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Abstract: Waste detection is one of the main problems preventing the realization of automated
waste classification, which is a basic function for robotic arms. In addition to object identification
in general image analysis, a waste-sorting robotic arm not only needs to identify a target object but
also needs to accurately judge its placement angle so that it can determine an appropriate angle
for grasping. In order to solve the problem of low-accuracy image detection caused by irregular
placement angles, in this work, we propose an improved oriented waste detection method based
on YOLOv5. By optimizing the detection head of the YOLOv5 model, this method can generate
an oriented detection box for a waste object that is placed at any angle. Based on the proposed
scheme, we further improved three aspects of the performance of YOLOv5 in the detection of waste
objects: the angular loss function was derived based on dynamic smoothing to enhance the model’s
angular prediction ability, the backbone network was optimized with enhanced shallow features and
attention mechanisms, and the feature aggregation network was improved to enhance the effects
of feature multi-scale fusion. The experimental results showed that the detection performance of
the proposed method for waste targets was better than other deep learning methods. Its average
accuracy and recall were 93.9% and 94.8%, respectively, which were 11.6% and 7.6% higher than
those of the original network, respectively.
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MSC: 68T20; 68T45; 68U10

1. Introduction

Waste disposal is an important problem worldwide that must be addressed. Classifying
waste and implementing differentiated treatments can help to improve resource recycling and
promote environmental protection. However, many countries and regions still rely on manual
waste classification. The main drawbacks of this are twofold. First, the health of operators can
be seriously threatened by the large number of bacteria carried by waste [1]. Second, manual
sorting is not only costly but also inefficient. Consequently, automated waste management
and classification approaches have received extensive attention [2].

Using a robotic arm is a common method for replacing the manual mode with auto-
mated waste sorting [3]. In order to enable the robot arm to correctly classify and grasp
the target object, each robot arm needs to have the functions of object recognition and
placement angle judgment.

Wu et al. [4] proposed a plastic waste classification method based on FV-DCNN. They
extracted classification features from original spectral images of plastic waste and con-
structed a deep CNN classification model. Their experiments showed that the model could
recognize and classify five categories of polymers. Chen et al. [5] proposed a lightweight
feature extraction network based on MobileNetv2 and used it to achieve image classifica-
tion of waste. Their experiments showed that the average accuracy of the classification
with their dataset was 94.6%. Liu et al. [6] proposed a lightweight neural network based
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on MobileNet that can reduce the cost of industrial processes. Kang et al. [7] proposed an
automated waste classification system based on the ResNet-34 algorithm. The experimental
results showed that the classification had high accuracy, and the classification speed of the
system was as quick as 0.95 s.

These models can recognize categories of waste intelligently based on convolutional
neural networks, but they do not generate location boxes for the waste targets. In addition,
when there are multiple categories of waste in an image, such models cannot achieve effec-
tive identification. Therefore, they cannot be applied directly to tasks such as automated
waste sorting.

Cui et al. [8] used the YOLOv3 algorithm to detect domestic waste, decoration waste
and large waste on the street. Xu et al. [9] proposed a five-category waste detection
model based on the YOLOv3 algorithm and achieved 90.5% average detection accuracy
with a self-made dataset. The dataset included paper waste, plastic products, glass prod-
ucts, metal products and fabrics. Chen et al. [10] proposed a deep learning detection
network for the classification of scattered waste regions and achieved good detection re-
sults. Majchrowska et al. [11] proposed deep learning-based waste detection method for
natural and urban environments. Meng et al. [12] proposed a MobileNet-SSD with FPN for
waste detection.

These methods can achieve image-based waste detection, but they do not provide the
grasping angle information for the target object. For a target object placed at any angle,
these methods only provide a horizontal identification box. Therefore, the robotic arm
cannot determine the optimal grasp mode for the shape and placement angle of a waste
object, which may easily lead to the object falling or to grabbing failure, especially in cases
involving a large aspect ratio, as a small angle deviation can lead to a large deviation in the
intersection over union (IoU).

In addition to object identification in general image analysis, a waste-sorting robotic
arm not only needs to identify a target object but also needs to accurately judge its placement
angle so that the robotic arm can determine the appropriate grasping angle. YOLOv5 has a
strong feature extraction structure and feature aggregation network, allowing it to achieve
higher detection recall and accuracy. It also provides a series of methods that can be used to
achieve data enhancement. YOLOv5 is a good choice for many common identification and
classification problems due to its fast detection speed, high detection accuracy and easy
deployment, making it popular in many practical engineering applications. Li et al. [13]
and Chen et al. [14] proposed improved algorithms for vegetable disease and plant disease
detection based on YOLOv5. Their experiments showed that the detection rates reached
93.1% and 70%, respectively, which were better than other methods. Ling et al. [15] and
Wang et al. [16] proposed gesture recognition and smoke detection models, respectively,
based on YOLOv5. Gao et al. [17] proposed a beehive detection model based on YOLOv5.
However, the original YOLOv5 does not provide the grasping angle information required
for a target object. For a target object placed at any angle, it only provides a horizontal
identification box, as shown in Figure 1a. Therefore, the robotic arm cannot determine
the optimal grasp mode for the shape and placement angle of a target object, which may
easily lead to the object falling or to grabbing failure, especially in cases involving a large
aspect ratio.
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Figure 1. Grabbing with horizontal and oriented detection box. (a) Horizontal detection box;
(b) oriented detection box.

In this work, we made two modifications to YOLOv5 to improve its suitability for
automated waste sorting application scenarios. First, we added an angular prediction
network in the detection head to provide grasping angle information for the waste object
and developed a dynamic smoothing label for angle loss to enhance the angular prediction
ability of the model. Second, we optimized the structure of the feature extraction and
aggregation by enhancing the multi-scale feature fusion.

The contributions of this work are threefold:
(1) An optimized waste detection approach was designed based on YOLOv5 that

provides higher detection accuracy for both general-sized waste and waste with a large
aspect ratio;

(2) An angular prediction method is proposed for YOLOv5 that enables the rotation
detection box to obtain the actual position of oriented waste;

(3) New optimization schemes are introduced for YOLOv5, including a loss function,
feature extraction and aggregation.

2. Detection Method for Oriented Waste
2.1. Detection Scheme

As shown in Figure 2, the framework of the proposed waste detection scheme consists
of five parts: the input layer, feature extraction backbone network, feature aggregation
network, detection head and dynamic smoothing module. In this study, the backbone
network mainly consisted of the focus module, the convolution module and an optimized
HDBottleneckCSP module based on BottleneckCSP. The focus module reduces the number
of computations and improves the speed in accordance with the slicing operation. The
BottleneckCSP module is a convolution structure that demonstrates good performance
in model learning. The backbone was used to extract the features from waste images
and generate feature maps with three different sizes. The feature aggregation network
converges and fuses multi-scale features generated from the backbone network to improve
the representation learning ability for rotating waste angle features. The detection head
generates the category, location and rotation angle for waste based on the multi-scale
feature maps. Finally, the dynamic smoothing module partially densifies the “one-hot label
encoding” of the angle labels for model training.
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Figure 2. Rotation angle waste detection scheme. Figure 2. Rotation angle waste detection scheme.

2.2. Improvement of Detection Model

The original YOLOv5 model has the following limitations: (i) It can only generate
a target detection box with a horizontal angle and not a rotation angle. (ii) The stack of
bottleneck modules in BottleneckCSP is serial, which causes the middle-layer features to be
lost. (iii) The feature aggregation network lacks end-to-end connection between the input
and output feature maps.

To solve these problems, we optimized three aspects of YOLOv5: (i) We added an
angular prediction network and loss function, as well as a dynamic angle smoothing
algorithm for angular classification, to improve the angular prediction ability. (ii) We
optimized the BottleneckCSP module of the backbone network to enhance the model’s
ability to extract the features of oriented waste. (iii) We optimized the feature aggregation
network to improve the effect of multi-scale feature fusion.

2.2.1. Improvement of the Detection Head Network

The original YOLOv5 detector lacks a network structure for angular prediction and
cannot provide the grasping angle information for waste objects. Therefore, the robotic arm
cannot set the optimal grasp mode according to the placement angle of the waste, which
easily leads to the object falling or to grabbing failure. Thus, we optimized the structure of
the detection head.

Angular prediction can be realized as regression or classification. The regression mode
produces a continuous prediction value for the angle but there is a periodic boundary
problem, which leads to a sudden increase in the value of the loss function at the boundary
of periodic changes, increasing the difficulty of learning [18]. For example, in the 180◦

long-side definition method, the defined label range is (−90◦, 90◦). When the true angle
of waste is 89◦ and the prediction is −90◦, the error learned by the model is 179◦, but the
actual error should be 1◦, which affects the learning of the model.

Therefore, we added convolution network branches in the detection head and defined
the angle label with 180 categories obtained by rotating the long side of the target box
clockwise around the center. The angle convolution network generates the angle predic-
tion using information extracted from the multi-scale features obtained by the feature
aggregation network.
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In the detection head, the angle convolution network and the original network share
the output of the feature aggregation network as the input feature graph. The output of the
angle prediction network and the original network are merged as follows:

V = (ĉ, x̂, ŷ, l̂, ŝ, θ̂) (1)

where ĉ is the predicted category of the waste, x̂ and ŷ are the predicted central coordinates
of the object box, l̂ and ŝ are the predicted lengths of the longer side and shorter side of the
object box and θ̂ is the predicted angle of oriented waste.

2.2.2. Angle Smoothing and Loss Function

The realization of angular prediction as classification can avoid the periodic boundary
problem caused by regression, but there are still some limitations. The loss function of
traditional category tasks is calculated as cross-entropy loss, and the form of the labels is
“one-hot label encoding”, as shown in Equations (2) and (3):

yic =

{
1, c = θ
0, c 6= θ&c ∈ {0, 1, . . . , 179} (2)

L = − 1
N ∑

i

179

∑
c=0

yiclog(pic) (3)

where yic is the “one-hot label encoding” for the angle of sample i, θ is the angle of the
oriented waste and pic is the prediction of the detection model.

Equation (8) shows that, for different incorrect predictions of the angle, the same loss
value is obtained and the distance of the mistake cannot be quantified, which makes it
difficult for model training to determine the angle of the oriented waste.

To solve this problem, we propose a dynamic smoothing label algorithm based on the
circular smooth label (CSL) algorithm [18] to optimize the “one-hot label encoding” label
of the angle.

The circular smooth label algorithm is shown in Equation (4):

CSL(x) =
{

g(x), θ − r < x < θ + r & x ∈ {0, 1, . . . , 179}
0, others

(4)

where θ is the rotation angle value, r is the range of smoothness and g(x) is the smoothing
function. The angle label vector manifests as a “dense” distribution because g(x) is within
the range of smoothness.

The value of the smoothing function is shown in Equation (5):

0 < g(θ − ε) = g(θ + ε) ≤ 1, |ε| ≤ r (5)

where, when ε = 0, the function has a maximum value of 1, and when ε = r, it is 0.
The CSL algorithm partially densifies the “one-hot label encoding”. When the angular

prediction of the model is in the range of smoothness, different loss values for different
predicted degrees are obtained; thus, it can quantify the mistake in the angle category
prediction. However, the performance of CSL is sensitive to the range of smoothness. If the
range of smoothness is too small, the smoothing label will degenerate into “one-hot label
encoding” and lose its effect, and it will be difficult to learn the information from the angle.
If the range is too large, the deviation in the angle prediction will be large, which will lead
to it missing the object, especially for waste with a large aspect ratio.

Therefore, we propose a dynamic smoothing function for the angle label to adjust the
smoothing amplitude and range.

The dynamic smoothing function uses the dynamic Gaussian function to smooth the
angle labels. It can be seen from Figure 3 that the smoothing amplitude and the range
of the Gaussian function are controlled by the root mean square (RMS) value: the larger
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the RMS, the flatter the curve; the smaller the RMS, the steeper the curve and the smaller
the smoothing range. Therefore, the RMS of the Gaussian function is gradually shrunk to
achieve dynamic smoothing, as shown in Equation (6).

DSM(x) = exp
(
−d2(x, θ)

2× b2

)
, x ∈ {0, 1, . . . , 179} (6)

We provide two efficient functions—linear annealing and cosine annealing—to adjust
the RMS, as follows:

b = c + e× cos(
0.5× π × epoch

epochs
)

b = c− e× epoch
epochs

where θ is the value of the rotation angle for the waste, which corresponds to the peak
position of the function; x is the encoding range of the waste angle; b is the value of the RMS;
and d(x, θ) is the circular distance between the encoding position and the angle values. For
example, if θ is 179, d(x, θ) is 1 when x is 0; epoch and epochs represent the current number
of training rounds and the maximum number of rounds of the model, respectively, and c
and e are hyper-parameters.

1 
 

 
Figure 3. Gaussian function curves with different RMS.

It can be seen from Equation (6) that the DSM densifies the angle label according to
the distance between the encoding position and the angle value dynamically. In the early
stage of model training, b obtained large values because of the small epoch. At this time,
the range of smoothing was large, and the model’s learning of angles was reflected in the
window area. When the smoothing range was more “loose”, the model came closer to the
neighborhood area of the optimal point; thus, it reduced the difficulty of angle learning and
improved the recall rate in image waste detection. The range of angle smoothing decreased
with the increase in the epoch value. The objective of the model was changed from the
optimal region to the learning of the optimal point so that the deviation in the angular
prediction would be smaller. The higher accuracy of the angle prediction improved the
recall rate for the oriented waste, especially in cases with a large aspect ratio.
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The angular loss of waste was calculated using the cross-entropy loss function based
on the dynamic smoothing algorithm:

loss(a) = −
s2

∑
i=0

Iobj
ij

179

∑
t=0
{ p̂i(t) log[pi(t)] + [1− p̂i(t)] log[1− pi(t)]} (7)

where p̂i(t) = DSM(t). pi(t) is the prediction of the angle and s2 is the quantification of
the subdomain of the picture, and the model provides the prediction of the target for each
subdomain. Iobj

ij is 0 or 1, which indicates whether there is a target. When the prediction is
close to the true value, the cross-entropy has a smaller value.

In addition, the GIoU loss function [19] was used to calculate the regression loss of the
detection boundary box. In Figure 4, A and B are the real box and the prediction box of the
detection target, respectively. C is the smallest rectangle surrounding A and B. The green
area is |C| − |A∪ B|.

The specific calculation is shown in Equations (8)–(10). GIoU not only pays attention
to the overlap of the real box and the prediction box but also to the non-overlapping area,
which allows it to solve the problem of the gradient not being calculated caused by A and
B not intersecting.
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IoU(A, B) =
|A∩ B|
|A∪ B| (8)

GIoU(A, B) = IoU(A, B)− |C| − |A∪ B|
|C| (9)

loss(r) = 1−GIoU(A, B) (10)

In the equations, A and B are the real box and the prediction box of the detection
target, respectively. C is the smallest rectangle surrounding A and B. The confidence loss
function and category loss function are as shown by Equations (11) and (12):

loss(o) = −
s2

∑
i=0

B
∑

j=0
Iobj
ij [ĉi log(ci) + (1− ĉi) log(1− ci)]

−lnoobj
s2

∑
i=0

B
∑

j=0
Inoobj
ij [ĉi log(ci) + (1− ĉi) log(1− ci)]

(11)

loss(c) = −
s2

∑
i=0

Iobj
ij ∑

c∈class
{ p̂i(c) log[pi(c)] + [1− p̂i(c)] log[1− pi(c)]} (12)

where Iobj
ij and Inoobj

ij indicate whether the prediction box j of the grid i is the target box,
and λnoobj indicates the weight coefficients.

The overall loss function of the improved model is a weighted combination of the
above loss functions, as shown in Equation (13):

Loss = loss(r) + loss(o) + loss(c) + loss(a) (13)
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2.2.3. Improvement of Feature Extraction Backbone Network

The feature extraction backbone network was used to extract the features of the waste
in the image. Due to the addition of angular prediction in the detection of oriented waste,
there is a higher demand on the feature extraction to realize effective recognition, especially
in cases involving a large aspect ratio due to a narrow area.

BottleneckCSP is the main module in the backbone of YOLOv5. The BottleneckCSP
module is stacked using a bottleneck architecture. As shown in Figure 5a, the stacking of
the bottleneck modules is serial. With the deepening of the network, the feature abstraction
capability is gradually enhanced, but shallow features are generally lost [20]. Shallow
features have lower semantics and can be more detailed due to the fewer convolution
operations. Utilizing multi-level features in CNNs through skip connections has been
found to be effective for various vision tasks [21–23]. The bypassing paths are presumed
to be the key factor for easing the training of deep networks. Concatenating feature maps
learned by different layers can increase the variation in the input of subsequent layers
and improve efficiency [24,25]. In addition, attention mechanisms, which are methods
used to assign different weights to different features according to their importance, have
been found to be effective for the recognition of an image [26,27]. The coordinate attention
mechanism (CA) [28] is one such mechanism that shows good performance. Therefore, as
shown in Equation (14), we concentrated and merged the middle features of BottleneckCSP
and added the CA module to enhance the feature extraction capability. The attention
mechanism is optional in the module at different levels.

Zout = g
(

Zc
h×w×(c×t)

)
(14)

where 
Z1 = f1(x)
Zt = ft

(
Zt−1)

Zc =
[
Z1

h×w×(c×t), Z2
h×w×(c×t), . . . , Zt

h×w×(c×t)

]

Axioms 2023, 12, 18 8 of 19 
 

( )out c
h w c tg × × ×=Z Z （ ）  (14)

where 

( )
( )

1
1

1

1 2

t t -
t

c t
h w c t h w c t h w c t

xf

f

, ,...,× × × × × × × × ×

 =
 =


 =  

Z

Z Z

Z Z Z Z（ ） （ ） （ ）

 

Z is the feature map, x is the input of the BottleneckCSP module, f is the function 
mapping of the bottleneck module, and g represents the CA attention operation. 

Input

Conv

Conv

Bottleneck1 Bottleneck2 Bottleneckn

Concat

Conv
 

Input

Conv

Conv

Bottleneck1 Bottleneck2

Concat

CA

Bottleneck_
2k-1

Bottleneck_
2k

Bottleneck_
n

Conv  
(a) (b) 

Figure 5. Comparison of BottleneckCSP before and after improvement. (a) BottleneckCSP module. 
(b) HDBottleneckCSP module. 

Due to the “residual block” connection in the bottleneck architecture, excessive 
feature merging between bottlenecks leads to feature redundancy, which is not suitable 
for model training, and the increased number of parameters means that more resources 
are consumed. Therefore, the characteristic layers were connected using “interlayer 
merging”, as shown in Figure 5b. The optimized module was named HDBottleneckCSP. 

The CA module structure in HDBottleneckCSP is shown in Figure 6. The input fea-
ture maps are coded along the horizontal and vertical coordinates to obtain the global 
field and to encode position information, respectively, which helps the network to detect 
the locations of targets more accurately. 

Residual

Re-weight

X Avg Pool Y Avg Pool

Concat+Conv2d

BatchNorm+Non-linear

Conv2d Conv2d

Sigmoide Sigmoid

Input

Output

C×H×W

C×H×1

C×H×1

C×H×1

C×H×W

C×1×W

C×1×W

C×1×W

C/r×1×(H+W)

C/r×1×(H+W)

 
Figure 6. CA attention module. 

As shown in Equation (15), the CA module generates vertical and horizontal feature 
maps for the input feature map and then transforms them through a 1 × 1 convolution. 

Figure 5. Comparison of BottleneckCSP before and after improvement. (a) BottleneckCSP module.
(b) HDBottleneckCSP module.

Z is the feature map, x is the input of the BottleneckCSP module, f is the function
mapping of the bottleneck module, and g represents the CA attention operation.

Due to the “residual block” connection in the bottleneck architecture, excessive feature
merging between bottlenecks leads to feature redundancy, which is not suitable for model
training, and the increased number of parameters means that more resources are consumed.
Therefore, the characteristic layers were connected using “interlayer merging”, as shown in
Figure 5b. The optimized module was named HDBottleneckCSP.

The CA module structure in HDBottleneckCSP is shown in Figure 6. The input feature
maps are coded along the horizontal and vertical coordinates to obtain the global field
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and to encode position information, respectively, which helps the network to detect the
locations of targets more accurately.
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As shown in Equation (15), the CA module generates vertical and horizontal feature
maps for the input feature map and then transforms them through a 1 × 1 convolution.
The generated A ∈ RC/r×(H+W) is the intermediate feature map for the spatial information
in the horizontal and numerical directions, r is the down sampling scale and F1 represents
the convolution operation.

A = δ
(

F1

([
Zh, Zw

]))
(15)

where A is divided into Ah ∈ RC/r×H and Aw ∈ RC/r×W in the spatial dimension. As
shown in Equations (16) and (17), it is transformed into the same number of channels as
the input feature map through the convolution operation, while gh and gw are used as the
attention weight and participate in the feature map operation. The output result of the CA
module is shown in Equation (18).

gh = δ
(

Fh

([
Ah
]))

(16)

gw = δ(Fw([Aw])) (17)

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (18)

The optimized feature extraction backbone network structure is shown in Figure 7. It
extracts features through the convolution module and the HDBottleneckCSP module and
generates feature maps with three sizes by downsampling (1/8, 1/16 and 1/32).
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2.2.4. Improvement of Feature Aggregation Network

The YOLOv5 feature aggregation network consists of feature pyramid networks [29]
(FPNs) and path aggregation networks [30] (PANets). The structure of a PANet is shown
in Figure 8a. The PANet aggregates features along two paths: top-down and bottom-up.
However, the aggregated features are deep features with high semantics, and the shallow
features with high resolution are not fused. In order to make use of the input features more
effectively, we used P2P-PANet to replace the PANet based on BiFPN [31], as shown in
Figure 8b.
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Compared to PANet, P2P-PANet adds end-to-end connection for the input-feature and
output-feature maps, which establishes a “point-to-point” horizontal connection path from
the low level to the high level, and it can realize the fusion of high-resolution and complex
semantic features in an image without adding much cost. Through the extraction and
induction of semantic information for the high-resolution and low-resolution feature maps,
the angular feature information of rotating waste is further enhanced, and the detection
ability of the model is improved.

The method for oriented waste detection after all the optimizations was named
YOLOv5m-DSM and is shown in Figure 9. When a picture is input into the model,
YOLOv5m-DSM extracts features using the backbone and generates downsampling feature
maps with three different sizes for the detection of waste. The feature aggregation network
undertakes feature aggregation and fusion to enhance the model’s ability to learn features.
The detection head generates the prediction information for waste targets based on the
multi-scale features. In the model’s training stage, the label of the training set is smoothed
using the dynamic smoothing module, and the loss in the prediction, including class, angle
and position, is calculated using the loss calculation module for iterative learning.
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3. Experimental Results and Analysis
3.1. Datasets

The dataset for the experiment contained eleven kinds of domestic waste, including a
cotton swab, a stick, paper, a plastic bottle, a tube, vegetables, peels, a shower gel bottle, a
coat hanger, clothes pegs and an eggshell. The vector of the label contained the category, the
center x coordinate of the target box, the center y coordinate of the target box, the long-side
value, the short-side value and the angle value. The angle was the angle between the long
side of the target frame and the horizontal axis in the clockwise direction, with a range of
(0◦, 180◦).

3.2. Evaluation Index

In order to evaluate the performance of YOLOv5m-DSM, it was compared and ana-
lyzed using the recall (R), mean average precision (mAP) and other indicators. The recall is
as follows:

R =
TP

TP + FN
× 100% (19)

TP represents a “true positive” sample, and FN represents a “false negative” sample.
The mean average precision formula is shown in Equation (20).

mAP =
1
m

m

∑
i=1

APi (20)

The mean average precision refers to the average precision (AP) for each category of
samples, which is calculated from the recall rate and precision (P) as follows:

R =
TP

TP + FN
× 100% (21)
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AP =
∫ 1

0
P(R)dR (22)

3.3. Experimental Results and Analysis

In order to better show the advantages of the method described in this paper, YOLOv5-
DSM was compared with mainstream horizontal box detection methods and rotating box
detection methods in the experiments.

Table 1 shows a comparison of the detection effects for YOLOv5m-DSM and horizontal
rectangular box detection methods, such as SSD-OBB, YOLOv3-OBB, YOLOv5s-OBB and
YOLOv5m-OBB, which are angle classification network structures commonly added in
detection heads based on their original models [32,33].

Table 1. Comparison between YOLOv5m-DSM and horizontal frame detection methods.

Method Recall/% mAP/%
AP of “Large Aspect Ratio Category”/%

Cotton Swab Stick Plastic Bottle Shower Gel Bottle Tube

SSD-OBB 82.1 74.9 42.6 41.9 76.2 71.6 67.8
YOLOv3-OBB 82.6 75.8 41.6 40.5 79.8 75.5 68.1
YOLOv5s-OBB 84.7 77.5 43.4 40.7 85.8 76.5 71.5
YOLOv5m-OBB 87.2 82.3 52.1 57.1 83.8 79.6 72.1

YOLOv5m-DSM (Cos) 94.5 93.3 70.1 80.7 100 100 99.9
YOLOv5m-DSM (Linear) 94.8 93.9 78.7 81.0 100 100 100

Table 1 shows that, compared with SSD-OBB, YOLOv3-OBB and YOLOv5s-OBB, the
recall rate and average precision of YOLOv5m were better. Compared with the original
network, YOLOv5m-DSM showed improvements of 7.6% and 11.6% in the recall rate and
the average precision, respectively. This proves that the modified waste detection algorithm
has obvious improvements. Furthermore, YOLOv5m-DSM showed a good detection effect
for oriented waste with a large aspect ratio, demonstrating an obvious improvement over
the original model. The good performance of DSM (Cos) and DSM (Linear) proves that the
dynamic smoothing label was effective and strong.

The detection effects of YOLOv5m, YOLOv5m-OBB and YOLOv5m-DSM are shown
in Figure 10. It can be seen from Figure 10a that the YOLOv5m network only generated a
horizontal detection box. It did not provide the grasping angle information for the waste
object. Therefore, the robotic arm could not set the optimal grasp mode according to the
inherent shape and placement angle of the target object, which could easily lead to the
object falling and to grabbing failure, especially in cases involving a large aspect ratio.
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Figure 10b shows that, when the angular classification network was added to the
detection head, YOLOv5m-OBB could generate a waste object detection box at any angle,
but the angle of the generated detection box was not accurate enough, especially in cases
involving a large aspect ratio. Due to the large aspect ratio, a slight deviation in the
prediction box resulted in a smaller IoU for the prediction box and the true box, which
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resulted in difficulties in the model training. Therefore, a large aspect ratio makes effective
learning difficult.

Figure 10c shows the detection results for YOLOv5m-DSM. It can be seen that YOLOv5m-
DSM could generate a waste object detection box at any angle and could detect objects involving
a large aspect ratio accurately. It can be seen that, with the optimization of the feature extraction
backbone network and feature aggregation network, and after the optimization of the loss
function through the dynamic smoothing algorithm, YOLOv5m-DSM had better precision and
performance in the detection of oriented waste.

Table 2 shows a comparison of the detection effects of YOLOv5m-DSM and the main-
stream rotating rectangular box detection methods.

Table 2. Comparison of YOLOv5m-DSM and rotating frame detection methods.

Method Recall/% mAP/% Params (M) GFLOPs FPS

RoI Trans 88.6 87.3 55.4 265.4 5.8
Gliding-Vertex 92.4 89.6 41.4 224.8 7.6

R3Det 91.4 90.1 48.0 250.5 7.0
S2A-Net 94.3 93.1 38.9 153.8 8.3

YOLOv5m-DSM (Cos) 94.5 93.3 23.7 76.5 15.5
YOLOv5m-DSM (Linear) 94.8 93.9 23.7 76.5 15.5

It can be seen that, when compared to RoI Trans [34], the average recall rate and
average precision of detection increased by 6.2% and 6.6%, respectively. Compared to
Gliding-Vertex [35], they increased by 2.4% and 4.3% respectively. Compared to R3Det [36],
they increased by 3.4% and 3.8%, respectively. The recall rate and average precision of the
YOLOv5m-DSM model were also better than those of S2A-Net [37], and our method had
fewer parameters and a detection rate twice as high. In addition, we extended the flops
counter tool to calculate the floating point operations (FLOPs) in the methods, and the
computation load of YOLOv5m-DSM was lower than the comparison algorithm, making
the model more suitable for deployment and application in embedded devices.

3.4. Network Model Ablation Experiment

The network model ablation comparison experiment was used to evaluate the opti-
mization effects of each improvement scheme. The experimental comparison results are
shown in Table 3. Optimization 1 involved using the dynamic smoothing algorithm to
densify the angle label conversion and calculate the loss function (1a is linear annealing and
1b is the cosine annealing angle). Optimization 2 involved the improvement of the feature
extraction backbone network based on the proposed HDBottleneckCSP module. Optimiza-
tion 3 involved an improvement of the feature aggregation network of the YOLOv5 based
P2P-PANet structure.

Table 3. Ablation experiment.

Method Angle op 1a op 1b op 2 op 3 Recall/% mAP/%

YOLOV5m × × × × × - -
YOLOV5m-OBB

√
× × × × 87.2 82.3

Optimization model 1
√ √

× × × 92.5 90.5
Optimization model 2

√ √
×

√
× 93.6 91.7

Optimization model 3
√ √

× ×
√

93.4 91.5
YOLOv5m-DSM (Cos)

√
×

√ √ √
94.5 93.3

YOLOv5m-DSM (Linear)
√ √

×
√ √

94.8 93.9

It can be seen from Table 3 that, after adding the linear dynamic smoothing algorithm
and the corresponding loss function, the recall rate and mean average precision of optimiza-
tion model 1 increased by 5.3% and 8.2%, respectively. After adding the linear dynamic
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smoothing algorithm and HDBottleneckCSP module, these values increased by 6.4% and
9.4% in optimization model 2, respectively. After adding the linear dynamic smoothing
algorithm and P2P-PANet module, they increased by 6.2% and 9.2% in optimization model
3, respectively. For the YOLOV5m-DSM (Linear) model, the detection recall rate and
average precision of the model increased by 7.6% and 11.6%, respectively, with the above
optimization methods.

In order to analyze the effects of replacing the original module structure with the HD-
BottleneckCSP structure and P2P-PANet network on the image waste detection algorithm
more clearly, as well as the reasons for these effects, the intermediate characteristic graphs
of YOLOv5 and YOLOv5m-DSM were extracted for comparison, as shown in Figure 10.

Figure 11a,b show an input image and label image, and Figure 11c–f and Figure 11g–j
show the 1/8, 1/16 and 1/32 down sampling feature maps of YOLOv5 and YOLOv5m-
DSM in the backbone network. It can be seen from Figure 11c,d,g,h that shallower feature
information was extracted from the model after using the HDBottleneckCSP network, and
the edge information and feature details of the waste were obtained more clearly. As can
be seen from Figure 11e,i, two network structures obtained high-level semantic features
through multi-layer convolution operations. Finally, from the comparison of Figure 11f,j,
we can see that the YOLOv5m-DSM network generated a clearer edge for the target object,
which led to an improvement in the recall and accuracy of the waste detection.
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Table 4 shows a comparison of the detection effects of “interlayer merging” and 
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Table 4. Effect comparison of “interlayer merging” and “layer by layer merging”. 

Model mAP/% Recall/% Parameters 
Layer by layer merging 90.9 92.8 894,842 
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Table 4 shows a comparison of the detection effects of “interlayer merging” and “layer
by layer merging” on the characteristic layer of the HDBottleneckCSP network.

Table 4. Effect comparison of “interlayer merging” and “layer by layer merging”.

Model mAP/% Recall/% Parameters

Layer by layer merging 90.9 92.8 894,842
Interlayer merging 91.7 93.6 717,645

It can be seen from Table 4 that, compared with “layer by layer merging”, the “in-
terlayer merging” used for feature map aggregation had fewer training parameters and
a better detection effect. This was mainly because the “layer by layer merging” led to
excessive duplication of the use of feature maps, which can easily cause feature redundancy
and increase the difficulty of learning for the model. In addition, overly dense feature
map aggregation increases the number of channels in the feature map, thus increasing the
number of parameters and consuming more computing resources.
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Table 5 shows the effects of the proposed method with different backbones. It can be
seen that, compared with other backbones, such as VGG19, Resnet50, and CSPDarknet, the
backbone proposed in this paper achieved a better detection effect.

Table 5. Effect comparison with different backbones.

Backbone Recall/% mAP/%
AP of “Large Aspect Ratio Category”/%

Cotton Swab Stick Plastic Bottle Shower Gel Bottle Tube

VGG19 92.4 90.5 69.5 65.1 88.9 98.2 96.8
Resnet50 93.8 92.1 68.9 77.9 90.9 100 100

CSPDarknet 93.4 91.5 67.5 75.2 90.0 100 98.2
Ours 94.8 93.9 78.7 81.0 100 100 100

In order to analyze the effects of replacing the original module structure with the
HDBottleneckCSP and P2P-PANet network on image waste detection clearly, as well as the
reasons for these effects, Figure 11 shows maps of the feature aggregation network and the
detection results for YOLOv5 and YOLOv5m-DSM.

Figure 12a–h show the multi-scale feature maps and detection results for the network
obtained from the convergence of the original YOLOv5 and YOLOv5m-DSM features. It
can be seen from the graph analysis that the YOLOv5 model converged the feature map
but, in the generated multi-scale feature map, the contour of the detected object was not
clear enough, the feature differentiation from the background map was not obvious and a
situation occurred involving mixing with the background feature. The YOLOv5m-DSM
algorithm uses the P2P-PANet structure and the smoothing labels of the angle, which
makes the model’s learning of image features more obvious and the feature contour of the
detection object clearer and more differentiated from the background features, thus making
the final detection effect more accurate.
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Table 6 shows a comparison of the effects of dynamic smoothing and the circular
smooth label with different hyper-parameters.
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Table 6. Comparison of dynamic smoothing and the circular smooth label.

Method Recall/% mAP/%

CSL (r = 7) 92.8 91.0
CSL (r = 6) 93.2 91.8
CSL (r = 5) 93.2 91.3

DSM-Cos (c = 5, e = 4) 94.3 93.2
DSM-Cos (c = 4, e = 4) 94.1 93.1
DSM-Cos (c = 4, e = 3) 94.5 93.3

DSM-Linear (c = 8, e = 4) 94.2 93.5
DSM-Linear (c = 7, e = 4) 94.6 93.8
DSM-Linear (c = 7, e = 3) 94.8 93.9

It can be seen from the table that different detection effects were obtained by adjusting
the range of the circular smoothing algorithm. However, the performances of the two
kinds of dynamic smoothing were better than the best result with the circular smooth label.
This proves that the dynamic smoothing was strong. Dynamic smoothing controls angle
learning by shrinking the range of smoothness gradually. In the initial stage of model
training, a larger smoothing range was set to reduce the difficulty of model learning and
improve the recall rate for waste detection. With the iteration of the model learning, the
angle smoothing range was gradually reduced through the attenuation function to reduce
the angle deviation in target detection, thus improving the detection accuracy. Higher
accuracy for angle prediction can improve the recall rate for oriented waste, especially in
cases involving a large aspect ratio.

3.5. Detection Application Results

In order to demonstrate the waste detection performance of the improved method
proposed in this paper, the method was used for actual testing in different scenarios with
different levels of illumination, such as a waste station, garage, corridor, lawn, and so on.
The results are shown in Figure 13. It can be seen that the method detected the waste objects
effectively in a series of scenarios. It was proven that the method described in this paper is
able to carry out the detection of oriented waste effectively.
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4. Conclusions

This paper focused on waste detection for a robotic arm based on YOLOv5. In addition
to object identification in general image analysis, a waste-sorting robotic arm not only
needs to identify a target object but also needs to accurately judge its placement angle,
so that the robotic arm can set the appropriate grasping angle. In order to address this
need, we added an angular prediction network to the detection head to provide the
grasping angle information for the waste object and proposed a dynamic smoothing
algorithm for angle loss to enhance the model’s angular prediction ability. In addition,
we improved the method’s feature extraction and aggregation abilities by optimizing
the backbone and feature aggregation network of the model. The experimental results
showed that the performance of the improved method in oriented waste detection was
better than that of comparison methods; the average precision and recall rate were 93.9%
and 94.8%, respectively, which were 11.6% and 7.6% higher than those of the original
network, respectively.
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