\prime} \cong P_{n-1}$. One can easily see that

$$
H_{f}(T)=H_{f}\left(T^{\prime}\right)+f(p)-f(p-1)+f(1)
$$

Since $f(x)$ is a convex function, it follows from Lemma 1 that $f(p)-f(p-1) \geq f(2)-f(1)$ with equality if and only if $p=2$. Therefore, by the induction hypothesis with the above results, we obtain

$$
\begin{aligned}
H_{f}(T) & =H_{f}\left(T^{\prime}\right)+f(p)-f(p-1)+f(1) \\
& \geq(n-3) f(2)+3 f(1)+f(p)-f(p-1) \\
& \geq(n-2) f(1)+2 f(1)
\end{aligned}
$$

and the result holds by induction. Moreover, the equality holds if and only if $T^{\prime} \cong P_{n-1}$ and $d_{T}\left(v_{i}\right)=p=2$, that is, if and only if $T \cong P_{n}$.

Corollary 1. Let T be a chemical tree of order $n(n \geq 4)$. If $f(x)$ is a convex function, then $H_{f}(T) \geq(n-2) f(2)+2 f(1)$ with equality if and only if $T \cong P_{n}$.

Using Theorem 4, we obtain a lower bound for $H_{f}(\Gamma)$.
Theorem 5. Let Γ be a connected graph of order $n(n \geq 4)$. If $f(x)$ is a convex and increasing function, then $H_{f}(\Gamma) \geq(n-2) f(2)+2 f(1)$ with equality if and only if $\Gamma \cong P_{n}$.

Proof. Since $f(x)$ is an increasing function, it follows that $f(x+1)+f(y+1) \geq f(x)+$ $f(y)$, and hence $H_{f}(\Gamma+e) \geq H_{f}(\Gamma)$, where e is an edge joining between two non-adjacent vertices in Γ. Clearly, for the graph Γ of order n, we have $H_{f}(\Gamma) \geq H_{f}(T)$, where T is a tree of order n. This result with Theorem 4, we obtain $H_{f}(\Gamma) \geq H_{f}(T) \geq(n-2) f(2)+2 f(1)$. Moreover, the equality holds if and only if $T \cong P_{n}$.

A complete split graph $C S(n, \alpha)$ is defined as the graph join $\bar{K}_{\alpha} \vee K_{n-\alpha}$, where α is the independence number of graph $C S(n, \alpha)$.

Theorem 6. Let Γ be a connected graph of order $n(n \geq 4)$ with independence number α. If $f(x)$ is a strictly increasing function, then $H_{f}(\Gamma) \leq(n-\alpha) f(n-1)+\alpha f(n-\alpha)$ with equality if and only if $\Gamma \cong C S(n, \alpha)$.

Proof. Since $f(x)$ is a strictly increasing function, it follows that $f(x+1)+f(y+1)>$ $f(x)+f(y)$, and hence $H_{f}(\Gamma+e)>H_{f}(\Gamma)$, where e is an edge joining between two nonadjacent vertices in Γ. Since Γ is a graph of order n with independence number α, we must
have that Γ is a subgraph of $\operatorname{CS}(n, \alpha)$. If $\Gamma \cong \operatorname{CS}(n, \alpha)$, then $H_{f}(\Gamma)=(n-\alpha) f(n-1)+$ $\alpha f(n-\alpha)$; hence, the equality holds. Otherwise, $\Gamma \nsubseteq C S(n, \alpha)$. Since Γ is a subgraph of $\operatorname{CS}(n, \alpha)$ and $H_{f}(\Gamma+e)>H_{f}(\Gamma)$, we obtain $H_{f}(\Gamma)<H_{f}(\Gamma+e)<\cdots<H_{f}\left(\operatorname{CS}(n, \alpha)-e_{1}\right)$ $<H_{f}(\operatorname{CS}(n, \alpha))=(n-\alpha) f(n-1)+\alpha f(n-\alpha)$, where e_{1} is an edge in $\operatorname{CS}(n, \alpha)$. This completes the proof of the theorem.

Let C be the set of pendant vertices, and let A be the set of non-leaf vertices that have at least 2 neighbor vertices, each of which are not leaves. Let B be the set of non-leaf vertices that have only one neighbor vertex, which is not a leaf. Note that $V(\Gamma)=A \cup B \cup C$.

Lemma 2. Let Γ be a graph of order n, and $f(x)$ be a convex function.
(1) If $u \in A, w \in B$, and $x w \in E(\Gamma)$ such that $d_{\Gamma}(x)=1, d_{\Gamma}(u)=2$ or $3, d_{\Gamma}(w)=2$ or 3 , then $H_{f}\left(\Gamma_{1}\right) \geq H_{f}(\Gamma)$, where $\Gamma_{1}=\Gamma-w x+u x$.
(2) If $u \in A, w \in B$, and $x w, y w \in E(\Gamma)$ such that $d_{\Gamma}(x)=d_{\Gamma}(y)=1, d_{\Gamma}(u)=2, d_{\Gamma}(w)=4$, then $H_{f}\left(\Gamma_{2}\right)=H_{f}(\Gamma)$, where $\Gamma_{2}=\Gamma-w x-w y+u x+u y$.
(3) If $u \in A, w \in B$, and $x w \in E(\Gamma)$ such that $d_{\Gamma}(x)=1, d_{\Gamma}(u)=3, d_{\Gamma}(w)=4$, then $H_{f}\left(\Gamma_{3}\right)=H_{f}(\Gamma)$, where $\Gamma_{3}=\Gamma-w x+u x$.
(4) If $u, v \in B$, and $x u \in E(\Gamma)$ such that $d_{\Gamma}(x)=1, d_{\Gamma}(u)=2$ or $3, d_{\Gamma}(v)=3$, then $H_{f}\left(\Gamma_{4}\right) \geq H_{f}(\Gamma)$, where $\Gamma_{4}=\Gamma-u x+v x$.
(5) If $u, v, w \in B$, and $x u, y v \in E(\Gamma)$ such that $d_{\Gamma}(x)=d_{\Gamma}(y)=1, d_{\Gamma}(u)=d_{\Gamma}(v)=$ $d_{\Gamma}(w)=2$, then $H_{f}\left(\Gamma_{5}\right) \geq H_{f}(\Gamma)$, where $\Gamma_{5}=\Gamma-x u-y v+w x+w y$.
(6) If $u, v \in B$, and $x u \in E(\Gamma)$ such that $d_{\Gamma}(x)=1, d_{\Gamma}(u)=2$ and $d_{\Gamma}(v)=2$, then $H_{f}\left(\Gamma_{6}\right) \geq H_{f}(\Gamma)$, where $\Gamma_{6}=\Gamma-u x+v x$.

Proof. Suppose that Γ is the graph of order n and $f(x)$ is convex.
For (1), from Lemma 1, $f\left(d_{\Gamma}(u)+1\right)-f\left(d_{\Gamma}(u)\right)+f\left(d_{\Gamma}(w)-1\right)-f\left(d_{\Gamma}(w)\right) \geq 0$ holds for $d_{\Gamma}(u)=2,3$ and $d_{\Gamma}(w)=2,3$, and hence

$$
H_{f}\left(\Gamma_{1}\right)=H_{f}(\Gamma)+f\left(d_{\Gamma}(u)+1\right)-f\left(d_{\Gamma}(u)\right)+f\left(d_{\Gamma}(w)-1\right)-f\left(d_{\Gamma}(w)\right) \geq H_{f}(\Gamma)
$$

For (2), we can easily obtain

$$
\begin{aligned}
H_{f}\left(\Gamma_{2}\right) & =H_{f}(\Gamma)+f\left(d_{\Gamma}(u)+2\right)-f\left(d_{\Gamma}(u)\right)+f\left(d_{\Gamma}(w)-2\right)-f\left(d_{\Gamma}(w)\right) \\
& =H_{f}(\Gamma)+f(4)-f(2)+f(2)-f(4)=H_{f}(\Gamma) .
\end{aligned}
$$

For (3), we have

$$
\begin{aligned}
H_{f}\left(\Gamma_{3}\right) & =H_{f}(\Gamma)+f\left(d_{\Gamma}(u)+1\right)-f\left(d_{\Gamma}(u)\right)+f\left(d_{\Gamma}(w)-1\right)-f\left(d_{\Gamma}(w)\right) \\
& =H_{f}(\Gamma)+f(4)-f(3)+f(3)-f(4)=H_{f}(\Gamma)
\end{aligned}
$$

For (4), from Lemma 1, we know that $f\left(d_{\Gamma}(v)+1\right)-f\left(d_{\Gamma}(v)\right)+f\left(d_{\Gamma}(u)-1\right)-f\left(d_{\Gamma}(u)\right) \geq$ 0 holds for $d_{\Gamma}(u)=2,3$ and $d_{\Gamma}(v)=3$, and hence

$$
H_{f}\left(\Gamma_{4}\right)=H_{f}(\Gamma)+f\left(d_{\Gamma}(v)+1\right)-f\left(d_{\Gamma}(v)\right)+f\left(d_{\Gamma}(u)-1\right)-f\left(d_{\Gamma}(u)\right) \geq H_{f}(\Gamma) .
$$

For (5), since $f(x)$ is a convex function, it follows that $f(1)+f(3) \geq 2 f(2)$. From Lemma 1, we have $f(1)+f(4) \geq f(2)+f(3)$, and hence $2 f(1)+f(4) \geq 3 f(2)$. Then,

$$
\begin{aligned}
H_{f}\left(\Gamma_{5}\right)= & H_{f}(\Gamma)+f\left(d_{\Gamma}(v)-1\right)-f\left(d_{\Gamma}(v)\right)+f\left(d_{\Gamma}(u)-1\right)-f\left(d_{\Gamma}(u)\right) \\
& \quad+f\left(d_{\Gamma}(w)+2\right)-f\left(d_{\Gamma}(w)\right) \\
= & H_{f}(\Gamma)+2 f(1)-2 f(2)+f(4)-f(2) \\
= & H_{f}(\Gamma)+2 f(1)+f(4)-3 f(2) \geq H_{f}(\Gamma) .
\end{aligned}
$$

For (6), from Lemma 1, we know that $f\left(d_{\Gamma}(v)+1\right)-f\left(d_{\Gamma}(v)\right)+f\left(d_{\Gamma}(u)-1\right)-f\left(d_{\Gamma}(u)\right) \geq$ 0 holds for $d_{\Gamma}(u)=2$ and $d_{\Gamma}(v)=2$, and hence

$$
H_{f}\left(\Gamma_{6}\right)=H_{f}(\Gamma)+f\left(d_{\Gamma}(v)+1\right)-f\left(d_{\Gamma}(v)\right)+f\left(d_{\Gamma}(u)-1\right)-f\left(d_{\Gamma}(u)\right) \geq H_{f}(\Gamma) .
$$

For chemical trees, we have the following upper bound.
Theorem 7. Let T be a chemical tree of order $n(n \geq 5)$. If $f(x)$ is a convex function, then three integers (m_{1}, m_{2}, m_{3}) exist such that

$$
H_{f}(T) \leq \begin{cases}m_{1} f(4)+\left(n-m_{1}-1\right) f(1)+f(2) & \text { if } i=0 \\ m_{2} f(4)+\left(n-m_{2}-1\right) f(1)+f(3) & \text { if } i=1, \\ m_{3} f(4)+\left(n-m_{3}\right) f(1) & \text { if } i=2\end{cases}
$$

with equality if and only if T contains only one 2-degree vertex but contains no 3-degree vertices for $i=0 ; T$ contains only one 3-degree vertex but contains no 2 -degree vertices for $i=1$; and T only contains 1 -degree vertices and 4 -degree vertices for $i=2$, where $n \equiv i(\bmod 3)$.

Proof. Suppose that T is a chemical tree of order n and $f(x)$ is a convex function. By operations (1), (2), and (3) of Lemma 2, we can obtain a new tree T^{\prime} with $V\left(T^{\prime}\right)=V(T)$ containing no 2-degree vertices or 3-degree vertices in A. That is to say, all of the 2-degree vertices and 3-degree vertices are in B. Suppose that $n \equiv i(\bmod 3)$ and $n_{1}, n_{2}, n_{3}, n_{4}$ are the number of vertices with degree $1,2,3,4$, respectively, in T^{\prime}.

Note that $H_{f}\left(T^{\prime}\right) \geq H_{f}(T)$. We distinguish the following cases to show this theorem.
Case 1. $i=0$.
We claim that $n_{2} \neq 0$ or $n_{3} \neq 0$; otherwise, T^{\prime} contains only 1-degree and 4-degree vertices. Since $n_{1}+n_{4}=n$ and $n_{1}+4 n_{4}=2(n-1)$, we have $n=3 n_{4}+2$, contradicting the fact that $n \equiv 0(\bmod 3)$.

Since $n_{1}+n_{2}+n_{3}+n_{4}=n$ and $n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=2(n-1)$, we have $n_{2}+2 n_{3} \equiv 1$ $(\bmod 3)$, and so $n_{2}-n_{3} \equiv 1(\bmod 3)$ and $n_{3}-n_{2} \equiv 2(\bmod 3)$.

If $n_{2} \geq n_{3}$, then it follows from (4) of Lemma 2 that

$$
\begin{aligned}
H_{f}\left(T^{\prime}\right) & =n_{1} f(1)+n_{2} f(2)+n_{3} f(3)+n_{4} f(4) \\
& \leq\left(n_{1}+n_{3}\right) f(1)+\left(n_{2}-n_{3}\right) f(2)+\left(n_{4}+n_{3}\right) f(4) .
\end{aligned}
$$

Suppose that $n_{2}-n_{3}=3 k_{1}+1$. From (5) of Lemma 2, we have

$$
H_{f}\left(T^{\prime}\right) \leq\left(n_{1}+n_{3}+2 k_{1}\right) f(1)+f(2)+\left(n_{4}+n_{3}+k_{1}\right) f(4)
$$

Let $m_{1}=n_{4}+n_{3}+k_{1}$, and thus we are done.
If $n_{2}<n_{3}$, then it follows from (4) of Lemma 2 that $H_{f}\left(T^{\prime}\right)=n_{1} f(1)+n_{2} f(2)+$ $n_{3} f(3)+n_{4} f(4) \leq\left(n_{1}+n_{2}\right) f(1)+\left(n_{3}-n_{2}\right) f(3)+\left(n_{4}+n_{2}\right) f(4)$. Suppose that $n_{3}-n_{2}=$ $3 \ell_{1}+2$. From (4) of Lemma 2, we have

$$
\begin{aligned}
H_{f}\left(T^{\prime}\right) & \leq\left(n_{1}+n_{2}\right) f(1)+\left(\ell_{1}+1\right) f(2)+\ell_{1} f(3)+\left(n_{4}+n_{2}+\ell_{1}+1\right) f(4) \\
& \leq\left(n_{1}+n_{2}+\ell_{1}\right) f(1)+f(2)+\left(n_{4}+n_{2}+2 \ell_{1}+1\right) f(4)
\end{aligned}
$$

Let $m_{1}=n_{4}+n_{2}+2 \ell_{1}+1$, and thus we are done.
Case 2. $i=1$.

We claim that $n_{2} \neq 0$ or $n_{3} \neq 0$; otherwise, T^{\prime} contains only 1-degree and 4-degree vertices. Since $n_{1}+n_{4}=n$ and $n_{1}+4 n_{4}=2(n-1)$, we have $n=3 n_{4}+2$, contradicting the fact that $n \equiv 1(\bmod 3)$.

Since $n_{1}+n_{2}+n_{3}+n_{4}=n$ and $n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=2(n-1)$, we have $n_{2}+2 n_{3} \equiv$ $2(\bmod 3)$, and so $n_{2}-n_{3} \equiv 2(\bmod 3), n_{3}-n_{2} \equiv 1(\bmod 3)$.

If $n_{2} \geq n_{3}$, then it follows from (4) of Lemma 2 that

$$
\begin{aligned}
H_{f}\left(T^{\prime}\right) & =n_{1} f(1)+n_{2} f(2)+n_{3} f(3)+n_{4} f(4) \\
& \leq\left(n_{1}+n_{3}\right) f(1)+\left(n_{2}-n_{3}\right) f(2)+\left(n_{4}+n_{3}\right) f(4)
\end{aligned}
$$

If $n_{2}-n_{3}=3 k_{2}+2$, it follows from (5) and (6) of Lemma 2 that

$$
\begin{aligned}
H_{f}\left(T^{\prime}\right) & \leq\left(n_{1}+n_{3}+2 k_{2}\right) f(1)+2 f(2)+\left(n_{4}+n_{3}+k_{2}\right) f(4) \\
& \leq\left(n_{1}+n_{3}+2 k_{2}+1\right) f(1)+f(3)+\left(n_{4}+n_{3}+k_{2}\right) f(4) .
\end{aligned}
$$

Let $m_{2}=n_{4}+n_{3}+k_{2}$, and thus we are done.
If $n_{2}<n_{3}$, then it follows from (4) of Lemma 2 that

$$
\begin{aligned}
H_{f}\left(T^{\prime}\right) & =n_{1} f(1)+n_{2} f(2)+n_{3} f(3)+n_{4} f(4) \\
& \leq\left(n_{1}+n_{2}\right) f(1)+\left(n_{3}-n_{2}\right) f(3)+\left(n_{4}+n_{2}\right) f(4)
\end{aligned}
$$

If $n_{3}-n_{2}=3 \ell_{2}+1$, then it follows from (4) of Lemma 2 that

$$
\begin{aligned}
H_{f}\left(T^{\prime}\right) & \leq\left(n_{1}+n_{2}\right) f(1)+\left(3 \ell_{2}+1\right) f(3)+\left(n_{4}+n_{2}\right) f(4) \\
& \leq\left(n_{1}+n_{2}\right) f(1)+\ell_{2} f(2)+\left(\ell_{2}+1\right) f(3)+\left(n_{4}+n_{2}+\ell_{2}\right) f(4) \\
& \leq\left(n_{1}+n_{2}+\ell_{2}\right) f(1)+f(3)+\left(n_{4}+n_{2}+2 \ell_{2}\right) f(4) .
\end{aligned}
$$

Let $m_{2}=n_{4}+n_{2}+2 \ell_{2}$, and thus we are done.
Case 3. $i=2$.
Since $n_{1}+n_{2}+n_{3}+n_{4}=n$ and $n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=2(n-1)$, we have $n_{2}+2 n_{3} \equiv$ $0(\bmod 3)$, and so $n_{2}-n_{3} \equiv 0(\bmod 3), n_{3}-n_{2} \equiv 0(\bmod 3)$.

If $n_{2} \geq n_{3}$, then it follows from (4) of Lemma 2 that $H_{f}\left(T^{\prime}\right)=n_{1} f(1)+n_{2} f(2)+$ $n_{3} f(3)+n_{4} f(4) \leq\left(n_{1}+n_{3}\right) f(1)+\left(n_{2}-n_{3}\right) f(2)+\left(n_{4}+n_{3}\right) f(4)$. Suppose that $n_{2}-n_{3}=$ $3 k_{3}$. By (5) of Lemma 2, we have

$$
H_{f}\left(T^{\prime}\right) \leq\left(n_{1}+n_{3}+2 k_{3}\right) f(1)+\left(n_{4}+n_{3}+k_{3}\right) f(4)
$$

Let $m_{3}=n_{4}+n_{3}+k_{3}$, and thus we are done.
If $n_{2}<n_{3}$, then it follows from (4) of Lemma 2 that

$$
\begin{aligned}
H_{f}\left(T^{\prime}\right) & =n_{1} f(1)+n_{2} f(2)+n_{3} f(3)+n_{4} f(4) \\
& \leq\left(n_{1}+n_{2}\right) f(1)+\left(n_{3}-n_{2}\right) f(3)+\left(n_{4}+n_{2}\right) f(4) .
\end{aligned}
$$

Suppose that $n_{3}-n_{2}=3 \ell_{3}$. By (4) of Lemma 2, we have

$$
\begin{aligned}
H_{f}\left(T^{\prime}\right) & \leq\left(n_{1}+n_{2}\right) f(1)+3 \ell_{3} f(3)+\left(n_{4}+n_{2}\right) f(4) \\
& \leq\left(n_{1}+n_{2}\right) f(1)+\ell_{3} f(2)+\ell_{3} f(3)+\left(n_{4}+n_{2}+\ell_{3}\right) f(4) \\
& \leq\left(n_{1}+n_{2}+\ell_{3}\right) f(1)+\left(n_{4}+n_{2}+2 \ell_{3}\right) f(4)
\end{aligned}
$$

Let $m_{3}=\left(n_{4}+n_{2}+2 \ell_{3}\right)$, and thus we are done.
For trees, we have the following upper bound.

Theorem 8. Let T be a tree of order $n(n \geq 4)$. If $f(x)$ is a convex function, then $H_{f}(T) \leq$ $(n-1) f(1)+f(n-1)$ with equality if and only if $T \cong S_{n}$.

Proof. If $n=4$, then by the proof of Theorem 4, we obtain $H_{f}\left(S_{4}\right)>H_{f}\left(P_{4}\right)$. The result holds for $n=4$.

We now suppose that $n \geq 5$. We prove this result by induction on n. Assume that the result holds for $n-1$ and prove it for n. Let T^{\prime} be a tree of order $n-1$ such that $T-v_{j}=T^{\prime}$, where $d_{T}\left(v_{j}\right)=1, v_{i}=N_{T}\left(v_{j}\right)$ and $d_{T^{\prime}}\left(v_{i}\right)=d_{T}\left(v_{i}\right)-1=p-1$, (say). Thus, we have $H_{f}\left(T^{\prime}\right) \leq(n-2) f(1)+f(n-2)$ with equality if and only if $T^{\prime} \cong S_{n-1}$. One can easily see that

$$
H_{f}(T)=H_{f}\left(T^{\prime}\right)+f(p)-f(p-1)+f(1)
$$

Since $f(x)$ is a convex function, it follows from Lemma 1 that $f(n-1)-f(n-2) \geq$ $f(p)-f(p-1)$ with equality if and only if $p=n-1$. Therefore, by the induction hypothesis with the above results, we obtain

$$
\begin{aligned}
H_{f}(T) & =H_{f}\left(T^{\prime}\right)+f(p)-f(p-1)+f(1) \\
& \leq(n-1) f(1)+f(n-2)+f(p)-f(p-1) \\
& \leq(n-1) f(1)+f(n-1)
\end{aligned}
$$

and the result holds by induction. Moreover, the equality holds if and only if $T^{\prime} \cong S_{n-1}$ and $d_{T}\left(v_{i}\right)=p=n-1$, that is, if and only if $T \cong S_{n}$.

Remark 1. If $f(x)$ is a convex function, then by Theorems 4 and 8 , we conclude that the path P_{n} gives the minimum $H_{f}(T)$ and the star gives the maximum $H_{f}(T)$ among all trees of order n.

3. Nordhaus-Gaddum-Type Results

In this section, we give the Nordhaus-Gaddum-type results for the vertex degree function index.

Theorem 9. Let Γ be a graph of order n. If $f(x)$ is a convex function, then

$$
H_{f}(\Gamma)+H_{f}(\bar{\Gamma}) \geq \begin{cases}2 n f\left(\frac{n-1}{2}\right) & \text { if } n \text { is odd } \\ n\left[f\left(\frac{n}{2}\right)+f\left(\frac{n}{2}-1\right)\right] & \text { if } n \text { is even } .\end{cases}
$$

Moreover, the equality holds if and only if Γ is a $\left\lfloor\frac{n}{2}\right\rfloor$-regular graph.
Proof. We have

$$
\begin{align*}
H_{f}(\Gamma)+H_{f}(\bar{\Gamma}) & =\sum_{i=1}^{n} f\left(d_{\Gamma}\left(v_{i}\right)\right)+\sum_{i=1}^{n} f\left(n-1-d_{\Gamma}\left(v_{i}\right)\right) \\
& =\sum_{i=1}^{n}\left[f\left(d_{\Gamma}\left(v_{i}\right)\right)+f\left(n-1-d_{\Gamma}\left(v_{i}\right)\right)\right] \tag{1}
\end{align*}
$$

We consider two cases.
Case 1. n is odd.
First, we assume that $\frac{n-1}{2} \leq d_{\Gamma}\left(v_{i}\right) \leq n-1$. Setting $x=d_{\Gamma}\left(v_{i}\right), a=b=d_{\Gamma}\left(v_{i}\right)-\frac{n-1}{2}$ in Lemma 1, we obtain

$$
f\left(d_{\Gamma}\left(v_{i}\right)\right)-f\left(\frac{n-1}{2}\right) \geq f\left(\frac{n-1}{2}\right)-f\left(n-d_{\Gamma}\left(v_{i}\right)-1\right)
$$

that is,

$$
f\left(d_{\Gamma}\left(v_{i}\right)\right)+f\left(n-d_{\Gamma}\left(v_{i}\right)-1\right) \geq 2 f\left(\frac{n-1}{2}\right)
$$

with equality if and only if $d_{\Gamma}\left(v_{i}\right)=\frac{n-1}{2}$. From (1), we obtain

$$
H_{f}(\Gamma)+H_{f}(\bar{\Gamma}) \geq 2 \sum_{i=1}^{n} f\left(\frac{n-1}{2}\right)=2 n f\left(\frac{n-1}{2}\right)
$$

with equality if and only if Γ is an $\frac{(n-1)}{2}$-regular graph, that is, if and only if Γ is a $\left\lfloor\frac{n}{2}\right\rfloor-$ regular graph.

Next, we assume that $0 \leq d_{\Gamma}\left(v_{i}\right) \leq \frac{n-1}{2}-1$, that is, $\frac{n-1}{2}<d_{\bar{\Gamma}}\left(v_{i}\right) \leq n-1$. Setting $x=d_{\bar{\Gamma}}\left(v_{i}\right), a=b=d_{\bar{\Gamma}}\left(v_{i}\right)-\frac{n-1}{2}$ in Lemma 1, we obtain

$$
f\left(d_{\bar{\Gamma}}\left(v_{i}\right)\right)-f\left(\frac{n-1}{2}\right) \geq f\left(\frac{n-1}{2}\right)-f\left(n-d_{\bar{\Gamma}}\left(v_{i}\right)-1\right),
$$

that is,

$$
f\left(d_{\bar{\Gamma}}\left(v_{i}\right)\right)+f\left(n-d_{\bar{\Gamma}}\left(v_{i}\right)-1\right) \geq 2 f\left(\frac{n-1}{2}\right)
$$

with equality if and only if $d_{\bar{\Gamma}}\left(v_{i}\right)=\frac{n-1}{2}$. Hence, $H_{f}(\Gamma)+H_{f}(\bar{\Gamma})=\sum_{i=1}^{n}\left[f\left(d_{\Gamma}\left(v_{i}\right)\right)+\right.$ $\left.f\left(d_{\bar{\Gamma}}\left(v_{i}\right)\right)\right]=\sum_{i=1}^{n}\left[f\left(n-1-d_{\bar{\Gamma}}\left(v_{i}\right)\right)+f\left(d_{\bar{\Gamma}}\left(v_{i}\right)\right)\right] \geq 2 n f\left(\frac{n-1}{2}\right)$ with equality if and only if Γ is an $\frac{(n-1)}{2}$-regular graph, that is, if and only if Γ is a $\left\lfloor\frac{n}{2}\right\rfloor$-regular graph.

Case 2. n is even.
In this case, first we assume that $\frac{n}{2} \leq d_{\Gamma}\left(v_{i}\right) \leq n-1$. Setting $x=d_{\Gamma}\left(v_{i}\right), a=$ $d_{\Gamma}\left(v_{i}\right)-\frac{n}{2}+1, b=d_{\Gamma}\left(v_{i}\right)-\frac{n}{2}$ in Lemma 1, we obtain

$$
f\left(d_{\Gamma}\left(v_{i}\right)\right)-f\left(\frac{n}{2}-1\right) \geq f\left(\frac{n}{2}\right)-f\left(n-d_{\Gamma}\left(v_{i}\right)-1\right)
$$

with equality if and only if $d_{\Gamma}\left(v_{i}\right)=\frac{n}{2}$, and hence

$$
H_{f}(\Gamma)+H_{f}(\bar{\Gamma}) \geq \sum_{i=1}^{n}\left(f\left(\frac{n}{2}\right)+f\left(\frac{n}{2}-1\right)\right) \geq n\left[f\left(\frac{n}{2}\right)+f\left(\frac{n}{2}-1\right)\right]
$$

with equality if and only if Γ is an $\frac{n}{2}$-regular graph, that is, if and only if Γ is a $\left\lfloor\frac{n}{2}\right\rfloor$-regular graph.

Next, we assume that $0 \leq d_{\Gamma}\left(v_{i}\right) \leq \frac{n}{2}-1$, that is, $\frac{n}{2} \leq d_{\bar{\Gamma}}\left(v_{j}\right) \leq n-1$. Setting $x=d_{\bar{\Gamma}}\left(v_{j}\right), a=d_{\bar{\Gamma}}\left(v_{j}\right)-\frac{n}{2}+1, b=d_{\bar{\Gamma}}\left(v_{j}\right)-\frac{n}{2}$ in Lemma 1, we obtain

$$
f\left(d_{\bar{\Gamma}}\left(v_{j}\right)\right)-f\left(\frac{n}{2}-1\right) \geq f\left(\frac{n}{2}\right)-f\left(n-d_{\bar{\Gamma}}\left(v_{j}\right)-1\right)
$$

that is,

$$
f\left(d_{\bar{\Gamma}}\left(v_{j}\right)\right)+f\left(n-d_{\bar{\Gamma}}\left(v_{j}\right)-1\right) \geq f\left(\frac{n}{2}\right)+f\left(\frac{n}{2}-1\right)
$$

with equality if and only if $d_{\bar{\Gamma}}\left(v_{j}\right)=\frac{n}{2}$. Hence,

$$
\begin{aligned}
H_{f}(\Gamma)+H_{f}(\bar{\Gamma})=\sum_{i=1}^{n}\left[f\left(d_{\Gamma}\left(v_{i}\right)\right)+f\left(d_{\bar{\Gamma}}\left(v_{i}\right)\right)\right] & =\sum_{i=1}^{n}\left[f\left(n-1-d_{\bar{\Gamma}}\left(v_{i}\right)\right)+f\left(d_{\bar{\Gamma}}\left(v_{i}\right)\right)\right] \\
& \geq n\left[f\left(\frac{n}{2}\right)+f\left(\frac{n}{2}-1\right)\right]
\end{aligned}
$$

with equality if and only if Γ is an $\frac{n}{2}$-regular graph, that is, if and only if Γ is a $\left\lfloor\frac{n}{2}\right\rfloor$-regular graph.

Theorem 10. Let Γ be a graph of order n with maximum degree Δ. If $f(x)$ is a convex function, then

$$
H_{f}(\Gamma)+H_{f}(\bar{\Gamma}) \leq n[f(\Delta)+f(n-1-\Delta)]
$$

with equality if and only if Γ is a regular graph or graph Γ has only two type of degrees Δ and $n-1-\Delta(\Delta>(n-1) / 2)$.

Proof. Setting $x=\Delta, a=\Delta-d_{\Gamma}\left(v_{i}\right)$ and $b=\Delta+d_{\Gamma}\left(v_{i}\right)-(n-1)$, by Lemma 1 we obtain

$$
f\left(d_{\Gamma}\left(v_{i}\right)\right)+f\left(n-1-d_{\Gamma}\left(v_{i}\right)\right) \leq f(\Delta)+f(n-1-\Delta)
$$

with equality if and only if $d_{\Gamma}\left(v_{i}\right)=n-1-\Delta$ or $i=1$. Hence,

$$
\begin{aligned}
H_{f}(\Gamma)+H_{f}(\bar{\Gamma}) & =\sum_{i=1}^{n} f\left(d_{\Gamma}\left(v_{i}\right)\right)+\sum_{i=1}^{n} f\left(n-1-d_{\Gamma}\left(v_{i}\right)\right) \\
& \leq \sum_{i=1}^{n}[f(\Delta)+f(n-1-\Delta)]=n[f(\Delta)+f(n-1-\Delta)]
\end{aligned}
$$

Moreover, the equality holds if and only if $d_{\Gamma}\left(v_{i}\right)=\Delta$ or $d_{\Gamma}\left(v_{i}\right)=n-1-\Delta$ for any vertex $v_{i} \in V(\Gamma)$, that is, if and only if Γ is a regular graph or graph Γ has only two type of degrees Δ and $n-1-\Delta(\Delta>(n-1) / 2)$.

Corollary 2. Let Γ be a graph of order n. If $f(x)$ is a convex function, then

$$
H_{f}(\Gamma)+H_{f}(\bar{\Gamma}) \leq n[f(n-1)+f(0)]
$$

with equality if and only if Γ is a complete graph or Γ is an empty graph.
Proof. Setting $x=n-1, a=n-1-\Delta$ and $b=\Delta$, by Lemma 1 we obtain

$$
f(\Delta)+f(n-1-\Delta) \leq f(n-1)+f(0)
$$

with equality if and only if $\Delta=0$ or $\Delta=n-1$. Using this result with Theorem 10 , we obtain the result. Moreover, the equality holds if and only if Γ is a complete graph or Γ is an empty graph.

The following is the well-known Jensen inequality.
Lemma 3 (Jensen Inequality [21]). If $f(x)$ is convex function, for all $x_{1}, x_{2}, \ldots, x_{n} \in[a, b]$, then

$$
\sum_{i=0}^{n} f\left(x_{i}\right) \geq n f\left(\frac{\sum_{i=0}^{n} x_{i}}{n}\right)
$$

with equality if and only if $x_{1}=x_{2}=\cdots=x_{n}$.
Theorem 11. Let Γ be a graph of order n and size m. If $f(x)$ is a convex function, then

$$
H_{f}(\Gamma)+H_{f}(\bar{\Gamma}) \geq n f\left(\frac{2 m}{n}\right)+n f\left(\frac{n(n-1)-2 m}{n}\right)
$$

and

$$
H_{f}(\Gamma) \cdot H_{f}(\bar{\Gamma}) \geq n^{2} f\left(\frac{2 m}{n}\right) \cdot f\left(\frac{n(n-1)-2 m}{n}\right)
$$

with equality if and only if Γ is a regular graph.
Proof. Since $f(x)$ is a convex function and $\sum_{i=1}^{n} d_{\Gamma}\left(v_{i}\right)=2 m$, it follows from Lemma 3 that

$$
\sum_{i=1}^{n} f\left(d_{\Gamma}\left(v_{i}\right)\right) \geq n f\left(\frac{\sum_{i=1}^{n} d_{\Gamma}\left(v_{i}\right)}{n}\right)=n f\left(\frac{2 m}{n}\right)
$$

and

$$
\sum_{i=1}^{n} f\left(d_{\bar{\Gamma}}\left(v_{i}\right)\right) \geq n f\left(\frac{\sum_{i=1}^{n} d_{\bar{\Gamma}}\left(v_{i}\right)}{n}\right)=n f\left(\frac{n(n-1)-2 m}{n}\right)
$$

Hence,

$$
H_{f}(\Gamma)+H_{f}(\bar{\Gamma})=\sum_{i=1}^{n} f\left(d_{\Gamma}\left(v_{i}\right)\right)+\sum_{i=1}^{n} f\left(d_{\bar{\Gamma}}\left(v_{i}\right)\right) \geq n f\left(\frac{2 m}{n}\right)+n f\left(\frac{n(n-1)-2 m}{n}\right)
$$

and

$$
H_{f}(\Gamma) \cdot H_{f}(\bar{\Gamma})=\sum_{i=1}^{n} f\left(d_{\Gamma}\left(v_{i}\right)\right) \cdot \sum_{i=1}^{n} f\left(d_{\bar{\Gamma}}\left(v_{i}\right)\right) \geq n^{2} f\left(\frac{2 m}{n}\right) \cdot f\left(\frac{n(n-1)-2 m}{n}\right)
$$

Moreover, the equality holds if and only if $d_{\Gamma}\left(v_{i}\right)=d_{\Gamma}\left(v_{j}\right)$ for $1 \leq i, j \leq n$, which means that Γ is a regular graph.

Theorem 12. Let Γ be a graph of order n with maximum degree Δ and minimum degree δ. If $f(x)$ is an increasing function, then

$$
\begin{aligned}
H_{f}(\Gamma) \cdot H_{f}(\bar{\Gamma}) \leq & (n-1)^{2} f(\Delta) f(n-1-\delta)+(n-1) f(\delta) f(n-1-\delta) \\
& +(n-1) f(\Delta) f(n-1-\Delta)+f(\delta) f(n-1-\Delta)
\end{aligned}
$$

with equality if and only if Γ is a regular graph.
Proof. Since Δ is the maximum degree and δ is the minimum degree, we can assume that $\Delta=d_{\Gamma}\left(v_{1}\right) \geq d_{\Gamma}\left(v_{2}\right) \geq \cdots \geq d_{\Gamma}\left(v_{n}\right)=\delta$. Moreover, we obtain

$$
n-1-\delta \geq n-1-d_{\Gamma}\left(v_{i}\right) \geq n-1-\Delta \text { for } v_{i} \in V(\Gamma)
$$

Since $f(x)$ is an increasing function with the above results, we obtain

$$
\begin{aligned}
H_{f}(\Gamma) \cdot H_{f}(\bar{\Gamma})= & \sum_{i=1}^{n} f\left(d_{\Gamma}\left(v_{i}\right)\right) \cdot \sum_{i=1}^{n} f\left(n-1-d_{\Gamma}\left(v_{i}\right)\right)=\left[f(\Delta)+\sum_{i=2}^{n-2} f\left(d_{\Gamma}\left(v_{i}\right)\right)+f(\delta)\right] \\
& {\left[f(n-1-\delta)+\sum_{i=2}^{n-2} f\left(n-1-d_{\Gamma}\left(v_{i}\right)\right)+f(n-1-\Delta)\right] } \\
\leq & {[f(\delta)+(n-1) f(\Delta)][f(n-1-\Delta)+(n-1) f(n-1-\delta)] } \\
= & (n-1)^{2} f(\Delta) f(n-1-\delta)+(n-1) f(\delta) f(n-1-\delta) \\
& +(n-1) f(\Delta) f(n-1-\Delta)+f(\delta) f(n-1-\Delta)
\end{aligned}
$$

Moreover, the above equality holds if and only if $d_{\Gamma}\left(v_{i}\right)=\Delta$ for all $v_{i} \in V(\Gamma)(i=$ $1,2, \ldots, n-1)$, and $d_{\Gamma}\left(v_{i}\right)=\delta$ for all $v_{i} \in V(\Gamma)(i=2,3, \ldots, n)$, and hence $\Delta=\delta$, that is, if and only if Γ is a regular graph.

Corollary 3. Let Γ be a graph of order n with maximum degree Δ and minimum degree δ. If $f(x)$ is an increasing function, then

$$
H_{f}(\Gamma) \cdot H_{f}(\bar{\Gamma}) \leq n^{2} f(\Delta) f(n-1-\delta)
$$

with equality if and only if Γ is a regular graph.
Proof. Since $f(x)$ is an increasing function, we have $f(\delta) \leq f(\Delta)$ and $f(n-1-\Delta) \leq$ $f(n-1-\delta)$. Using these results in Theorem 12, we obtain the required result. Moreover, the equality holds if and only if Γ is a regular graph.

Theorem 13. Let Γ be a graph of order n with maximum degree Δ and minimum degree δ. If $f(x)$ is an increasing function, then

$$
\begin{aligned}
H_{f}(\Gamma) \cdot H_{f}(\bar{\Gamma}) \geq & (n-1)^{2} f(\delta) f(n-1-\Delta)+(n-1) f(\delta) f(n-1-\delta) \\
& +(n-1) f(\Delta) f(n-1-\Delta)+f(\Delta) f(n-1-\delta)
\end{aligned}
$$

with equality if and only if Γ is a regular graph.
Proof. The proof is similar to the proof of Theorem 12. Since $f(x)$ is an increasing function, we obtain

$$
\begin{aligned}
H_{f}(\Gamma) \cdot H_{f}(\bar{\Gamma})= & {\left[f(\Delta)+\sum_{i=2}^{n-2} f\left(d_{\Gamma}\left(v_{i}\right)\right)+f(\delta)\right]\left[f(n-1-\delta)+\sum_{i=2}^{n-2} f\left(n-1-d_{\Gamma}\left(v_{i}\right)\right)\right.} \\
& +f(n-1-\Delta)] \\
\geq & {[f(\Delta)+(n-1) f(\delta)][f(n-1-\delta)+(n-1) f(n-1-\Delta)] } \\
= & (n-1)^{2} f(\delta) f(n-1-\Delta)+(n-1) f(\delta) f(n-1-\delta) \\
& +(n-1) f(\Delta) f(n-1-\Delta)+f(\Delta) f(n-1-\delta)
\end{aligned}
$$

Moreover, the equality holds if and only if Γ is a regular graph.
Corollary 4. Let Γ be a graph of order n with maximum degree Δ and minimum degree δ. If $f(x)$ is an increasing function, then

$$
H_{f}(\Gamma) \cdot H_{f}(\bar{\Gamma}) \geq n^{2} f(\delta) f(n-1-\Delta)
$$

with equality if and only if Γ is a regular graph.

4. Concluding Remarks

In this report, the vertex-degree function index $H_{f}(\Gamma)$ has been investigated for a different class of graphs. Tight bounds of the vertex-degree function index $H_{f}(\Gamma)$ have been set up for any n vertex-connected graphs, trees, and chemical trees. The extremal graphs where the bounds attain have also been identified. Moreover, we present the Nordhaus-Gaddumtype results for $H_{f}(\Gamma)+H_{f}(\bar{\Gamma})$ and $H_{f}(\Gamma) \cdot H_{f}(\bar{\Gamma})$, and the characterization of the extremal graphs. We now pose the following problem related to the work presented in this paper, as a potential topic for further research .

Problem 1. To find the lower and upper bounds on the vertex-degree function index $H_{f}(\Gamma)$ and characterize corresponding extremal graphs for other significant classes of graphs such as bicyclic, tricyclic graphs, etc.

Abstract

Author Contributions: Conceptualization, D.H., Z.J., C.Y. and K.C.D.; methodology, D.H., Z.J., C.Y. and K.C.D.; investigation, D.H., Z.J., C.Y. and K.C.D.; writing-original draft preparation, D.H., Z.J., C.Y. and K.C.D.; writing-review and editing, D.H., Z.J., C.Y. and K.C.D. All authors have read and agreed to the published version of the manuscript.

Funding: D.H. is supported by the Qinghai Key Laboratory of Internet of Things Project (2017-ZJY21). K.C.D. is supported by National Research Foundation funded by the Korean government (Grant No. 2021R1F1A1050646).

Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yao, Y.; Liu, M.; Belardo, F.; Yang, C. Unified extremal results of topological indices and spectral invariants of graphs. Discrete Appl. Math. 2019, 271, 218-232. [CrossRef]
2. Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals, Total φ-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535-538. [CrossRef]
3. Furtula, B.; Gutman, I. A forgotten topological index. J. Math. Chem. 2015, 53, 1184-1190. [CrossRef]
4. Hu, Y.; Li, X.; Shi, Y.; Xu, T.; Gutman, I. On molecular graphs with smallest and greatest zeroth-order general Randić index. MATCH Commun. Math. Comput. Chem. 2005, 54, 425-434.
5. Li, X.; Zheng, J. A unified approach to the extremal trees for different indices. MATCH Commun. Math. Comput. Chem. 2005, 54, 195-208.
6. Ali, A.; Das, K.C.; Akhter, S. On the extremal graphs for second Zagreb index with fixed number of vertices and cyclomatic number. Miskolc Math. Notes 2022, 23, 41-50. [CrossRef]
7. An, M.; Das, K.C. First Zagreb index, k-connectivity, β-deficiency and k-hamiltonicity of graphs. MATCH Commun. Math. Comput. Chem. 2018, 80, 141-151.
8. Das, K.C.; Dehmer, M. Comparison between the zeroth-order Randić index and the sum-connectivity index. Appl. Math. Comput. 2016, 274, 585-589. [CrossRef]
9. Das, K.C.; Xu, K.; Nam, J. On Zagreb indices of graphs. Front. Math. China 2015, 10, 567-582. [CrossRef]
10. Deng, H. A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs. MATCH Commun. Math. Comput. Chem 2007, 57, 597-616.
11. Horoldagva, B.; Das, K.C. On Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem. 2021, 85, 295-301.
12. Ali, A.; Dimitrov, D.; Du, Z.; Ishfaq, F. On the extremal graphs for general sum-connectivity index χ_{α} with given cyclomatic number when $\alpha>1$. Discrete Appl. Math. 2019, 257, 19-30. [CrossRef]
13. Hu, Y.; Li, X.; Shi, Y.; Xu, T. Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index. Discrete Appl. Math. 2007, 155, 1044-1054. [CrossRef]
14. Das, K.C. Maximizing the sum of the squares of the degrees of a graph. Discrete Math. 2004, 285, 57-66. [CrossRef]
15. Li, X.; Shi, Y. (n, m)-graphs with maximum zeroth-order general Randić index for alpha is an element of $\alpha \in(-1,0)$. MATCH Commun. Math. Comput. Chem. 2009, 62, 163-170.
16. Pavlović, L.; Lazić, M.; Aleksić, T. More on connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index. Discrete Appl. Math. 2009, 157, 2938-2944. [CrossRef]
17. Tomescu, I. Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions. MATCH Commun. Math. Comput. Chem. 2022, 87, 109-114. [CrossRef]
18. Tomescu, I. Properties of connected (n, m)-graphs extremal relatively to vertex degree function index for convex functions. MATCH Commun. Math. Comput. Chem. 2021, 85, 285-294.
19. Aouchiche, M.; Hansen, P. A survey of Nordhaus-Gaddum type relations. Discrete Appl. Math. 2013, 161, 466-546. [CrossRef]
20. Mao, Y. Nordhaus-Gaddum Type Results in Chemical Graph Theory; Bounds in Chemical Graph Theory-Advances; Gutman, I., Furtula, B., Das, K.C., Milovanović, E., Milovanovixcx, I., Eds.; University Kragujevac: Kragujevac, Serbia, 2017; pp. 3-127.
21. Jensen, J.L.W.V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 1906, 30, 175-193. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

