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Abstract: As the classic branching process, the Galton-Watson process has obtained intensive atten-
tions in the past decades. However, this model has two idealized assumptions–discrete states and
time-homogeneity. In the present paper, we consider a branching process with continuous states,
and for any given n ∈ N, the branching law of every particle in generation n is determined by the
population size of generation n. We consider the case that the process is extinct with Probability
1 since in this case the process will be substantially different from the size-dependent branching
process with discrete states. We give the extinction rate in the sense of L2 and almost surely by
the form of harmonic moments, that is to say, we show how fast {Z−1

n } grows under a group of
sufficient conditions. From the result of the present paper, we observe that the extinction rate will be
determined by an asymptotic behavior of the mean of the branching law. The results obtained in this
paper have the more superiority than the counterpart from the existing literature.
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1. Introduction and Preliminaries

Branching process is an important class of Markov processes, which describes the
survival and extinction of a particle system. The most classical branching process is called
the Galton-Watson process (see [1]). For a chosen family, Galton and Watson [1] used this
process to record the number of males in each generation. For a Galton-Watson process
{Zn},, we usually set Z0 = 1, which means that there is a male ancestor in the family. The
relationship between Zn+1 and Zn is written by

Zn+1 = 1Zn≥1

Zn

∑
i=1

ηn,i,

where ηn,i presents the number of boys whose father (in generation n) is indexed by i. In a
Galton-Watson process, the random array {ηn,i}n,i∈N is set to be i.i.d. Hence, Galton-Watson
process is a time homogeneous Markov chains with discrete state. There are two idealized
assumptions in this model: one is the discrete state space, the other is the property of time
homogeneous. In other words, there are two directions to extend this model.

Jir̆ina process (see [2–5]) is the continuous version of the Galton-Watson process, which
stresses that the role of ηn,i can take value in R+ (R+ := [0,+∞)) instead of N. Since the
state space of this process is a subset of R+, we use the Laplace transform to describe
the relationship between the number of particles in generation n and n + 1, which is
described by

E(e−sZn+1 |Zn = x) = e−xF(s), x ∈ R+,

where F(s) is a cumulate generate function of a certain infinitely divisible distribution G. G
can be observed as the common branching mechanism (i.e., the law of η1,1) of each particle.
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It should be noted that in the above equality, F(s) is independent of n, thus, we see that the
Jir̆ina process is still time-homogeneous.

To break the feature of time homogeneous, several time-inhomogeneous branching
processes have been studied over the past decades. There are different motivations to
construct the time-inhomogeneous property for a branching process, one of which assumes
that the common law of ηn,1, ηn,2, . . . is depending on Zn, and ηn,i takes value in N for every
n, i. We call this a time-inhomogeneous branching process as the size-dependent branching
process (with discrete time and discrete state). This assumption (the law of ηn,1 depends
on Zn) has a strong practical background; for example, when a country is overpopulated,
the government may promote family planning, while if a country faces the problem of
population scarcity, the government will encourage childbearing. This model has been
investigated in [6–8] and some other papers.

In the present paper, the model we consider is the continuous version of the size-
dependent branching process, which is also called the generalized Jir̆ina process (for
short, GJP). This model was introduced in [9], where the model is defined by the Laplace
transform as

E(e−Zn+1τ |Zn = x) = e−xF(x,s), x ∈ R+, (1)

where F(x, s) is called a reproduction cumulative function (for short, r.c.f.) and it has the
following representation:

F(x, s) = r(x)τ +
∫ +∞

0+
(1− e−us)v(x, du). (2)

We can refer to [9] on how to obtain (2). On the other hand, ref. [9] also explains that
r(x) is a non-negative Borel function, and (1∧ u)v(x, du) is a bounded kernel from R+ to
(0,+∞). That is to say,

∀x ≥ 0,
∫ +∞

0+
(1∧ u)v(x, du) < +∞.

Hence, we see that the r.c.f. F(x, τ) is determined by r(x) and v(x, du). Obviously, if
there exist a constant r and a measure v on (0,+∞) such that

r(x) ≡ r, v(x, du) ≡ v(du),

then GJP will degenerate to the Jir̆ina process. Moreover, from (1) one can see

E(Zn+1|Zn = x) = −∂e−xF(x,s)

∂s

∣∣∣
s=0+

.

Note that
lim

s→0+
F(x, s) = 0

and

lim
s→0+

∂F(x, s)
∂s

= r(x) +
∫ +∞

0+
uv(x, du).

Actually, we have set that (1∧ u)v(x, du) is a bounded kernel. Denote

m(x) := r(x) +
∫ +∞

0+
uv(x, du),

then we have
E(Zn+1|Zn = x) = xm(x),
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which means that m(x) presents the expectation of the children reproduced by unit parent
when the generation of the parent contains x particle(s). The above equality is equivalent to

E(Zn+1|Zn) = Znm(Zn).

Denote

σ2(x) :=
∫ +∞

0+
u2v(x, du) =

∂2e−xF(x,s)

∂2s

∣∣∣
s=0+

.

By a direct calculation we obtain

E(Z2
n+1|Zn) =σ2(Zn)Zn + Z2

nm2(Zn).

For a branching process {Zn}, a very important topic, which is usually considered
first, is the limit behavior of Zn and the distribution of the limit (if it exists). For example,
the celebrated Kesten-Stigum theorem (see [1], Chapter 1) for the Galton-Watson process
and various generalized Kesten-Stigum theorem for different types of branching processes
(see [3,7,10]). In summary, the Kesten-Stigum theorem and its various of generalized ver-
sions demonstrate that {Zn} converges to 0 with Probability p0 and to +∞ with Probability
1− p0 and p0 depends on the branching mechanism (reproduction law) of the branching
process. Ref. [11] showed that the asymptotic behavior of GJP also behaves as

P
(

lim
n→∞

Zn ∈ {0,+∞}
)
= 1

and p0 := P(Zn → 0) is depending on some properties of F(x, s). The author of [11] also
pointed out that it is as similar as the asymptotic behavior of size-dependent branching
process for the case {Zn → +∞}. The most interesting and worth investigating is the case
that {Zn → 0}, since when the state space is N, then Zn → 0 means that there exists a finite
generation n such that Zn = 0 but Zn can always be positive even though Zn → 0 when
the state space is R+. Under some mild assumptions, ref. [10] gave the extinction rate of
Zn in the sense of almost surely when P(Zn → 0) = 1. The idea to deal with the extinction
rate is to consider the growth rate of Z−1

n , then, the method to show the growth rate of the
size-dependent branching process {Xn} when P(Xn → +∞) = 1 can be referred. Ref. [12]
gave a sufficient condition to ensure that the extinction rate in the sense of it almost surely
is also the extinction rate in the sense of L2. In the present paper, we obtain a new extinction
rate, which is easier to understanding by the definition of the mean function m(·) (see
Section 3 for detail). Combining with the result in [12], we can observe that an extinct GJP
may have different extinction rates under different conditions.

In this paper, we consider the rate of Zn in the sense of almost surely and L2 when
the GJP behaves as P(Zn → 0) = 1. We will give another group of sufficient conditions to
ensure that there exists a constant sequence {cn} such that {cn/Zn} has a limit in the sense
of almost surely and L2. Compared with the previous results, our results have more values
for applications.

The GJP has a strong connection with reality. We can use GJP to model a number of
chemical reactions and biological situations. For instance, it is proper to describe the trend
of the concentration by GJP for some bacteria or virus whose reproduction depend on their
concentration in the medium. For more examples, we recommend [7] and the references
therein.

2. Main Results

For the sake of presenting our results, first of all, we give some basic assumptions as
follows.

(A1) r := lim
x→0+

m(x), where 0 < r < 1.
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(A2) There exits a function m̄(x) ≥ m(x) for all x ≥ 0 which satisfies that inf
x≥0

m̄(x) ≥ r and

p(x) := |m̄(1/x)− r|(= m̄(1/x)− r)

is non-increasing, xp(x) is non-decreasing and concave, and∫ +∞

1

p(x)
x

dx < +∞.

(A3) For any x ≥ 0, it satisfies rx
∫ +∞

0
e−xF(x,s)ds ≤ 1.

(A4) xp(
√

x) is non-decreasing, concave and xp2(
√

x) is concave.

(A5) For any x ≥ 0, it satisfies r2x2
∫ +∞

0
se−xF(x,s)ds ≤ 1.

We remind that if p′′(x) exists on (0,+∞), then (A2) implies (A4). Denote

Yn :=
1

Zn
, q :=

1
r

, Sn :=
Yn

qn =
rn

Zn
.

First, we give some lemmas and results which will be used during, as we prove our
main theorems.

Lemma 1. Suppose that h(x) is a positive and non-increasing function, then for any t > 1, ε > 0,
the following propositions are equivalent:

(1)
∫ +∞

1

h(x)
x dx < +∞;

(2)
∞
∑

n=1
h(εtn) < +∞.

Proof. See ([6], p. 42).

Lemma 2. Let h(x) be a positive and non-increasing real function defined on [0,+∞). Assume

that xh(x) is non-decreasing and
∫ +∞

1

h(x)
x dx < +∞. Let {cn} be a positive sequence and there

exists a t > 1 such that for any n, it satisfies

|cn+1 − cn| ≤ cnh(cntn),

then {cn} exists a finite non-negative limit. Moreover, there exists a constant c̃ depending on h(x)
and t such that, lim

n→∞
cn > 0 only if the first term c0 > c̃.

Proof. See ([6], p. 45).

It is worth mentioning that the method from this paper is mainly concentrating on the
martingale convergence theorems listed below.

Theorem 1. (Martingale convergence theorem, (ref. [13], p. 270)) If {ξn} is a sub-martingale and
sup

n
E|ξn| < +∞, then there exists a random variable (denoted by ξ+∞) satisfying that

lim
n→∞

ξn = ξ+∞, a.s., P(ξ+∞ < +∞) = 1, E|ξ+∞| < +∞.
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Theorem 2. (Martingale Lp convergence theorem, (ref. [14], p. 60)) If {ξn} is a sub-martingale
and sup

n
E|ξ p

n| < +∞ for some p > 1, then, there exists a random variable (denoted by ξ+∞)

satisfying that

lim
n→∞

ξn = ξ+∞, a.s., Lp, P(ξ+∞ < +∞) = 1, E|ξ p
+∞| < +∞.

Now, we give our main results as follows:

Theorem 3. Let {Zn} be a GJP, if Assumptions (A1)–(A3) hold and P(Z0 = z0) = 1, where
z0 is a positive constant, then there exist a constant γ ∈ (0,+∞) and a random variable S (both
depending on z0) such that

γ = lim
n→∞

E(Sn|Z0 = z0),

S = lim
n→∞

Sn, a.s.,

and
ES < +∞.

Proof. Let Fn be the σ-algebra field, which is generated by Z0, Z1, . . ., Zn. Recalling that
Zn := 1

Yn
, which means that

E(Yn+1|Fn) = E
(

1
Zn+1

|Fn

)
= E

(∫ +∞

0
e−sZn+1ds

∣∣Zn

)
=

∫ +∞

0
E(e−sZn+1 |Zn)ds

=
∫ +∞

0
e−Zn F(Zn ,s)ds

=
∫ +∞

0
e−

1
Yn F( 1

Yn ,s)ds

:= h(Yn). (3)

The second equality above is due to c
∫ +∞

0
e−csds = 1, where c > 0 is a constant. By

Taylor’s expansion we can observe

F(x, s) ≤ m(x)s. (4)

Assumption (A3) and (4) imply that∫ +∞

0
e−xm̄(x)sds ≤

∫ +∞

0
e−xm(x)sds ≤

∫ +∞

0
e−xF(x,s)ds ≤ 1

rs
=
∫ +∞

0
e−xrsds.

By the smoothing property of conditional expectation and (3), we obtain that

|ESn −ESn+1|

=
1

qn+1 |E(qYn)−E(h(Yn))|

=
1

qn+1

∣∣∣∣E ∫ +∞

0
e−

s
qYn ds−E

∫ +∞

0
e−

1
Yn F( 1

Yn ,s)ds
∣∣∣∣

≤ 1
qn+1

∣∣∣∣E ∫ +∞

0
(e−rsZn − e−Znm̄(Zn)s)ds

∣∣∣∣.
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According to the mean value theorem, there exists a constant ϑ ∈ [0, 1] such that∣∣∣∣E ∫ +∞

0
(e−rsZn − e−Znm̄(Zn)s)ds

∣∣∣∣
=

∣∣∣∣E ∫ +∞

0
(e−(rsZn+ϑ(Znm̄(Zn)s−rsZn))(sZnm̄(Zn)− rsZn)ds

∣∣∣∣
≤
∣∣∣∣E ∫ +∞

0
e−rsZn(m̄(Zn)sZn − rsZn)ds

∣∣∣∣
=

∣∣∣∣(m̄(Zn)− r)ZnE
∫ +∞

0
e−rsZn sds

∣∣∣∣.
Hence, we have

|ESn −ESn+1|

≤ 1
qn+1

∣∣∣∣E( (m̄(Zn)− r)Zn

r2Z2
n

)∣∣∣∣
≤
∣∣∣∣E( (m̄(Zn)− r)Yn

r2qn+1

)∣∣∣∣
=

1
r
E(Sn|(m̄(Zn)− r)|).

From Assumption (A2), i.e., the concavity of p(x), we have

|ESn+1 −ESn| =
1
r
E(p(Yn)Sn) ≤

1
r

p(EYn)E(Sn) =
1
r

p(qnESn)E(Sn).

Note that q > 1, hence by applying Lemma 2, it follows that lim
n→∞

ESn exists and

b := lim
n→∞

ESn < +∞.

Note that b lies on the starting state Z0. Since P(Z0 = z0) = 1, then by using Lemma 2
it is easy to observe that b > 0 if ES0 = 1/z0 large enough. Therefore, by a similar argument
as stated in [12], we can observe b > 0 only if z0 > 0.

On the other hand, noting that

Sn −E(Sn+1|Fn) =
∫ +∞

0

1
tn+1 (e

−rsZn − e−Zn F(Zn ,s))ds > 0,

we declare that {Sn,Fn} is a non-negative super martingale. Using Theorem 1 we speculate
that there exists a random variable S such that

lim
n→∞

Sn = S, a.s..

By Fatou’s Lemma we claim that

ES ≤ lim
n→∞

ESn < +∞.

Accordingly, we complete the proof.

Theorem 4. Let {Zn} be a GJP, Assumptions (A1)–(A5) hold and P(Z0 = z0) = 1. Then,

S = lim
n→∞

Sn, in L2,

and
P(S > 0) > 0.
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Proof. Recall a simple calculation

c2
∫ +∞

0
se−csds = 1, c > 0.

First, we observe that

E(Y2
n+1|Fn) = E

(
1

Z2
n+1
|Fn

)

= E
(∫ +∞

0
se−sZn+1ds|Zn

)
=
∫ +∞

0
sE(e−sZn+1 |Zn)ds

=
∫ +∞

0
se−Zn F(Zn ,s)ds

=
∫ +∞

0
se−

1
Yn F( 1

Yn ,s)ds.

Hence, one sees that

|ES2
n −ES2

n+1|

=
1

q2n+2

∣∣∣∣E ∫ +∞

0
se−

s
qYn ds−E

∫ +∞

0
se−

1
Yn F( 1

Yn ,s)ds
∣∣∣∣

≤ 1
q2n+2

∣∣∣∣E(∫ +∞

0
s(e−rsZn − e−Znm̄(Zn)s)ds

)∣∣∣∣. (5)

By the mean-value theorem, there exists a constant ϑ ∈ [0, 1] such that∣∣∣∣E(∫ +∞

0
s(e−rsZn − e−Znm̄(Zn)s)ds

)∣∣∣∣
=

∣∣∣∣E ∫ +∞

0
s(e−(rsZn+ϑ(Znm̄(Zn)s−rsZn))(Znm̄(Zn)s− rsZn))ds

∣∣∣∣
≤

∣∣∣∣E ∫ +∞

0
s2Zne−rsZn(m̄(Zn)− r)ds

∣∣∣∣
≤ E2|m̄(Zn)− r|Zn

r3Z3
n

. (6)

Based on (5) and (6) we obtain

|ES2
n −ES2

n+1| ≤
1

q2n E
2|m̄(Zn)− r|

rZ2
n

=
2

rq2n E(Y
2
n p(Yn)).

By the concavity of l(x) := xp(
√

x), we have

|ES2
n −ES2

n+1| =
2

rq2n E(l(Y
2
n))

≤ 2
rq2n l(EY2

n)

=
2
r
ES2

n p
(√

E(S2
n)q

n
)

.

Since p(x) is non-increasing, we obtain

|ES2
n −ES2

n+1| ≤
2
r
ES2

n p(qnESn).
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According to the conclusion in Theorem 1 we obtain b∗ := inf
n
ESn > 0. Hence, ones

have
|ES2

n −ES2
n+1| ≤

2
r
ES2

n p(qnb∗).

That is to say, we arrive at

ES2
n+1 ≤

2
r
ES2

n(1 + p(qnb∗)).

From Lemma 1 we have
∞
∑

n=1
p(b∗qn) < +∞, which means that

sup
n

ES2
n < +∞

and thus the limit β := lim
n→∞

ES2
n exists. Now, we construct a martingale as

Un := Sn + Vn,

where

Vn :=
n−1

∑
k=0

∫ +∞

0

1
qk+1 (e

−rsZk − e−Zk F(Zk ,s))ds.

Denote ‖X‖ as the L2-norm of the random variable X, hence, it is clear that

‖Un‖ ≤ ‖Sn‖+ ‖Vn‖.

Define

Qk =
∫ +∞

0

1
qk+1 (e

−rsZk − e−Zk F(Zk ,s))ds.

It is obvious that for any n, one has

‖Vn‖ ≤
∞

∑
k=0
‖Qk‖.

Moreover, from the estimate in the proof of Theorem 3, we have

|Qn| ≤
1

qn+1

∫ +∞

0
e−Zns|rsZn − F(Zn, s)Zn|ds ≤ 1

qr2
|r−m(Zn)|

Sn
.

Since xp2(
√

x) is a concave function (see Assumption (A4)), we can obtain that

∞

∑
k=0
‖Qk‖ ≤

∞

∑
k=0

√
E
[( 1

qr2 Sk p(Skqk)
)2
]

≤
∞

∑
k=0

1
r

√
E(S2

k)p2(qkESk).

Since α2 := supn ES2
n < +∞, then it follows that

sup
n
‖Vn‖ ≤

∞

∑
k=0

α

r
p(ESkqk).

Thus, by utilizing Lemma 1, it is not hard to verify that

∞

∑
k=0

p(ESkqk) ≤
∞

∑
k=0

p(b∗qk) < +∞,
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then

sup
n
‖Vn‖ ≤

∞

∑
k=0
‖Qk‖ < +∞,

which establishes that

sup
n
‖Un‖ ≤ sup

n
‖Sn‖+ sup

n
‖Vn‖ ≤ α2 + sup

n
‖Vn‖ < +∞.

Combining the above inequality with the fact that {Un,Fn} is a martingale, we claim
that {Un} has a limit in the sense of L2 from the martingale Lp convergence theorem. On

the other hand, we observe that {Vn} also has the L2 limit since
{

n
∑

k=0
‖Qk‖

}
is a Cauchy

sequence. Recall that Sn = Un − Vn and we have shown that {Sn} has the limit S in the
sense of almost surely, then we have

Sn → S, a.s., L2,

and
lim

n→∞
ES2

n = ES2.

Moreover, lim
n→∞

ESn = ES > 0, thus, P(S > 0) > 0. That is to say, S is non-

degenerate.

3. Conclusions

Compared with the results in [12], the assumptions in the present paper do not need
that inf

x≥0
r(x) > 0. We also even do not require that inf

x≥0
m(x) > 0. Intuitively, inf

x≥0
m(x) = 0

will make the process more likely to be extinct. Hence, inf
x≥0

r(x) > 0 is not a natural enough

condition under the case P(Zn → 0) = 1, which we consider. Moreover, the extinction rate
may be different between in [12] and in this paper, since under the assumption in [12] the
rate will be lim

x→0+
r(x) (if it exists). One can see that there are many cases (for example, the

case that v(x, du) is not depending on x) in which lim
x→0+

r(x) < lim
x→0+

m(x). We remind that

the rate in our paper lim
x→0+

m(x) appears reasonable because of m(x) = x−1E(Zn+1|Zn = x),

and further, we consider the case that the process is extinct.
Throughout our paper, under the Assumptions (A1)–(A5), we obtain an extinction

rate for a GJP in the sense of almost surely and L2, which enriches the limit theory of GJP
process. Therefore, our results have potential values in applications.
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