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1. Introduction

In this paper, the graphs we discuss are simple graphs without multiple edges and
loops. The vertex and edge set of Γ will be denoted by V(Γ) and E(Γ), and the order and
size of Γ will usually be denoted by n and m, respectively. Let a vertex v ∈ V(Γ); we denote
the degree of v by dΓ(v) in Γ. The neighbors of v in V(Γ) are denoted by NΓ(v). For a graph
Γ, we denote the maximum and minimum degree of Γ by ∆(Γ) and δ(Γ), respectively. A
leaf v ∈ V(Γ) is a vertex v satisfied dΓ(v) = 1. We call a connected graph without a cycle a
tree, denoted by T. A tree whose maximum degree is no more than 4 is called a chemical
tree. The star graph with order n, denoted by Sn, is a tree with one center vertex and n− 1
leaves. The disjoint union of two vertex-disjoint graphs Γ1 and Γ2 will be denoted by Γ1 ∪ Γ2,
whose vertex and edge sets are V(Γ1) ∪V(Γ2) and E(Γ1) ∪ E(Γ2), respectively. We denote
the union of k copies of a graph Γ by k Γ. The join of Γ1 and Γ2 is obtained by joining edges
between each vertex of Γ1 and all vertices of Γ2, denoted by Γ1 ∨ Γ2. For a graph Γ, the edge
uv ∈ E(Γ) and the vertex w ∈ V(Γ), Γ− uv mean removing uv from Γ and Γ− w, which
means removing w from Γ .

A universal vertex of Γ with order n is a vertex v that have d(v) = n− 1. An (n, m)-graph
is the graph with n vertices and m edges. We denote by Γ(n, m) the set of (n, m)-graphs. The
cyclomatic number of a graph Γ is the minimum number of edges whose deletion transforms
Γ into an acyclic graph, denoted by γ(Γ). The set of graphs with order n and cyclomatic
number γ is denoted by Γn,γ. We have γ(Γ) = m− n + 1 for a connected graph Γ ∈ Γn,γ.

The vertex-degree function index H f (Γ) is denoted by

H f (Γ) = ∑
v∈V(Γ)

f (d(v))

for a function f (x) defined on non-negative real numbers in [1]. For example, the first
Zagreb index [2] is defined as M1(Γ) = ∑v∈V(Γ) d(v)2 when f (x) = x2, and the forgotten
topological index [3] is defined as F(Γ) = ∑v∈V(Γ) d(v)3 when f (x) = x3. The general first
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Zagreb index, denoted by 0Rα(Γ), was defined in [4,5] as 0Rα(Γ) = ∑v∈V(Γ) d(v)α, where
α is a real number, α /∈ {0, 1}. For the mathematical properties of the above topological
indices, see [6–11] and the references therein. Let v be a leaf of Sn, where n ≥ 3. For
0 ≤ γ ≤ n − 2, the graph obtained from Sn by joining edges v with γ other pendant
vertices is denoted by Hn,γ in [12]. Deng [10] obtained the bounds of the Zagreb indices
for trees, unicyclic graphs, and bicyclic graphs. Hu and Li determined the connected
(n, m)-graphs with the minimum and maximum zeroth-order general Randić index in [13].
Li and Zheng [5] obtained a unified approach to the extremal trees for different indices.
Some extremal results concerning the general zeroth-order Randić index were deduced
in [14–16]; also see the survey [12].

In [17], Tomescu obtained that the function f (x) has property (P↗; P↘) if ϕ(i + 1) >
ϕ(i); ϕ(i + 1) < ϕ(i), respectively, for every integer i ≥ 0, where ϕ(x) = f (x + 2) +
f (x)− 2 f (x + 1), and he obtained the maximum (minimum) vertex degree function index
H f (Γ) in the set of all n-vertex connected graphs that have the cyclomatic number γ
when 0 ≤ γ ≤ n− 2 if f (x) is strictly convex (concave) and satisfies the property P↗; P↘.
Tomescu [18] obtained some structural properties of connected (n, m)-graphs which are
maximum (minimum) with respect to vertex-degree function index H f (Γ), when f (x) is
a strictly convex (concave) function. In the same paper, it is also shown that the unique
graph obtained from the star Sn by adding γ edges between a fixed pendant vertex v and γ
other pendant vertices has the maximum general zeroth-order Randić index 0Rα in the set
of all n-vertex connected graphs that have the cyclomatic number γ when 1 ≤ γ ≤ n− 2
and α ≥ 2.

Tomescu obtained the following results.

Theorem 1 ([18]). In the set of connected (n, m)-graphs Γ that have m ≥ n, the graph that
maximizes (minimizes) H f (Γ) where f (x) is strictly convex (concave) possesses the following
properties:

(1) Γ has a universal vertex v;
(2) The subgraph Γ− v consists of some isolated vertices and a nontrivial connected component

C, which is maximum (minimum) relatively to Hg, where g(x) = f (x + 1). C also contains
a universal vertex and no induced subgraph isomorphic to P4 or Cp, where p ≥ 4.

Theorem 2 ([17]). If n ≥ 3, 1 ≤ γ ≤ n− 2, f (x) is strictly convex and has property P↗, and Γ
is a connected n-vertex graph with cyclomatic number γ, then

H f (Γ) ≤ f (n− 1) + f (γ + 1) + γ f (2) + (n− γ− 2) f (1),

with equality if and only if Γ ∼= Hn,γ ∼= K1 ∨ (K1,γ ∪ (n− γ− 2)K1).

In Section 2, we give upper and lower bounds for the vertex degree function index
of connected graphs if f (x) is a convex and increasing function that has property P↗. We
obtain sharp upper and lower bounds for the vertex degree function index of trees and
chemical trees if f (x) is a convex and increasing function.

Let f (Γ) be a graph invariant and n be a positive integer. The Nordhaus–Gaddum
Problem is to determine sharp bounds for f (Γ) + f (Γ) and f (Γ) · f (Γ) as Γ ranges over the
class of all graphs of order n, and to characterize the extremal graphs, i.e., graphs that
achieve the bounds. Nordhaus–Gaddum-type relations have received wide attention; see
the recent survey [19] by Aouchiche and Hansen and the book chapter by Mao [20].

Denote by G(n) the class of connected graphs of order n whose complements are also
connected. In Section 3, the upper and lower bounds for H f (Γ) + H f (Γ) and H f (Γ) · H f (Γ)
are given for Γ ∈ G(n).

2. Bounds on H f (Γ)

At first, we give the following upper bound for H f (Γ).
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Theorem 3. Let Γ be an n-vertex (n ≥ 5), m-edge graph with a cyclomatic number γ such that
γ ∈ [2n− t− 3, 3n− 2t− 7], where t (1 ≤ t ≤ n− 4) is the number of pendant vertices in Γ. If
f (x) is a strictly convex function that has property P↗, then

H f (Γ) ≤ f (n− 1) + t f (1) + f (n− t) + f (γ− n + t + 5) + (γ− n + t + 4) f (3)

+ (2n− 2t− γ− 5) f (2)

with equality if and only if Γ ∼= K1 ∨
((

K1 ∨
(

K1,γ2 ∪ (n2 − γ2 − 2)K1

))
∪ tK1

)
, where n2 =

n− t− 1, γ2 = γ− n + t + 2.

Proof. Let Γ ∈ Γn,γ such that H f (Γ) is maximum. By (1) of Theorem 1, a universal vertex
v1 ∈ V(Γ) exists, and hence

H f (Γ) = f (n− 1) + Hg1(Γ− v1),

where g1(x) = f (x + 1). By (2) of Theorem 1, Γ− v1 consists of some isolated vertices and
a nontrivial connected component C. Let Γ1 = Γ− v1. Note that t is the number of isolated
vertices of Γ− v1; we have

Hg1(Γ− v1) = tg1(0) + Hg1(C).

Suppose that m1, n1, γ1 and m2, n2, γ2 are the number edges, vertices, and cyclomatic
number of Γ1, Γ2, respectively, where Γ1 = Γ− v1 and Γ2 = C. Since γ2 = m2− n2 + 1, m2 =
m1 − n1 + 1, n2 = n1 − t, m1 = m − n + 1, n1 = n − 1, we have m2 = m − 2n + 3 and
n2 = n− t− 1, it follows that γ2 = γ− 2n + t + 4; note that γ ∈ [2n− t− 3, 3n− 2t− 7],
so 1 ≤ γ2 ≤ n2 − 2 and n2 ≥ 3, which implies m2 ≥ n2. Then, we know that Γ2 is a
connected n2-vertex graph with cyclomatic number γ2 and 1 ≤ γ2 ≤ n2 − 2, n2 ≥ 3. So,
we can apply Theorem 2 for Γ2 and we have

Hg1(Γ2) ≤ g1(n2 − 1) + g1(γ2 + 1) + γ2g1(2) + (n2 − γ2 − 2)g1(1)

with equality if only if Γ2 ∼= K1 ∨
(

K1,γ2 ∪ (n2 − γ2 − 2)K1

)
.

Hence, we have

H f (Γ) = f (n− 1) + tg1(0) + Hg1(Γ2)

≤ f (n− 1) + tg1(0) + g1(n2 − 1) + g1(γ2 + 1) + γ2g1(2) + (n2 − γ2 − 2)g1(1)

= f (n− 1) + t f (1) + f (n− t) + f (γ− n + t + 5) + (γ− n + t + 4) f (3)

+ (2n− 2t− γ− 5) f (2)

with equality if only if Γ ∼= K1 ∨
((

K1 ∨
(

K1,γ2 ∪ (n2 − γ2 − 2)K1

))
∪ tK1

)
, where n2 =

n− t− 1, γ2 = γ− n + t + 2.

A similar result holds for strictly concave functions f (x), which have property P↘: the

minimum of H f (Γ) is reached in Γn,γ if and only if Γ ∼= K1 ∨
((

K1 ∨
(

K1,γ2 ∪ (n2 − γ2 −

2)K1

))
∪ tK1

)
, where n2 = n− t− 1, γ2 = γ− n + t + 2.

Lemma 1. If f (x) is a convex function, then f (x)− f (x− a) ≥ f (x− b)− f (x− b− a) with
equality if and only if b = 0, where a, b ≥ 0.

Proof. Let h(x) = f (x)− f (x− a). Since f (x) is a convex function, it follows that f ′(x) is
an increasing function and h′(x) = f ′(x)− f ′(x− a) ≥ 0. So, h(x) is an increasing function
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and h(x) ≥ h(x− b) with equality if and only if b = 0, and therefore f (x)− f (x− a) ≥
f (x− b)− f (x− b− a).

We now give a lower bound for H f (T).

Theorem 4. Let T be a tree of order n (n ≥ 4). If f (x) is a convex function, then H f (T) ≥
(n− 2) f (2) + 2 f (1) with equality if and only if T ∼= Pn.

Proof. If n = 4, then T ∼= S4 or T ∼= P4. One can easily check that

H f (S4) = 3 f (1) + f (3) > 2 f (2) + 2 f (1) = H f (P4)

as f (3)− f (2) > f (2)− f (1), by Lemma 1. The result holds for n = 4.

We now suppose that n ≥ 5. We prove this result by the induction on n. Assume
that the result holds for n− 1 and prove it for n. Let T′ be a tree of order n− 1 such that
T − vj = T′, where dT(vj) = 1, vi = NT(vj) and dT′(vi) = dT(vi)− 1 = p− 1. Thus, we
have H f (T′) ≥ (n− 3) f (2) + 2 f (1) with equality if and only if T′ ∼= Pn−1. One can easily
see that

H f (T) = H f (T′) + f (p)− f (p− 1) + f (1).

Since f (x) is a convex function, it follows from Lemma 1 that f (p)− f (p− 1) ≥ f (2)− f (1)
with equality if and only if p = 2. Therefore, by the induction hypothesis with the above
results, we obtain

H f (T) = H f (T′) + f (p)− f (p− 1) + f (1)

≥ (n− 3) f (2) + 3 f (1) + f (p)− f (p− 1)

≥ (n− 2) f (1) + 2 f (1)

and the result holds by induction. Moreover, the equality holds if and only if T′ ∼= Pn−1
and dT(vi) = p = 2, that is, if and only if T ∼= Pn.

Corollary 1. Let T be a chemical tree of order n (n ≥ 4). If f (x) is a convex function, then
H f (T) ≥ (n− 2) f (2) + 2 f (1) with equality if and only if T ∼= Pn.

Using Theorem 4, we obtain a lower bound for H f (Γ).

Theorem 5. Let Γ be a connected graph of order n (n ≥ 4). If f (x) is a convex and increasing
function, then H f (Γ) ≥ (n− 2) f (2) + 2 f (1) with equality if and only if Γ ∼= Pn.

Proof. Since f (x) is an increasing function, it follows that f (x + 1) + f (y + 1) ≥ f (x) +
f (y), and hence H f (Γ + e) ≥ H f (Γ), where e is an edge joining between two non-adjacent
vertices in Γ. Clearly, for the graph Γ of order n, we have H f (Γ) ≥ H f (T), where T is a tree
of order n. This result with Theorem 4, we obtain H f (Γ) ≥ H f (T) ≥ (n− 2) f (2) + 2 f (1).
Moreover, the equality holds if and only if T ∼= Pn.

A complete split graph CS(n, α) is defined as the graph join Kα ∨ Kn−α, where α is the
independence number of graph CS(n, α).

Theorem 6. Let Γ be a connected graph of order n (n ≥ 4) with independence number α. If f (x)
is a strictly increasing function, then H f (Γ) ≤ (n− α) f (n− 1) + α f (n− α) with equality if
and only if Γ ∼= CS(n, α).

Proof. Since f (x) is a strictly increasing function, it follows that f (x + 1) + f (y + 1) >
f (x) + f (y), and hence H f (Γ + e) > H f (Γ), where e is an edge joining between two non-
adjacent vertices in Γ. Since Γ is a graph of order n with independence number α, we must
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have that Γ is a subgraph of CS(n, α). If Γ ∼= CS(n, α), then H f (Γ) = (n− α) f (n− 1) +
α f (n− α); hence, the equality holds. Otherwise, Γ � CS(n, α). Since Γ is a subgraph of
CS(n, α) and H f (Γ+ e) > H f (Γ), we obtain H f (Γ) < H f (Γ+ e) < · · · < H f (CS(n, α)− e1)
< H f (CS(n, α)) = (n − α) f (n − 1)+α f (n − α), where e1 is an edge in CS(n, α). This
completes the proof of the theorem.

Let C be the set of pendant vertices, and let A be the set of non-leaf vertices that have
at least 2 neighbor vertices, each of which are not leaves. Let B be the set of non-leaf vertices
that have only one neighbor vertex, which is not a leaf. Note that V(Γ) = A ∪ B ∪ C.

Lemma 2. Let Γ be a graph of order n, and f (x) be a convex function.

(1) If u ∈ A, w ∈ B, and xw ∈ E(Γ) such that dΓ(x) = 1, dΓ(u) = 2 or 3, dΓ(w) = 2 or 3,
then H f (Γ1) ≥ H f (Γ), where Γ1 = Γ− wx + ux.

(2) If u ∈ A, w ∈ B, and xw, yw ∈ E(Γ) such that dΓ(x) = dΓ(y) = 1, dΓ(u) = 2, dΓ(w) = 4,
then H f (Γ2) = H f (Γ), where Γ2 = Γ− wx− wy + ux + uy.

(3) If u ∈ A, w ∈ B, and xw ∈ E(Γ) such that dΓ(x) = 1, dΓ(u) = 3, dΓ(w) = 4, then
H f (Γ3) = H f (Γ), where Γ3 = Γ− wx + ux.

(4) If u, v ∈ B, and xu ∈ E(Γ) such that dΓ(x) = 1, dΓ(u) = 2 or 3, dΓ(v) = 3, then
H f (Γ4) ≥ H f (Γ), where Γ4 = Γ− ux + vx.

(5) If u, v, w ∈ B, and xu, yv ∈ E(Γ) such that dΓ(x) = dΓ(y) = 1, dΓ(u) = dΓ(v) =
dΓ(w) = 2, then H f (Γ5) ≥ H f (Γ), where Γ5 = Γ− xu− yv + wx + wy.

(6) If u, v ∈ B, and xu ∈ E(Γ) such that dΓ(x) = 1, dΓ(u) = 2 and dΓ(v) = 2, then
H f (Γ6) ≥ H f (Γ), where Γ6 = Γ− ux + vx.

Proof. Suppose that Γ is the graph of order n and f (x) is convex.
For (1), from Lemma 1, f (dΓ(u) + 1)− f (dΓ(u)) + f (dΓ(w)− 1)− f (dΓ(w)) ≥ 0 holds for
dΓ(u) = 2, 3 and dΓ(w) = 2, 3, and hence

H f (Γ1) = H f (Γ) + f (dΓ(u) + 1)− f (dΓ(u)) + f (dΓ(w)− 1)− f (dΓ(w)) ≥ H f (Γ).

For (2), we can easily obtain

H f (Γ2) = H f (Γ) + f (dΓ(u) + 2)− f (dΓ(u)) + f (dΓ(w)− 2)− f (dΓ(w))

= H f (Γ) + f (4)− f (2) + f (2)− f (4) = H f (Γ).

For (3), we have

H f (Γ3) = H f (Γ) + f (dΓ(u) + 1)− f (dΓ(u)) + f (dΓ(w)− 1)− f (dΓ(w))

= H f (Γ) + f (4)− f (3) + f (3)− f (4) = H f (Γ).

For (4), from Lemma 1, we know that f (dΓ(v)+ 1)− f (dΓ(v))+ f (dΓ(u)− 1)− f (dΓ(u)) ≥
0 holds for dΓ(u) = 2, 3 and dΓ(v) = 3, and hence

H f (Γ4) = H f (Γ) + f (dΓ(v) + 1)− f (dΓ(v)) + f (dΓ(u)− 1)− f (dΓ(u)) ≥ H f (Γ).

For (5), since f (x) is a convex function, it follows that f (1) + f (3) ≥ 2 f (2). From Lemma 1,
we have f (1) + f (4) ≥ f (2) + f (3), and hence 2 f (1) + f (4) ≥ 3 f (2). Then,

H f (Γ5) =H f (Γ) + f (dΓ(v)− 1)− f (dΓ(v)) + f (dΓ(u)− 1)− f (dΓ(u))

+ f (dΓ(w) + 2)− f (dΓ(w))

=H f (Γ) + 2 f (1)− 2 f (2) + f (4)− f (2)

=H f (Γ) + 2 f (1) + f (4)− 3 f (2) ≥ H f (Γ).
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For (6), from Lemma 1, we know that f (dΓ(v)+ 1)− f (dΓ(v))+ f (dΓ(u)− 1)− f (dΓ(u)) ≥
0 holds for dΓ(u) = 2 and dΓ(v) = 2, and hence

H f (Γ6) = H f (Γ) + f (dΓ(v) + 1)− f (dΓ(v)) + f (dΓ(u)− 1)− f (dΓ(u)) ≥ H f (Γ).

For chemical trees, we have the following upper bound.

Theorem 7. Let T be a chemical tree of order n (n ≥ 5). If f (x) is a convex function, then three
integers (m1, m2, m3) exist such that

H f (T) ≤


m1 f (4) + (n−m1 − 1) f (1) + f (2) if i = 0,

m2 f (4) + (n−m2 − 1) f (1) + f (3) if i = 1,

m3 f (4) + (n−m3) f (1) if i = 2

with equality if and only if T contains only one 2-degree vertex but contains no 3-degree vertices for
i = 0; T contains only one 3-degree vertex but contains no 2-degree vertices for i = 1; and T only
contains 1-degree vertices and 4-degree vertices for i = 2, where n ≡ i (mod 3).

Proof. Suppose that T is a chemical tree of order n and f (x) is a convex function. By
operations (1), (2), and (3) of Lemma 2, we can obtain a new tree T′ with V(T′) = V(T)
containing no 2-degree vertices or 3-degree vertices in A. That is to say, all of the 2-degree
vertices and 3-degree vertices are in B. Suppose that n ≡ i (mod 3) and n1, n2, n3, n4 are
the number of vertices with degree 1, 2, 3, 4, respectively, in T′.

Note that H f (T′) ≥ H f (T). We distinguish the following cases to show this theorem.

Case 1. i = 0.
We claim that n2 6= 0 or n3 6= 0; otherwise, T′ contains only 1-degree and 4-degree

vertices. Since n1 + n4 = n and n1 + 4n4 = 2(n− 1), we have n = 3n4 + 2, contradicting
the fact that n ≡ 0 (mod 3).

Since n1 +n2 +n3 +n4 = n and n1 + 2n2 + 3n3 + 4n4 = 2(n− 1), we have n2 + 2n3 ≡ 1
(mod 3), and so n2 − n3 ≡ 1 (mod 3) and n3 − n2 ≡ 2 (mod 3).

If n2 ≥ n3, then it follows from (4) of Lemma 2 that

H f (T′) =n1 f (1) + n2 f (2) + n3 f (3) + n4 f (4)

≤(n1 + n3) f (1) + (n2 − n3) f (2) + (n4 + n3) f (4).

Suppose that n2 − n3 = 3k1 + 1. From (5) of Lemma 2, we have

H f (T′) ≤ (n1 + n3 + 2k1) f (1) + f (2) + (n4 + n3 + k1) f (4).

Let m1 = n4 + n3 + k1, and thus we are done.
If n2 < n3, then it follows from (4) of Lemma 2 that H f (T′) = n1 f (1) + n2 f (2) +

n3 f (3) + n4 f (4) ≤ (n1 + n2) f (1) + (n3− n2) f (3) + (n4 + n2) f (4). Suppose that n3− n2 =
3`1 + 2. From (4) of Lemma 2, we have

H f (T′) ≤ (n1 + n2) f (1) + (`1 + 1) f (2) + `1 f (3) + (n4 + n2 + `1 + 1) f (4)

≤ (n1 + n2 + `1) f (1) + f (2) + (n4 + n2 + 2`1 + 1) f (4).

Let m1 = n4 + n2 + 2`1 + 1, and thus we are done.

Case 2. i = 1.
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We claim that n2 6= 0 or n3 6= 0; otherwise, T′ contains only 1-degree and 4-degree
vertices. Since n1 + n4 = n and n1 + 4n4 = 2(n− 1), we have n = 3n4 + 2, contradicting
the fact that n ≡ 1 (mod 3).

Since n1 + n2 + n3 + n4 = n and n1 + 2n2 + 3n3 + 4n4 = 2(n− 1), we have n2 + 2n3 ≡
2 (mod 3), and so n2 − n3 ≡ 2 (mod 3), n3 − n2 ≡ 1 (mod 3).

If n2 ≥ n3, then it follows from (4) of Lemma 2 that

H f (T′) = n1 f (1) + n2 f (2) + n3 f (3) + n4 f (4)

≤ (n1 + n3) f (1) + (n2 − n3) f (2) + (n4 + n3) f (4).

If n2 − n3 = 3k2 + 2, it follows from (5) and (6) of Lemma 2 that

H f (T′) ≤ (n1 + n3 + 2k2) f (1) + 2 f (2) + (n4 + n3 + k2) f (4)

≤ (n1 + n3 + 2k2 + 1) f (1) + f (3) + (n4 + n3 + k2) f (4).

Let m2 = n4 + n3 + k2, and thus we are done.
If n2 < n3, then it follows from (4) of Lemma 2 that

H f (T′) = n1 f (1) + n2 f (2) + n3 f (3) + n4 f (4)

≤ (n1 + n2) f (1) + (n3 − n2) f (3) + (n4 + n2) f (4).

If n3 − n2 = 3`2 + 1, then it follows from (4) of Lemma 2 that

H f (T′) ≤ (n1 + n2) f (1) + (3`2 + 1) f (3) + (n4 + n2) f (4)

≤ (n1 + n2) f (1) + `2 f (2) + (`2 + 1) f (3) + (n4 + n2 + `2) f (4)

≤ (n1 + n2 + `2) f (1) + f (3) + (n4 + n2 + 2`2) f (4).

Let m2 = n4 + n2 + 2`2, and thus we are done.

Case 3. i = 2.
Since n1 + n2 + n3 + n4 = n and n1 + 2n2 + 3n3 + 4n4 = 2(n− 1), we have n2 + 2n3 ≡

0 (mod 3), and so n2 − n3 ≡ 0 (mod 3), n3 − n2 ≡ 0 (mod 3).
If n2 ≥ n3, then it follows from (4) of Lemma 2 that H f (T′) = n1 f (1) + n2 f (2) +

n3 f (3) + n4 f (4) ≤ (n1 + n3) f (1) + (n2− n3) f (2) + (n4 + n3) f (4). Suppose that n2− n3 =
3k3. By (5) of Lemma 2, we have

H f (T′) ≤ (n1 + n3 + 2k3) f (1) + (n4 + n3 + k3) f (4).

Let m3 = n4 + n3 + k3, and thus we are done.
If n2 < n3, then it follows from (4) of Lemma 2 that

H f (T′) =n1 f (1) + n2 f (2) + n3 f (3) + n4 f (4)

≤(n1 + n2) f (1) + (n3 − n2) f (3) + (n4 + n2) f (4).

Suppose that n3 − n2 = 3`3. By (4) of Lemma 2, we have

H f (T′) ≤ (n1 + n2) f (1) + 3`3 f (3) + (n4 + n2) f (4)

≤ (n1 + n2) f (1) + `3 f (2) + `3 f (3) + (n4 + n2 + `3) f (4)

≤ (n1 + n2 + `3) f (1) + (n4 + n2 + 2`3) f (4).

Let m3 = (n4 + n2 + 2`3), and thus we are done.

For trees, we have the following upper bound.
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Theorem 8. Let T be a tree of order n (n ≥ 4). If f (x) is a convex function, then H f (T) ≤
(n− 1) f (1) + f (n− 1) with equality if and only if T ∼= Sn.

Proof. If n = 4, then by the proof of Theorem 4, we obtain H f (S4) > H f (P4). The result
holds for n = 4.

We now suppose that n ≥ 5. We prove this result by induction on n. Assume that the
result holds for n− 1 and prove it for n. Let T′ be a tree of order n− 1 such that T− vj = T′,
where dT(vj) = 1, vi = NT(vj) and dT′(vi) = dT(vi)− 1 = p− 1, (say). Thus, we have
H f (T′) ≤ (n− 2) f (1) + f (n− 2) with equality if and only if T′ ∼= Sn−1. One can easily
see that

H f (T) = H f (T′) + f (p)− f (p− 1) + f (1).

Since f (x) is a convex function, it follows from Lemma 1 that f (n − 1) − f (n − 2) ≥
f (p) − f (p − 1) with equality if and only if p = n − 1. Therefore, by the induction
hypothesis with the above results, we obtain

H f (T) = H f (T′) + f (p)− f (p− 1) + f (1)

≤ (n− 1) f (1) + f (n− 2) + f (p)− f (p− 1)

≤ (n− 1) f (1) + f (n− 1)

and the result holds by induction. Moreover, the equality holds if and only if T′ ∼= Sn−1
and dT(vi) = p = n− 1, that is, if and only if T ∼= Sn.

Remark 1. If f (x) is a convex function, then by Theorems 4 and 8, we conclude that the path Pn
gives the minimum H f (T) and the star gives the maximum H f (T) among all trees of order n.

3. Nordhaus–Gaddum-Type Results

In this section, we give the Nordhaus–Gaddum-type results for the vertex degree
function index.

Theorem 9. Let Γ be a graph of order n. If f (x) is a convex function, then

H f (Γ) + H f (Γ) ≥

 2n f ( n−1
2 ) if n is odd,

n
[

f ( n
2 ) + f ( n

2 − 1)
]

if n is even.

Moreover, the equality holds if and only if Γ is a b n
2 c-regular graph.

Proof. We have

H f (Γ) + H f (Γ) =
n

∑
i=1

f (dΓ(vi)) +
n

∑
i=1

f (n− 1− dΓ(vi))

=
n

∑
i=1

[
f (dΓ(vi)) + f (n− 1− dΓ(vi))

]
.

(1)

We consider two cases.

Case 1. n is odd.
First, we assume that n−1

2 ≤ dΓ(vi) ≤ n− 1. Setting x = dΓ(vi), a = b = dΓ(vi)− n−1
2

in Lemma 1, we obtain

f (dΓ(vi))− f
(

n− 1
2

)
≥ f

(
n− 1

2

)
− f (n− dΓ(vi)− 1),
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that is,

f (dΓ(vi)) + f (n− dΓ(vi)− 1) ≥ 2 f
(

n− 1
2

)
with equality if and only if dΓ(vi) =

n−1
2 . From (1), we obtain

H f (Γ) + H f (Γ) ≥ 2
n

∑
i=1

f
(

n− 1
2

)
= 2n f

(
n− 1

2

)

with equality if and only if Γ is an (n−1)
2 -regular graph, that is, if and only if Γ is a b n

2 c-
regular graph.

Next, we assume that 0 ≤ dΓ(vi) ≤ n−1
2 − 1, that is, n−1

2 < dΓ(vi) ≤ n− 1. Setting
x = dΓ(vi), a = b = dΓ(vi)− n−1

2 in Lemma 1, we obtain

f
(

dΓ(vi)
)
− f

(
n− 1

2

)
≥ f

(
n− 1

2

)
− f

(
n− dΓ(vi)− 1

)
,

that is,

f
(

dΓ(vi)
)
+ f

(
n− dΓ(vi)− 1

)
≥ 2 f

(
n− 1

2

)
with equality if and only if dΓ(vi) = n−1

2 . Hence, H f (Γ) + H f (Γ) =
n
∑

i=1

[
f
(

dΓ(vi)
)
+

f
(

dΓ(vi)
)]

=
n
∑

i=1

[
f
(

n− 1− dΓ(vi)
)
+ f
(

dΓ(vi)
)]
≥ 2n f

(
n−1

2

)
with equality if and only

if Γ is an (n−1)
2 -regular graph, that is, if and only if Γ is a b n

2 c-regular graph.

Case 2. n is even.
In this case, first we assume that n

2 ≤ dΓ(vi) ≤ n − 1. Setting x = dΓ(vi), a =
dΓ(vi)− n

2 + 1, b = dΓ(vi)− n
2 in Lemma 1, we obtain

f (dΓ(vi))− f
(n

2
− 1
)
≥ f

(n
2

)
− f (n− dΓ(vi)− 1)

with equality if and only if dΓ(vi) =
n
2 , and hence

H f (Γ) + H f (Γ) ≥
n

∑
i=1

(
f
(n

2

)
+ f

(n
2
− 1
))
≥ n

[
f
(n

2

)
+ f

(n
2
− 1
)]

with equality if and only if Γ is an n
2 -regular graph, that is, if and only if Γ is a b n

2 c-regular
graph.

Next, we assume that 0 ≤ dΓ(vi) ≤ n
2 − 1, that is, n

2 ≤ dΓ(vj) ≤ n − 1. Setting
x = dΓ(vj), a = dΓ(vj)− n

2 + 1, b = dΓ(vj)− n
2 in Lemma 1, we obtain

f
(

dΓ(vj)
)
− f

(n
2
− 1
)
≥ f

(n
2

)
− f

(
n− dΓ(vj)− 1

)
,

that is,
f
(

dΓ(vj)
)
+ f

(
n− dΓ(vj)− 1

)
≥ f

(n
2

)
+ f

(n
2
− 1
)

with equality if and only if dΓ(vj) =
n
2 . Hence,

H f (Γ) + H f (Γ) =
n

∑
i=1

[
f
(

dΓ(vi)
)
+ f

(
dΓ(vi)

)]
=

n

∑
i=1

[
f
(

n− 1− dΓ(vi)
)
+ f

(
dΓ(vi)

)]
≥ n

[
f
(n

2

)
+ f

(n
2
− 1
)]

.
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with equality if and only if Γ is an n
2 -regular graph, that is, if and only if Γ is a b n

2 c-regular
graph.

Theorem 10. Let Γ be a graph of order n with maximum degree ∆. If f (x) is a convex function,
then

H f (Γ) + H f (Γ) ≤ n
[

f (∆) + f (n− 1− ∆)
]

with equality if and only if Γ is a regular graph or graph Γ has only two type of degrees ∆ and
n− 1− ∆ (∆ > (n− 1)/2).

Proof. Setting x = ∆, a = ∆− dΓ(vi) and b = ∆ + dΓ(vi)− (n− 1), by Lemma 1 we obtain

f (dΓ(vi)) + f (n− 1− dΓ(vi)) ≤ f (∆) + f (n− 1− ∆)

with equality if and only if dΓ(vi) = n− 1− ∆ or i = 1. Hence,

H f (Γ) + H f (Γ) =
n

∑
i=1

f (dΓ(vi)) +
n

∑
i=1

f (n− 1− dΓ(vi))

≤
n

∑
i=1

[
f (∆) + f (n− 1− ∆)

]
= n

[
f (∆) + f (n− 1− ∆)

]
.

Moreover, the equality holds if and only if dΓ(vi) = ∆ or dΓ(vi) = n− 1− ∆ for any vertex
vi ∈ V(Γ), that is, if and only if Γ is a regular graph or graph Γ has only two type of degrees
∆ and n− 1− ∆ (∆ > (n− 1)/2).

Corollary 2. Let Γ be a graph of order n. If f (x) is a convex function, then

H f (Γ) + H f (Γ) ≤ n
[

f (n− 1) + f (0)
]

with equality if and only if Γ is a complete graph or Γ is an empty graph.

Proof. Setting x = n− 1, a = n− 1− ∆ and b = ∆, by Lemma 1 we obtain

f (∆) + f (n− 1− ∆) ≤ f (n− 1) + f (0)

with equality if and only if ∆ = 0 or ∆ = n− 1. Using this result with Theorem 10, we
obtain the result. Moreover, the equality holds if and only if Γ is a complete graph or Γ is
an empty graph.

The following is the well-known Jensen inequality.

Lemma 3 (Jensen Inequality [21]). If f (x) is convex function, for all x1, x2, . . . , xn ∈ [a, b], then

n

∑
i=0

f (xi) ≥ n f


n
∑

i=0
xi

n

,

with equality if and only if x1 = x2 = · · · = xn.

Theorem 11. Let Γ be a graph of order n and size m. If f (x) is a convex function, then

H f (Γ) + H f (Γ) ≥ n f
(

2m
n

)
+ n f

(
n(n− 1)− 2m

n

)
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and

H f (Γ) · H f (Γ) ≥ n2 f
(

2m
n

)
· f
(

n(n− 1)− 2m
n

)
,

with equality if and only if Γ is a regular graph.

Proof. Since f (x) is a convex function and
n
∑

i=1
dΓ(vi) = 2m, it follows from Lemma 3 that

n

∑
i=1

f (dΓ(vi)) ≥ n f


n
∑

i=1
dΓ(vi)

n

 = n f
(

2m
n

)

and

n

∑
i=1

f (dΓ(vi)) ≥ n f


n
∑

i=1
dΓ(vi)

n

 = n f
(

n(n− 1)− 2m
n

)
.

Hence,

H f (Γ) + H f (Γ) =
n

∑
i=1

f (dΓ(vi)) +
n

∑
i=1

f (dΓ(vi)) ≥ n f
(

2m
n

)
+ n f

(
n(n− 1)− 2m

n

)
and

H f (Γ) · H f (Γ) =
n

∑
i=1

f (dΓ(vi)) ·
n

∑
i=1

f (dΓ(vi)) ≥ n2 f
(

2m
n

)
· f
(

n(n− 1)− 2m
n

)
.

Moreover, the equality holds if and only if dΓ(vi) = dΓ(vj) for 1 ≤ i, j ≤ n, which means
that Γ is a regular graph.

Theorem 12. Let Γ be a graph of order n with maximum degree ∆ and minimum degree δ. If f (x)
is an increasing function, then

H f (Γ) · H f (Γ) ≤(n− 1)2 f (∆) f (n− 1− δ) + (n− 1) f (δ) f (n− 1− δ)

+ (n− 1) f (∆) f (n− 1− ∆) + f (δ) f (n− 1− ∆)

with equality if and only if Γ is a regular graph.

Proof. Since ∆ is the maximum degree and δ is the minimum degree, we can assume that
∆ = dΓ(v1) ≥ dΓ(v2) ≥ · · · ≥ dΓ(vn) = δ. Moreover, we obtain

n− 1− δ ≥ n− 1− dΓ(vi) ≥ n− 1− ∆ for vi ∈ V(Γ).

Since f (x) is an increasing function with the above results, we obtain

H f (Γ) · H f (Γ) =
n

∑
i=1

f (dΓ(vi)) ·
n

∑
i=1

f (n− 1− dΓ(vi)) =
[

f (∆) +
n−2

∑
i=2

f (dΓ(vi)) + f (δ)
]

[
f (n− 1− δ) +

n−2

∑
i=2

f (n− 1− dΓ(vi)) + f (n− 1− ∆)
]

≤
[

f (δ) + (n− 1) f (∆)
] [

f (n− 1− ∆) + (n− 1) f (n− 1− δ)
]

=(n− 1)2 f (∆) f (n− 1− δ) + (n− 1) f (δ) f (n− 1− δ)

+ (n− 1) f (∆) f (n− 1− ∆) + f (δ) f (n− 1− ∆).



Axioms 2023, 12, 31 12 of 13

Moreover, the above equality holds if and only if dΓ(vi) = ∆ for all vi ∈ V(Γ) (i =
1, 2, . . . , n− 1), and dΓ(vi) = δ for all vi ∈ V(Γ) (i = 2, 3, . . . , n), and hence ∆ = δ, that is, if
and only if Γ is a regular graph.

Corollary 3. Let Γ be a graph of order n with maximum degree ∆ and minimum degree δ. If f (x)
is an increasing function, then

H f (Γ) · H f (Γ) ≤ n2 f (∆) f (n− 1− δ)

with equality if and only if Γ is a regular graph.

Proof. Since f (x) is an increasing function, we have f (δ) ≤ f (∆) and f (n − 1− ∆) ≤
f (n− 1− δ). Using these results in Theorem 12, we obtain the required result. Moreover,
the equality holds if and only if Γ is a regular graph.

Theorem 13. Let Γ be a graph of order n with maximum degree ∆ and minimum degree δ. If f (x)
is an increasing function, then

H f (Γ) · H f (Γ) ≥(n− 1)2 f (δ) f (n− 1− ∆) + (n− 1) f (δ) f (n− 1− δ)

+ (n− 1) f (∆) f (n− 1− ∆) + f (∆) f (n− 1− δ)

with equality if and only if Γ is a regular graph.

Proof. The proof is similar to the proof of Theorem 12. Since f (x) is an increasing function,
we obtain

H f (Γ) · H f (Γ) =
[

f (∆) +
n−2

∑
i=2

f (dΓ(vi)) + f (δ)
] [

f (n− 1− δ) +
n−2

∑
i=2

f (n− 1− dΓ(vi))

+ f (n− 1− ∆)
]

≥
[

f (∆) + (n− 1) f (δ)
] [

f (n− 1− δ) + (n− 1) f (n− 1− ∆)
]

=(n− 1)2 f (δ) f (n− 1− ∆) + (n− 1) f (δ) f (n− 1− δ)

+ (n− 1) f (∆) f (n− 1− ∆) + f (∆) f (n− 1− δ).

Moreover, the equality holds if and only if Γ is a regular graph.

Corollary 4. Let Γ be a graph of order n with maximum degree ∆ and minimum degree δ. If f (x)
is an increasing function, then

H f (Γ) · H f (Γ) ≥ n2 f (δ) f (n− 1− ∆)

with equality if and only if Γ is a regular graph.

4. Concluding Remarks

In this report, the vertex-degree function index H f (Γ) has been investigated for a different
class of graphs. Tight bounds of the vertex-degree function index H f (Γ) have been set up for
any n vertex-connected graphs, trees, and chemical trees. The extremal graphs where the
bounds attain have also been identified. Moreover, we present the Nordhaus–Gaddum-
type results for H f (Γ) + H f (Γ) and H f (Γ) · H f (Γ), and the characterization of the extremal
graphs. We now pose the following problem related to the work presented in this paper, as
a potential topic for further research .
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Problem 1. To find the lower and upper bounds on the vertex-degree function index H f (Γ) and
characterize corresponding extremal graphs for other significant classes of graphs such as bicyclic,
tricyclic graphs, etc.
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MATCH Commun. Math. Comput. Chem. 2005, 54, 425–434.
5. Li, X.; Zheng, J. A unified approach to the extremal trees for different indices. MATCH Commun. Math. Comput. Chem. 2005, 54,

195–208.
6. Ali, A.; Das, K.C.; Akhter, S. On the extremal graphs for second Zagreb index with fixed number of vertices and cyclomatic

number. Miskolc Math. Notes 2022, 23, 41–50. [CrossRef]
7. An, M.; Das, K.C. First Zagreb index, k-connectivity, β-deficiency and k-hamiltonicity of graphs. MATCH Commun. Math. Comput.

Chem. 2018, 80, 141–151.
8. Das, K.C.; Dehmer, M. Comparison between the zeroth-order Randić index and the sum-connectivity index. Appl. Math. Comput.
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