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Abstract: Multicellular organisms often start life as a single cell. Subsequent cell division builds
the body. Each mutational event during those developmental cell divisions carries forward to all
descendant cells. The overall number of mutant cells in the body follows the Luria–Delbrück process.
This article first reviews the basic quantitative principles by which one can understand the likely
number of mutant cells and the variation in mutational burden between individuals. A recent
Fréchet distribution approximation simplifies calculation of likelihoods and intuitive understanding
of process. The second part of the article highlights consequences of somatic mutational mosaicism
for understanding diseases such as cancer, neurodegeneration, and atherosclerosis.
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1. Introduction

Multicellular organisms often begin as a single cell. Similarly, microbial populations
often expand from a small number of colonizing progenitor cells. As clones expand
by cell division, mutations inevitably arise. Mosaic multicellular soma or genetically
heterogeneous microbial populations follow.

Somatic mutants affect cancer risk [1,2]. Mutants in microbial clones initiate the spread
of faster growing variants, a tumor-like overgrowth [3]. In plants, somatic variability may
promote defense against pathogens and herbivores [4,5].

This article provides a simple overview of clonal heterogeneity and its consequences.
The first part outlines conceptual and quantitative aspects. The most important idea
concerns the high diversity between clones. Most cellular populations have relatively few
mutants. Some populations have a lot of mutants.

The second part of this article discusses why it is important to understand the diversity
of mutants within and between cellular populations. That part illustrates importance by
examples.

The examples include diseases such as cancer, neurodegeneration, and atherosclerosis.
Other examples clarify the distinction between how diseases begin and how they spread
within bodies. Another key way in which somatic mutation affects disease concerns the
strong tendency for variation in risk between individuals.

2. The Luria–Delbrück Problem

Luria–Delbrück [6] analysis is often used to estimate the mutation rate [7]. By counting
mutant cells after exponential growth, one can infer how often new mutations arise. This
section introduces quantitative aspects of how mutations accumulate in populations.

Suppose a clone begins with one cell and grows to N cells. Ignoring cell death, such
growth requires N − 1 cell divisions because each division adds one cell to the population.
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If the mutation probability per cell division is u, then the expected number of mutational
events is (N− 1)u, which is approximately Nu for large N. However, knowing the number
of mutational events does not by itself tell us the number of mutant cells.

A single mutational event might happen in the first cell division, causing approxi-
mately 1/2 of all cells to carry the mutation, with N/2 mutants cells in the final population.
Or the mutation might happen in a final cell division, causing only one cell to carry the
mutation. We must map each mutational event to its time within the cell lineage hierarchy
(Figure 1).

(a) (b) (c)

m=20, p=23 m=21, p=22 m=22, p=21

Figure 1. Number of mutants in a growing population depends on the time of the first mutation.
(a) When the first mutation happens in the last cell division, then only one cell

(
m = 20) carries that

mutation. In this case, there are p = 23 different final cells that could be mutated in the final round of
cell division, so such mutations confined to a single cell will be relatively common. (b) When the first
mutation happens in the second to last cell division, then two cells

(
m = 21) carry that mutation. In

this case, there are p = 22 different final groups of cells that could be mutated, so such mutations
confined to two cells will be 1/2 as common as for singleton mutations. (c) When the first mutation
happens in the third to last cell division, then four cells

(
m = 22) carry that mutation. In this case,

there are p = 21 different final groups of cells that could be mutated, so such mutations confined
to four cells will be 1/4 as common as for singleton mutations. Focusing on single mutational
events, every doubling for the final number of mutant cells decreases the probability of occurrence by
1/2. This discrete-time model matches Haldane’s formulation of the Luria–Delbrück problem [8],
used here for illustration because of its simplicity. Most modern analyses use a continuous time
formulation [7]. In the text, the mixture of references to the discrete and continuous formulations leads
to a mixture of comments about mutation probabilities and mutation rates. When the underlying
formulation is ambiguous, I use mutation rate.

Deleterious mutations slow the rate of cell division in descendants. Advantageous
mutations speed cell division. Such changes alter the final number of mutants. The
mathematical literature considers the variety of problems [7]. We may call the general
challenge the Luria–Delbrück problem, named after the initial studies.

I limit the following quantitative sections to a few details about the numbers of neutral
mutations. Those calculations provide sufficient introduction to the main conceptual
background for interpreting various biological scenarios.

3. Average Number of Mutants
3.1. Intuitive Summary

To calculate the average number of mutants in a clone, start by picking one of the N
final cells. The probability that it carries a mutation depends on the number of cell divisions
that separate that final cell from the initial progenitor cell. The expected number of cell
divisions is log(N), using the natural logarithm (see next subsection). With a mutation
probability of u per cell division, the mutant probability per final cell is approximately
u log(N) when the mutation probability is sufficiently small. With N final cells, we expect
an average of approximately

m̄ ≈ Nu log(N) (1)

mutants in the population [7].
A human body has more than N = 1013 cells [9]. Estimates for the somatic mutation

rate per gene per cell division vary [10–12]. Here, I use u = 10−6. The average number
of cellular generations is log(1013) ≈ 30. So we expect roughly 3× 108 mutants for each
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gene and a frequency of mutants of roughly 3× 10−5. That is a lot of mutant cells but a low
frequency of mutations per cell.

A human genome has about 2× 104 genes and also a lot of noncoding DNA that
can influence phenotype. When considering all of the various sites that can be mutated,
the overall amount of mutation in the final population of cells is large. Additionally, the
mutational variation between multicellular bodies tends to be big, as discussed below.

Microbial clones can also grow into large populations, also carrying substantial num-
bers of mutants and large amounts of variation between clones.

3.2. Details

The expected number of cellular divisions can be derived by noting that, starting with
one cell, a final population of N arises by continuous exponential growth such that N = ert.
Thus

log(N) = rt = λ (2)

is the expected number of cellular divisions from a final cell back to the original cell, in
which r is the cellular division rate and t is time.

One interpretation is that the actual number of divisions in different cellular lineages
follows a Poisson distribution with mean λ. Suppose each lineage with k divisions con-
tributes to part of a cellular expansion with size 2k. Summing over the Poisson probabilities
pk for k divisions in a lineage is

∞

∑
k=0

pk2k =
∞

∑
k=0

(
λk

k!
e−λ)2k = eλ = ert = N.

4. Variation in Number of Mutants

The way in which mutations accumulate in growing populations inevitably causes a
lot of variation between populations. That large variation may often be more important
biologically than the average. For example, disease often concerns what happens in variant
or extreme individuals rather than what happens in an average individual. Thinking of
the extreme of a probability distribution as what happens in its tail, we may say that the
characteristics of a probability distribution’s tail may be the important attributes for a
particular problem.

Additionally, when a distribution has occasional exceptionally large values, the av-
erage value does not provide a good sense of what is typical. For example, suppose we
observe five sample values, 800, 900, 1000, 1100, 9000. The median is 1000, a good descrip-
tion of central location and typical values, whereas the average is 2560, a poor description
of typical values.

5. Distributions with Fat Tails

Figure 1 shows how mutations accumulate in growing populations. When the mu-
tation happens late, as in Figure 1a, then a small fraction of the population carries that
mutation. Such late-occurring mutations happen frequently, because there are more target
cell divisions in which a mutation can arise.

For each generation earlier that a mutation might occur, the number of final cells
carrying the mutation doubles and the probability of occurrence declines by 1/2, as in
Figure 1b,c. Here, to illustrate, we are simplifying growth to be a sequence of discrete
binary cellular divisions.

Consider a large final population of cells, N. If a mutation happens in the first cell
division of the progenitor cell, then N/2 cells are mutated with probability u, the probability
of mutation during a cell division. When a mutation happens in the second cell division
from the original cell, then N/4 cells are mutated with probability 2u, because there are
twice as many target cells. In the third round, N/8 cells would be mutated with probability
4u. Figure 2a provides an example in which probability doubles with each halving of the
number of mutants.
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Figure 2. The probability of observing a particular number of mutants in the final population.
(a) Probability declines by 1/2 for each doubling in the number of mutants in the final population.
(b) A log–log plot of probability versus mutant number has a slope of minus one. This example
follows from a discrete binary pattern of cellular division with a single mutational event, as in
Figure 1. The actual log–log slope for a Luria–Delbrück process is approximately−(1+ e/2) ≈ −2.36
(from Equation (5)). Part of the increase arises because multiple mutational events cause a more rapid
decline at the extreme of the earliest mutations and greatest final mutant numbers.

If we make a log–log plot of the probability of occurrence for each number of mutant
cells in the final population versus the number of mutant cells, that plot of the upper tail is
a straight line with a slope of minus one (Figure 2b). A straight line of a log–log plot for a
probability distribution is a power law. We say that the upper portion of this distribution
has a power law tail, or fat tail. The tail is fat because a power law declines relatively slowly,
causing a lot of probability and a high chance of observation to occur for large values, in
this case, large values for the total number of mutated cells in the final population.

This explanation oversimplifies because it focuses on only a single mutational event.
An actual expanding population may have many mutational events. However, mutational
events early in the growth of the population are rare because there are few target cells.
Furthermore, those early mutations dominate the upper tail because when they occur
they carry forward to all descendant cells. So the simplification does reasonably well for
describing the fat upper tail.

This section illustrated the problem by using a discrete binary branching processes for
population growth. However, most applications focus on continuously growing popula-
tions with overlapping generations, such as in Equation (2). The next section returns to the
continuous model.

6. Distribution of Mutants

No simple formula describes exactly the probability of observing m mutants in a final
population of size N. The literature provides various ways of making the calculation or of
simulating populations with a computer [7,13]. It is easy to calculate the average, given
approximately in Equation (1). However, as noted in the previous section, the distribution
has a long fat tail, associated with much variation between populations. It is often the large
variation that matters in application rather than the average. I discuss some examples in
the second part of this article.

6.1. Fréchet Distribution

The prior section noted that the upper tail has a power law shape. However, what
does the full distribution look like for the typical assumption of continuous population
growth? Recently, I found that the distribution of mutants closely matches the well known
Fréchet probability distribution [14].

For a Fréchet distribution, the cumulative probability that the number of mutants is
less than or equal to m is

F(m) = e−m̃−α
, (3)
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in which m̃ = (m − β)/s. The probability of being in the upper tail, greater than m, is
1− F(m). The three parameters set the shape, α, the scale, s, and the minimum value, β,
such that m ≥ β.

6.2. Approximate Fit

Using the following parameters provides a close match between the Fréchet distribu-
tion and the Luria–Delbrück process for neutral mutations

α = e/2

s = eNu (4)

β = Nu log(Nu e−(1+α))

in which e is the base of the natural logarithm. The Fréchet match to the Luria–Delbrück
depends on the single parameter, Nu, the population size multiplied by the mutation rate.
Figure 3 shows the match.

Figure 3. Cumulative probability distribution for the number of neutral mutants. Each population
starts with one cell and grows to N cells. Mutations occur at rate u. The blue curves show the
Luria–Delbrück distribution calculated by the simu.cultures computer simulation of the R package
rSalvador [13]. The orange curves show the Fréchet distribution in Equation (3). Reprinted from from
Figure 1 of Frank [14]. See that article for further details. The mathematical reason for the close match
between the Luria–Delbrück distribution and the Fréchet distribution arises by linking two separate
studies. Kessler and Levine [15] showed that the Luria–Delbrück distribution converges to a Lévy
α-stable distribution for large Nu. Separately, Simon [16] showed the close match between the Lévy
α-stable distribution and the Fréchet distribution. Using the Fréchet distribution provides a benefit
because no explicit mathematical expression exists for the Lévy α-stable probability distribution.

6.3. Intuition

Why would a Fréchet distribution provide a good match for the number of mutants
in a Luria–Delbrück process? To begin, think about the final cells in the population after
exponential growth. Look back from those final cells through the multiple rounds of cell
division that trace ancestry toward the original progenitor. The mutation farthest back
in time from the final cells toward the progenitor typically dominates in determining the
number of mutants in the final population.

That most extreme time tends to follow the extreme value probability distribution
known as Gumbel [17–19]. Then, because the most extreme mutation will subsequently
expand by multiplicative growth to determine the final number of mutations, we can use
the fact that a multiplicative process substituted into a Gumbel distribution leads to a
Fréchet distribution [19].

7. Mutation Rate

Initial mathematical development of the Luria–Delbrück process focused on estimating
the mutation rate [7]. Over time people have discovered links between how mutations
accumulate in growing populations and topics such as cancer and neurodegeneration. I
take up those topics in later sections. This section begins with the mutation rate.

Suppose one wishes to estimate the rate, u, of neutral mutations in a particular bacterial
gene. We start by seeding a population with one bacterial cell and allowing exponential
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growth until there are N cells. We then measure the number of mutant cells, m, in the final
population.

In this case, the existence of a mutation in a final cell is measured phenotypically
by growing the cell under different conditions. For example, the initial environment
may provide a particular nutrient, making a specific metabolic reaction within the cell
unnecessary. When cells are subsequently grown in the absence of that nutrient, the
previously unnecessary metabolic reaction becomes necessary for growth. Thus, we can
infer mutations during the initial population growth that inactivate the metabolic function
required during the subsequent phenotypic test.

The mutation rate is the number of mutational events divided by the number of cell
divisions. If, for simplicity, we ignore cell death, then there are approximately N cell
divisions to go from the initial cell to the final N cells.

Next, we need to estimate the number of mutational events. We measured m mutant
cells among the final N cells. Different numbers of mutational events are consistent with a
final number m. For example, a single mutational event that happened log(m) cell divisions
back from the final cell would grow into elog(m) = m final mutant cells. Or two mutational
events that are log(m/2) cell divisions back from the final cells would also lead to m final
mutant cells. Or there might be m mutational events, each occurring in the final cell division.
Various combinations of mutational events and subsequent cellular growth would add to
the same final value of m.

In other words, the number of final mutant cells provides some information about
the number of mutational events but is not by itself sufficient to provide an exact value.
We can gain more information by measuring the numbers of final mutant cells in several
replicate populations.

For example, in Figure 3, notice how the number of mutants at the median 0.5 level
in height for each plot changes as Nu changes. If we estimate the median value for the
number of mutants from a sample of populations, then we can then match that median
to the value of Nu for a corresponding distribution. A median of 105 would, for example,
match Nu = 10, 000 in the right panel of Figure 3. We know the value of N, so we can infer
the value of u. Using the median gives a good rough approximation.

Other approaches may be more practical or provide more information. However, the
idea is the same. In all cases, we are comparing observed measures for the number of
mutants in the final population to the theoretical distribution based on the Luria–Delbrück
process [7,20].

8. Genetics of Human Populations

Suppose we want to estimate how many mutations have occurred in a particular hu-
man population. For a focal stretch of DNA, we can measure how many of those sequences
carry a mutation in the current population. Similarly, we can think of recombination
events as changes that we count as mutants. For example, Hästbacka et al. [21] estimated
the amount of recombination and linkage in a DNA region that contains the diastrophic
dysplasia (DTD) gene by studying the modern Finnish population.

In such applications to a single human population, we can obtain only a single mea-
surement of the number of mutants or the number of recombinants. How much information
does a single sample contain? In theory, how much more precise would estimates be if
we could obtain additional independent samples? Evaluating these questions provides
broad insight into what we may expect to see in natural populations and in how much
information we can obtain during particular kinds of studies.

Hästbacka et al. [21] used Luria–Delbrück theory to analyze the average number of
events in their study population. However, as we discussed in prior sections, the average
often poorly represents the Luria–Delbrück process because of the occasional very large
values. Instead, analyzing the most likely value of Nu given the data provides a better
approach. We typically know N, so an estimate of Nu provides an estimate of u, the
mutation rate.
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9. Likelihood

Statistical tools for likelihood analysis of Luria–Delbrück processes have been given
in the literature [8,13,22,23]. However, the prior literature did not have an explicit form of
the Luria–Delbrück distribution to work with. We can take advantage of the new Fréchet
approximation in Equation (3). The amount of error from that approximation when used in
likelihood analysis has not yet been quantified. For now, this presentation is best regarded
as a conceptual introduction rather than an updated statistical procedure.

To develop likelihood analysis, we must rewrite the Fréchet cumulative density func-
tion in Equation (3) as a probability density function, which simply means that we need
the derivative of F(m) with respect to m, written as

f (m) =
α

s
m̃−1−α e−m̃−α

. (5)

All of the parameters can be expressed in terms of the single parameter, Nu, as in Equation (4).
Suppose we have data on the numbers of mutants in different samples, m1, m2, . . .. Then
the log-likelihood of a particular parameter estimate, Nu, given the data, is

∑
i

log f (Nu|mi), (6)

in which f (Nu|mi) is given by Equation (5). For example, if we have the single observation
m1 = 105 mutants, then Figure 4a shows the log-likelihood for Nu. The relatively long left
tail arises from the fact that smaller values of the mutation rate, u, occasionally give rise to
large values of m, whereas bigger values of u rarely give rise to smaller values of m. Thus,
the information in an observed value of m sets a strong upper bound on u but does not
strongly bound lower values of u.

Figure 4b illustrates three interesting points. First, for the blue curve associated
with the single observed value 102, the range of Nu values is broader than for a single
observed value 105. Smaller numbers of mutational events cause greater variation, with
most populations having few final mutants and a few populations having a lot of mutants.
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Figure 4. Log-likelihood for the parameter Nu given the values of the data shown in the legends
of each plot. A constant was added to all log-likelihood values to shift the curves up so that the
peaks are at a value of three. The zero values give the log-likelihood confidence intervals for which
the most likely value is e3 ≈ 20 times more likely that the lowest values shown at the edges of the
intervals. (a) For a single observation of m = 105, the most likely value is approximately Nu = 104.05.
(b) Log-likelihood curves for different data combinations. The first (blue) curve has a single observed
value, whereas the other two curves arise from pairs of observed values. These likelihood curves
derive from the Fréchet approximation in Equation (3).

Second, two observations of 102 shrink the range of estimated values for a given
confidence level by a bit less than one-half.

Third, comparing the pair of observations (102, 102) versus (102, 104), the estimated
values change very little. The smaller observed value dominates the information. Once
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again, a small mutation rate can be highly consistent with a large observed value for
the number of mutants, whereas a large mutation rate is weakly consistent with a small
observed value for the number of mutants.

10. Somatic Mosaicism and Disease

Animal bodies often arise from a single ancestral zygote. Cell division produces a
large cellular population. The abstract Luria–Delbrück process provides a starting point
for thinking about how mutations accumulate in such bodies, creating somatic mosaicism.
Although actual development is more complex than the simple model, we can get a rough
sense for numbers of mutant cells.

Prior articles have reviewed links between mosaicism and disease [24–29]. Here, I
focus on key conceptual issues.

10.1. Mutant Cells and the Risk of Disease

Cancer typically begins in a small piece of tissue. A local tumor develops and then
disperses to cause widespread disease. In this case, each small piece of tissue that carries
mutant cells poses an independent risk. The overall risk of cancer later in life rises roughly
in proportion to the number of mutant cells produced during development through a
Luria–Delbrück process [30].

How does the somatic mosaicism induced by the Luria–Delbrück process affect other
diseases? It depends on the mechanisms that link the origin of disease to the onset of
widespread symptoms [24,31].

Consider neurodegeneration. Certain inherited mutations predispose to disease [32].
An inherited mutation is in every cell. What happens if the mutation is in 10% of cells, or
1% of cells, or 0.001% of cells? Can neurodegeneration start in a small local piece of tissue
and then spread widely? If so, then a very small fraction of mutant cells could be associated
with the origin of the disease. The more mutant cells, the greater the chance that disease
starts locally and spreads.

Ten or more years ago, just a few people emphasized this idea of local origin and
subsequent spread for neurodegeneration [33–35]. That idea for the origin of disease was
then linked to somatic mosaicism [24]. In recent years, the link between somatic mosaicism
by a Luria–Delbrück process and neurodegeneration has motivated various studies and
positive commentary [28,29,36]. However, relative importance for that link remains an
open problem.

Atherosclerosis provides another interesting example. That disease begins with aber-
rant physiological changes and tissue expansion in plaques that line the arteries [37].
How much of atherosclerotic disease arises from Luria–Delbrück processes and somatic
mosaicism? Current data provide clues but no clear answer [38–40].

For other diseases, the questions are the same [31]. To what extent could local changes
in small pieces of tissue initiate widespread dissemination of disease? What role do
mutations play in the risk of those initiating local tissue changes? Can local changes in
hormone-secreting tissues cause disseminated disease?

In some cases, mutations may arise early in development, causing a high frequency
of mutant cells. Such individuals may have disease phenotypes similar to cases of inher-
ited disease. However, when tested genetically by analysis of a blood sample, some of
those individuals will not have the mutations in their blood cells. They may be scored
genetically as noninherited cases of disease but evaluated clinically with the symptoms of
inherited cases.

10.2. Variation between Individuals

How much of the variation in disease risk between individuals arises from somatic
mosaicism? In theory, the Luria–Delbrück process can cause significant variation in the
somatic mutation burden for particular tissues when comparing between individuals.
Empirically, it remains challenging to measure that variation and link the variation to
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disease. It may be particularly interesting to analyze those individuals who present with
disease onset and symptoms typically associated with an inherited mutation but who lack
the inherited mutation. The recent increase in interest for such problems and the advances
in single cell genomics may eventually provide insight into these issues.

11. Conclusions

This article provided a simple intuitive introduction to the Luria–Delbrück process
and some of its consequences. The literature includes many other applications and devel-
opments of theory to cover a variety of more realistic or complex assumptions [7,41–46].

On the biological side, I mentioned potential applications of the theory to cancer,
neurodegeneration, and atherosclerosis. Many other diseases and cellular processes can
potentially be influenced by somatic mutation. Skin diseases are perhaps the best studied
and most interesting in relation to the Luria–Delbrück process [47,48].
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