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Abstract: Optimization is essential for applications since it can improve the results provided in
different areas; for this task, it is beneficial to use soft computing techniques, such as bio-inspired
algorithms. In addition, it has been shown that if dynamic parameter adaptation is applied to these
algorithms, they can provide a better result. For this work, the main contribution is to carry out the
dynamic parameter adaptation to the bird swarm algorithm using interval type-2 fuzzy systems to
realize a new fuzzy bio-inspired algorithm. The design of the proposed fuzzy system consists of
two inputs corresponding to the iterations and diversity. As outputs, it takes the values of C and S,
which are parameters to be adjusted by the algorithm. Once the design and the experimentation are
realized, they are divided into two study cases. The first consists of a set of complex functions of
the Congress of Evolutionary Competition 2017. The second case study consists of optimizing the
membership functions in a fuzzy system designed to provide the nocturnal blood pressure profile,
which corresponds to a neuro-fuzzy hybrid model to obtain the risk of hypertension. Analyzing the
30 experiments performed in both case studies, we can observe that the results obtained are improved
when compared with the original method and other proposed methodologies, achieving good results
in the complex functions. In addition, the optimized fuzzy system will reach an average of 97%
correct classification. Statistically, it can be concluded that there is significant evidence to affirm that
the proposed method provides good results.
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1. Introduction

Optimization is an essential task, which refers to solving a problem as efficiently as
possible, using the least number of resources and in the shortest possible time [1]. This
task is used to find or approximate the optimal solution in different areas, such as building
and environment [2], transit-oriented development [3], agriculture [4], neuroimage [5], and
biowaste [6].

Regarding soft computing, nature-inspired algorithms, such as bio-inspired algo-
rithms, are commonly used to solve optimization problems in many areas; an example
is the medical areas in which the best possible results are sought [7–9]. There are bio-
inspired algorithms that are very good at solving specific problems. Still, in others, the
results are not as expected [10–12], which is why sometimes modifications are made to
the mentioned metaheuristics. Dynamic parameter adaptation is a technique widely used
today to improve the performance of bio-inspired algorithms [13–15], which consists of
dynamically changing the values of the parameters that provide better results, and for
this, fuzzy inference systems can be used. In addition to the fact that this technique has
demonstrated a significant improvement in the results.
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The bird swarm algorithm (BSA) has been used in previous works [16], and we
have detected several areas of opportunity for improvement. For this reason, in this
work, we have proposed to carry out a dynamic parameter adaptation to the BSA to
improve the obtained results and its performance, which we call the dynamic bird swarm
algorithm (DBSA).

The different parameters used by the BSA are analyzed to realize the presented
proposal. The ideal parameters for carrying out the C and S adjustments correspond to
the cognitive and social acceleration coefficients. To achieve this, iterations and diversity
are used as inputs, and to expand the experimentation, we propose four type-1 fuzzy
systems, which present different variations in the rules. In addition, it is experimented
with by changing the membership functions (MFs), using trapezoidal and Gaussian in the
submitted proposals. Furthermore, the rules and design in the type-1 fuzzy systems are
used to test the proposed method using interval type-2 fuzzy systems (IT2FS) for comparing,
analyzing, and determining which of the fuzzy proposals achieves better performance.

In the experimentation, we present two case studies. In the first case, we take 10 func-
tions from the Congress of Evolutionary Competition 2017 (CEC2017). For the second
case study, we work with optimizing a fuzzy system designed to provide, as a result, the
nocturnal blood pressure profiles, which is part of a neuro-fuzzy hybrid model to obtain
the risk of developing hypertension in a period [17]. As can be seen in the design of fuzzy
systems, the BSA provides the parameters; these are created and adapted to the problem
solution for each iteration until they find the vector of data for the best optimization, that
is, the improvement of solutions to the problem tackled. Another aspect to consider is that
due to the uncertainty that the data handles in the different problems to be solved (in our
case, in the medical area), working with them is of great importance because the solutions
are considerably improved.

Currently, there is an infinite number of algorithms created for optimization. Still,
in particular, the BSA has proven to be effective and efficient in providing solutions to
given problems, as mentioned by the author [18,19], where they demonstrate analytically
and statistically the improvement in the solutions to the problems raised by both, creating
flexible, robust and reliability applications.

The main contribution of this work is to modify the BSA using dynamic parameter
adaptation based on type-2 fuzzy logic and present a new model that helps to improve the
results. The optimization of the architecture designed in the fuzzy system applies to the
medical area, in which it is necessary to provide accurate results about health status, since
due to the current pandemic situation in which we live, we require control over our health,
specifically in what corresponds to blood pressure, since this is one of the main risk factors
that makes us vulnerable to COVID-19.

The rest of the paper is structured as follows: Section 2 describes the basic concepts,
Section 3 presents the related works, in Section 4 the material and methods are described,
Section 5 explains the results of different experiments and the statistical test, Section 6
describes the discussion, and finally, Section 7 presents the conclusions and future work.

2. Basic Concepts

This section outlines some basic concepts which are needed to explain the proposed approach.

2.1. Bird Swarm Algorithm

The bird swarm algorithm BSA [20] is a recently created algorithm that pretends to
mimic the vigilance, foraging, and flight of birds within the swarm, based on social behavior
and social interaction, intending to solve optimization problems. The above behaviors are
described in five rules:

1. Foraging and vigilance behaviors can change in each bird, modelling a stochastic
decision. These behaviors are expressed as follows:
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When foraging, each bird is in charge of the food search, which is performed based
on its experience and considering the swarm’s expertise. Mathematically, foraging can be
analyzed as follows:

xt+1
i,j = xt

i,j +
(

pi,j − xt
i,j

)
C rand (0, 1) +

(
gj − xt

i,j

)
S rand (0, 1), (1)

where j ∈ [1, . . . , D], rand(0, 1) independent numbers uniformly distributed in (0,1).
Two important values to consider are C and S, which correspond to the cognitive and

social acceleration coefficients. In this case, pi,j corresponds to the best previous position in
the ith bird, and gj is the best previous position shared in the swarm.

Regarding vigilance, each bird tries to move to the center of the swarm to compete
with others but to achieve this, each bird that competes does not move directly to the center
of the swarm mathematically; it is analyzed as follows:

xt+1
i,j = xt

i,j + A1
(

meanj − xt
i,j

)
× rand(0, 1) + A2

(
pk,j − xt

i,j

)
× rand(−1, 1) (2)

A1 = a1× exp
(
− pFiti

sumFit + ε
× N

)
(3)

A2 = a2× exp
((

pFiti − pFitk
|pFitk − pFiti|+ ε

)
N × pFitk
sumFit + ε

)
(4)

k corresponds to a positive integer between 0 and N, sumFit is the sum of the best
fitness values of the swarm. ε is used to avoid zero-division error, pFiti is the best value in
the ith position, and a1 and a2 are positive constants in [0,2]. A1 and A2 correspond to the
effect induced by the interference when the birds move to the center of the swarm.

2. At the time of foraging, the birds can record and update the best experiences indi-
vidually and in the swarm, which corresponds to the food patch, which is used to
search for food. When it comes to social information, it is instantly shared among the
entire swarm.

3. To maintain vigilance, each bird tries to move to the center of the swarm; with this, the
interference induced by competition between the entire swarm can be affected. Birds
with the most significant supply have a greater chance of approaching the center of
the swarm than those with the smallest supplies.

4. Usually, birds can fly to another site; when this happens, they can switch between
producing and scrounging. In this case, the birds with the highest food reserves are
producers, and those with low reserves are scrounging. Birds with an intermediate re-
serve may switch between producer and scrounger. Flight behavior is mathematically
expressed as:

xt+1
i,j = xt

i,j + randn(0, 1)× xt
i,j, (5)

xt+1
i,j = xt

i,j +
(

xt
k,j − xt

i,j

)
× FL× rand(0, 1), (6)

In this case, randn (0, 1) represents Gaussian distributed random numbers with mean
0 and standard deviation 1. FQ corresponds to a positive integer, meaning the birds can
move to another location every FQ interval. FL (FL ∈ [0, 2]) refers to the scrounger who
will follow the producer to search for food.

5. According to their activity, the birds, will perform the following functions: Producers
actively search for food, and Scroungers randomly follow a producer to search for
food. Figure 1 presents the pseudo-code that corresponds to BSA.
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Figure 1. Bird swarm algorithm pseudocode.

2.2. Fuzzy Logic

Fuzzy logic began to be studied in the mid-1960s by Professor Lotfi A. Zadeh at the
University of California, Berkeley, initially presenting the work of fuzzy sets [21]. Fuzzy
systems represent accurate knowledge and data in the same way that human thought does,
in addition to defining a non-linear correspondence between one or more input variables
and one or more output variables [22,23].

2.3. Interval Type-2 Fuzzy Systems

Interval type-2 fuzzy logic can be viewed as a generalization of type-1 fuzzy logic,
which is used to handle a greater amount of uncertainty, and this is achieved through the
type-2 membership functions since they use the footprint of uncertainty (FOU), which
consists of two type-1 membership functions, in this sense membership to a value in a
fuzzy set may be represented by an interval [22,24,25].

2.4. Blood Pressure

To better understand this concept, we begin by defining the heart, a vital organ for the
human being and is located between the lungs in the center of the chest [11,12].

The heart has two sides: the right-side pumps blood to the lungs to receive oxygen
and remove carbon dioxide, and the left pumps oxygenated blood to the body. It can
be observed how the heart acts as a pump that drives blood to our organs, tissues, and
cells [26,27].

Blood pressure can be defined as the force exerted by the blood against the walls of
the arteries as the heart pumps blood around our body [26].

When measuring blood pressure, we can observe that it provides us with two values,
which are defined as systolic and diastolic pressure:

1. Systolic pressure is the highest number and measures the pressure when the heart has
to pump the blood towards the arteries.
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2. Diastolic pressure is the smallest number, which measures the blood pressure when
the heart relaxes between beats. Both measurements are made in millimeters of
mercury (mmHg) [28,29].

The normal blood pressure corresponds to measurements below 139 mmHg in systolic
pressure and below 89 mmHg in diastolic pressure. These measurements are based on the
European guidelines for the management of hypertension [30].

2.5. Hypertension

Hypertension or high blood pressure is defined as the sustained elevation of blood
pressure above the normal limits determined, taking as reference the European guide-
lines for the management of hypertension which corresponds to readings above 140/90
mmHg [31–33]. These guidelines classify hypertension in three grades:

• Grade 1 is 140–159 mmHg in systolic pressure or 90–99 mmHg in diastolic pressure.
• Grade 2 is 160–179 mmHg in systolic pressure or 100–109 mmHg in diastolic pressure.
• Grade 3 is 180 or higher mmHg in systolic pressure or 110 or higher mmHg in dias-

tolic pressure.

Additionally, another classification is defined, which is called isolated systolic hyper-
tension, and this may occur when the systolic pressure is higher than or equal to 140 mmHg,
but the diastolic pressure is lower than 90 mmHg [30].

When people have this disease, the muscles in the walls of the arteries become stronger
and thicker to perform the pumping function. This process of hardening the arteries is
known as atherosclerosis, which reduces the space within the arteries and further increases
the pressure in them [34–36]. Cycles of increased blood pressure occur slowly over several
years without causing symptoms of heart disease [36].

In addition to damaging the heart, this condition damages vital organs such as the
brain, kidneys, and eyes, among other causes:

• Cerebral stroke
• Kidney failure
• Myocardial infarction
• Heart failure
• Vascular dementia, among others [29,37].

2.6. Nocturnal Blood Pressure Profile

When ambulatory blood pressure monitoring is carried out over an extended period,
it is possible to discover the fluctuations that this has. With this, it has been shown that
the circadian profile decreases between 10–20% of the nighttime blood pressure records
typically compared to the daytime blood pressure records, known as the Dipper profile.
The absence of a decrease in nocturnal blood pressure figures of less than 10% is known as
a non-Dipper pattern. When there is a decrease of more than 20% in the blood pressure
records, it is known as Extreme Dipper, and when the nocturnal blood pressure values are
higher than the daytime values, it is called Riser [28,38,39].

One way to determine this pattern is by obtaining the night/day quotient of the blood
pressure readings. Classification of the different nocturnal blood pressure profiles and the
corresponding quotient are presented in Table 1.

Table 1. Nocturnal blood pressure profile classification.

Profile Percentage of Decrease Quotient

Extreme Dipper >20% <0.80
Dipper 10–20% 0.80–0.90

Non-Dipper <10% 0.91–1.00
Riser <0% >1.00
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Obtaining this measurement is very important since it has been observed that the
non-Dipper pattern is associated with a higher risk of a cardiovascular event [28].

3. Related Works

The process of fuzzy dynamic parameters adaptation has been carried out in different
algorithms to solve other problems, and we mention some of these works below.

Sanchez et al. [40] propose performing dynamic parameter adaptation to the particle
swarm optimization (PSO) algorithm to design a modular neural network. It is desired
to find the best architecture of the modular neural using the proposed method. It is
concluded that when compared with other bio-inspired algorithms, similar or better results
are obtained, in addition to the fact that it is also observed that the dynamic PSO converges
faster than the traditional PSO.

To perform the dynamic parameters adaptation based on interval type-2 fuzzy logic,
Olivas et al. [41] propose a method in which they use the current iteration and diversity
to control the behavior of the algorithm, and this method was applied to the gravitational
search algorithm (GSA). Derived from the experimentation carried out, it is concluded that
the presented proposal presents various advantages compared to the original GSA.

Lagunes et al. [42] proposed dynamic parameter adaptation to the stochastic fractal
search (SFS) algorithm using type-1 and interval type-2 fuzzy logic. When experimenting
with different mathematical functions with the proposed method, better results are obtained
compared with the original algorithm and other hybrid proposals.

To improve the performance of the BSA, Melin et al. [43] propose the dynamic pa-
rameter adaptation, where the iterations are taken as the input parameter and the C and
S parameters as the output. In conclusion, the results are significantly improved when
testing mathematical functions and optimizing a fuzzy system applied to the medical area.

At present, soft computing has been used to obtain medical diagnoses of different
diseases [44–46], some of which are mentioned below.

Udoh et al. [47] use soft computing to detect prostate cancer. The proposed model is
based on the adaptive neuro-fuzzy inference system (ANFIS), which is given as different
input symptoms related to the disease. The system was evaluated using prostate cancer
information provided by the University of Uyo Teaching, obtaining 95% correct diagnoses.

Ejodamen and Ekong [45] proposed a hybrid model based on fuzzy logic and ge-
netic algorithms to diagnose hormonal imbalance, taking into account 20 symptoms. The
tests show that the hybridization of the genetic algorithm and the fuzzy systems provide
good results.

Rey et al. [48] proposed a system for computer-aided diagnosis (CAD) which helps
to detect pulmonary nodules, which are indicators of the development of lung carcinoma.
For this, using the hybridization of techniques for analyzing medical images and soft
computing (artificial neural networks, fuzzy systems, and SVM. When carrying out the
corresponding experimentation, similar and even better results are obtained than other
CAD, demonstrating an 82% sensitivity and 7.3 false positives per study.

For the analysis of diabetic retinopathy, Nallasivan et al. [49] proposed a deep learning
method using convolutional neural networks. For this analysis, images of the eye are taken,
focusing on the retina’s veins, one of the main changes related to this disease. Preprocessing
is performed on the image (taking different eye characteristics) and, with the proposed
method, good results are obtained when diagnosing diabetic retinopathy.

Thippa et al. [50] proposed a method to predict heart disease using adaptive ge-
netic algorithms with fuzzy logic. The model uses two modules, the first for selecting
characteristics and the second for classifying, which is based on fuzzy logic.

4. Materials and Methods

To improve the performance of the BSA algorithm, the dynamic parameter adaptation
is carried out the C and S variables, which we name C1 and C2 because of the way they are
represented in the algorithm code; this correspond to the cognitive and social acceleration
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coefficients, which are in the foraging part of the birds as presented in Figure 2. It was
decided that we should take these variables due to an exhaustive analysis carried out on all
variables of the algorithm and observing that C1 and C2 effected a significant change in the
provided results.
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The proposed fuzzy system to perform the dynamic parameter adaptation corresponds
to the Mamdani type. This has two inputs designed with triangular membership functions
corresponding to iterations and diversity. Each input has three membership functions
and uses as linguistic variables the following terms: “low”, “medium”, and “high”. The
outputs correspond to C1 and C2 variables, which have five membership functions, and
use “Low”, “MediumLow”, “Medium”, “MediumHigh”, and “High” as linguistic values,
and this proposal is presented in Figure 3.
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To obtain the iterations, the percentage of the current iteration concerning the total
iterations is calculated. This is interpreted in the following way: when the algorithm is
just executing, the iteration takes a low value; as the execution progresses, it will gradually
increase until it ends; at this point, the iterations will be high or very close to 100% [51].
This behavior can be represented mathematically as follows:

iteration =
Current iteration

Total nummber iterations
(7)

Diversity refers to the degree of dispersion of individuals and is expressed mathemati-
cally as follows:

Diversity (S(t)) =
1
ns

ns

∑
i=1

√√√√ nx

∑
j=1

(
Xij(t)− X j(t)

)2 (8)

where S refers to the population, ns corresponds to the number of individuals in the
population, nx is the number of dimensions of the individuals, Xij refers to the position of
individual i, and X corresponds to the best individual position [41].

For this work, we experimented with four fuzzy systems in which the variation made
was in the part of the rules. In Figure 4, the set of rules is presented where C1 decreases
and C2 increases.
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Figure 5 shows the fuzzy rules in which C1 is increasing, and C2 is decreasing.
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Figure 6 presents the fuzzy rules set corresponding to C1, which maintains medium–
low iterations, and C2 maintains medium–high iterations.
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Using the same structure and rules of the fuzzy system described above, in addition
to making a comparison to determine which of these the best results are obtained, a fuzzy
system using Gaussian membership functions is designed, presented in Figure 8.
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4.1. Design of the Interval Type-2 Fuzzy Systems

To compare results and analyze which obtains a better performance of the BSA, it
is decided to take the structure and rules and implement them in the interval type-2
fuzzy systems (IT2FS). In Figure 9, the design used for the IT2FS is presented; it is worth
mentioning that it manually adjusts the footprint of uncertainty. The comparison carried
out has the objective of analyzing the performance and comparing the results with the type-
1 fuzzy system since, as is known, the membership functions of IT2FS are characterized by
upper and lower membership functions, where the interval between these two can have a
better performance than the type-1 fuzzy system since, due to the nature of IT2FS, it can
handle a higher degree of uncertainty.

Axioms 2022, 11, x FOR PEER REVIEW 11 of 30 
 

 
Figure 9. IT2FS proposed for the parameter dynamic adaptation using trapezoidal MFs. 

Similarly, an IT2FS is designed using Gaussian membership functions, as shown in 
Figure 10. 

 
Figure 10. IT2FS proposed for the parameter dynamic adaptation using Gaussian MFs. 

4.2. Study Cases 
4.2.1. Design of Experiments Using CEC 2017 Functions 

In the first phase of the experimentation, the parameters presented in Table 2 are 
used as a basis, and these are taken from [52] to compare results. As mentioned above, it 
was decided to adjust C1 and C2 due to the different manual tests that were performed, 
changing the different parameters used in the algorithm, and observing which of these 
was a more significant change in the results.  

Figure 9. IT2FS proposed for the parameter dynamic adaptation using trapezoidal MFs.

Similarly, an IT2FS is designed using Gaussian membership functions, as shown in
Figure 10.
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4.2. Study Cases
4.2.1. Design of Experiments Using CEC 2017 Functions

In the first phase of the experimentation, the parameters presented in Table 2 are
used as a basis, and these are taken from [52] to compare results. As mentioned above, it
was decided to adjust C1 and C2 due to the different manual tests that were performed,
changing the different parameters used in the algorithm, and observing which of these was
a more significant change in the results.

Table 2. Parameters used to solve the complex function of CEC2017.

M pop dim FQ a1 a2 c1 c2

BSA 1500 30 30 3 1 1 1.5 1.5
DBSA 1500 30 30 3 1 1 Dynamic Dynamic

In this case study, experimentation is performed with 10 functions of the CEC2017,
from which six unimodal functions, one hybrid function, and three multimodal functions
are taken; the objective of this experiment is that the algorithm reaches the minimum value
of each function.

In Table 3, the functions used are listed. Column 1 presents the function type, column
2 corresponds to the function number, column 3 lists the name, and column 4 displays the
minimum value.

Table 3. Mathematical complex function of CEC2017.

Name Function Fi

Unimodal Benchmark
functions

5 Shifted and Rotated Rastrigin’s Function 500

6 Shifted and Rotated Expanded Scaffer’s
F6 Function 600

7 Shifted and Rotated Lunacek Bi
Rastrigin’s Function 700
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Table 3. Cont.

Name Function Fi

8 Shifted and Rotated Non-Continuous
Rastrigin’s Function 800

9 Shifted and Rotated Levy Function 900

10 Shifted and Rotated Schwefel’s Function 1000

Hybrid benchmark
functions 11 Hybrid Function 1 (N = 3) 1100

Multimodal
benchmark functions

21 Composition Function 1 (N = 3) 2100

22 Composition Function 2 (N = 3) 2200

23 Composition Function 3 (N = 4) 2300

[−100, 100]

4.2.2. Optimization of Medical Fuzzy System

To apply the proposed method in the solution of a different problem and analyze its
performance, this is used in the optimization of the parameters of a fuzzy system, and this
is part of a neuro-fuzzy hybrid model for the diagnosis of hypertension [17,53–55].

The fuzzy system to be optimized provides the nocturnal blood pressure profile being
consulted. This result is of utmost importance since this diagnosis can prevent a future
cardiovascular event [38,39]. Optimization is performed as follows:

We have a database with records of the blood pressure, which are separated into
daytime and nighttime readings of systolic and diastolic pressure, respectively. The DBSA
is used to optimize the parameters of the membership functions of the fuzzy system until
the one that generates the best results is found. As a fitness function, the mean square error
(MSE) is used, which compares the results and obtains the fuzzy function that generates
lower errors. The MSE is expressed as follows:

MSE =
1
n

n

∑
i=1

(
Ŷi −Yi

)2 (9)

Figure 11 illustrates how the DBSA works in solving this optimization problem.
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Figure 11. DBSA applied in the optimization of fuzzy system.

The fuzzy classifier of the nocturnal blood pressure profile is designed with two inputs;
these refer to the quotient of the systolic and diastolic pressure and are granulated with
four trapezoidal membership functions, using as linguistic values: “GreaterFall”, “Fall”,
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“Increase”, and “GreaterIncrease”. In this case, the nocturnal profile level corresponds to
the output, and this uses four membership functions which are assigned “ExtremeDipper”,
“Dipper”, “NonDipper”, and “Riser” as linguistic values. Figures 12 and 13 present the
inputs, while in Figure 14, the output is illustrated.
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Figure 14. Nocturnal blood pressure level output.

To compare results, we also designed a fuzzy system with Gaussian membership
functions using two inputs that refer to the systolic and diastolic pressure quotient and
determine the following terms as linguistic values: “GreaterFall”, “Fall”, “Increase”, and
“GreaterIncrease”. The output corresponds to the nocturnal blood pressure level, which is
designed with four membership functions using the linguistic variables “ExtremeDipper”,
“Dipper”, “NonDipper”, and “Riser”. In Figures 15 and 16, the inputs are presented, while
in Figure 17, the output is presented.
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Figure 17. Nocturnal blood pressure level output.

In both fuzzy systems, four fuzzy rules are used, as follows:

1. If SystolicQuotient is “GreaterFall” and DiastolicQuotient is “GreaterFall” then Level is
“ExtremeDipper”.

2. If SystolicQuotient is “Fall” and DiastolicQuotient is “Fall” then Level is Dipper.
3. If SystolicQuotient is “Increase” and DiastolicQuotient is “Increase” then level is

“NonDipper”.
4. If SystolicQuotient is “GreaterIncrease” and DiastolicQuotient is “GreaterIncrease” then

Level is “GreaterRiser”.

5. Results

The results obtained when using the DBSA for solving problems of the CEC2017
are presented in Table 4. This experimentation corresponds to the dynamic parameter
adaptation applying the different proposed type-1 fuzzy systems. We can analyze the results
obtained that the proposed method provides better results than the original algorithm.



Axioms 2022, 11, 485 15 of 29

The fuzzy system number four uses triangular membership functions and has rules
with high and medium–high values, and the fuzzy system obtained the best result in 5 of
the 10 functions studied. The better results obtained are highlighted in bold type.

Regarding the dynamic parameters adaptation using the IT2FS, it is observed that the
best results are obtained using fuzzy system four, which is implemented with Gaussian
membership functions and uses rules with high and medium–high values, obtaining the
best results in 4 of the 10 functions examined. Table 5 presents the results obtained, and as
with the type-1 fuzzy system, the result is improved compared to the original algorithm.

Compared with the method proposed by [52], the results of dynamic parameter
adaptation present a hybridization of the FA and the PSO, which was named HFPSO.
Table 6 shows the comparison made, and it can be observed that the DBSA provides better
results in 8 of the 10 experiments.

For the second case study, 30 experiments were carried out using type-1 fuzzy system
number four, which was designed for the dynamic parameter adaptation, this being the
one with which the best results were obtained. In this case, the DBSA is used to optimize
the fuzzy system for obtaining the nocturnal blood pressure profile. Table 7 presents
the percentage of correct classification in the different experiments performed; column
2 corresponds to the fuzzy system with trapezoidal membership functions, while column
3 corresponds to the fuzzy system with Gaussian membership functions, where we can
observe that in several of the fuzzy systems, a 100% correct classification is achieved.

Regarding the optimization of the nocturnal blood pressure profile fuzzy system with
trapezoidal membership functions, a classification comparison is performed using the
non-optimized fuzzy system and the fuzzy improvement obtained from an optimization
previously carried out with the chicken swarm optimization (CSO) algorithm [56], which
are presented in Table 8. In columns 2 and 3, the real information is presented, in columns
4 and column 5, the results obtained with the non-optimized fuzzy system are presented,
in columns 6 and 7, the results obtained with the optimization carried out using the CSO
algorithm are listed, and finally, in columns 9 and 10, the optimization carried out with
the DBSA is presented. We can observe that the non-optimized fuzzy system performs
incorrectly in seven classifications, and the fuzzy system optimized with the CSO algorithm
performs incorrectly in seven classifications; these can be identified with italics. We can
determine that our proposal performs 100% of classification correctly, thus providing a
guideline to determine that DBSA is a good method for optimizing fuzzy systems.

For the optimization performed to the fuzzy system of nocturnal blood pressure profile
with Gaussian membership functions, a classification comparison is carried out, which
is presented in Table 9. Columns 2 and 3 describe the real information, in columns 4
and column 5, the results obtained with the non-optimized fuzzy system are presented,
columns 6 and 7 show the result obtained in the optimization carried out with the CSO, and
finally, in columns 9 and 10, the optimization carried out with the DBSA is presented. The
results may indicate that the non-optimized fuzzy system performs seven classifications
incorrectly, whereas the optimized fuzzy system with the CSO algorithm performs two
classifications incorrectly; these can be identified with italics. Regarding the proposed
method, it can be observed that it performed 100% of classifications correctly, the proposed
model being applicable for this type of optimization problem.
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Table 4. Result of DBSA using type-1 fuzzy systems in CEC2017 functions.

No Fi Original
1st FIS 2nd FIS #2 3rd FIS 4th FIS

Triang Gauss Triang Gauss Triang Gauss Triang Gauss

5 500 8.396 × 102 7.529 × 102 7.428 × 102 7.404 × 102 7.436 × 102 7.569 × 102 7.563 × 102 7.359 × 102 7.382 × 102

6 600 6.732 × 102 6.458 × 102 6.456 × 102 6.510 × 102 6.518 × 102 6.559 × 102 6.563 × 102 6.494 × 102 6.491 × 102

7 700 1.355 × 103 1.082 × 103 1.082 × 103 1.093 × 103 1.084 × 103 1.125 × 103 1.122 × 103 1.070 × 103 1.093 × 103

8 800 1.075 × 103 1.002 × 103 1.002 × 103 9.989 × 102 1.005 × 103 1.011 × 103 1.013 × 103 9.971 × 102 9.925 × 102

9 900 7.602 × 103 4.100 × 103 4.110 × 103 4.310 × 103 4.072 × 103 4.825 × 103 4.654 × 103 3.775 × 103 4.389 × 103

10 1000 7.243 × 103 7.399 × 103 7.408 × 103 7.261 × 103 7.358 × 103 7.278 × 103 7.285 × 103 7.451 × 103 7.063 × 103

11 1100 5.349 × 103 6.303 × 103 1.791 × 103 1.678 × 103 1.784 × 103 1.783 × 103 1.780 × 103 1.763 × 103 1.580 × 103

21 2100 2.645 × 103 2.508 × 103 2.512 × 103 2.516 × 103 2.513 × 103 2.531 × 103 2.534 × 103 2.497 × 103 2.513 × 103

22 2200 8.184 × 103 4.513 × 103 4.233 × 103 4.230 × 103 4.200 × 103 4.376 × 103 4.179 × 103 4.328 × 103 4.278 × 103

23 2300 3.352 × 103 3.043 × 103 3.008 × 103 3.033 × 103 3.012 × 103 3.063 × 103 3.054 × 103 2.979 × 103 2.891 × 103

Table 5. Result of DBSA using IT2FS in CEC2017 functions.

No Fi Original
1st FIS 2nd FIS 3rd FIS 4th FIS

Triang Gauss Triang Gauss Triang Gauss Triang Gauss

5 500 8.40102 7.434 × 102 7.453 × 102 7.320 × 102 7.320 × 102 7.488 × 102 7.523 × 102 7.383 × 102 7.364 × 102

6 600 6.732 × 102 6.518 × 102 6.522 × 102 6.461 × 102 6.454 × 102 6.516 × 102 6.515 × 102 6.505 × 102 6.505 × 102

7 700 1.355 × 103 1.122 × 103 1.120 × 103 1.084 × 103 1.080 × 103 1.113 × 103 1.111 × 103 1.114 × 103 1.074 × 103

8 800 1.075 × 103 9.976 × 102 9.963 × 102 1.006 × 103 1.003 × 103 1.006 × 103 1.014 × 103 1.011 × 103 9.983 × 102

9 900 7.602 × 103 4.69 × 103 4.748 × 103 4.090 × 103 4.049 × 103 4.647 × 103 4.522 × 103 4.586 × 103 3.874 × 103

10 1000 7.243 × 103 6.916 × 103 6.944 × 103 7.372 × 103 7.431 × 103 7.245 × 103 7.290 × 103 7.263 × 103 7.407 × 103

11 1100 5.349 × 103 1.581 × 103 1.590 × 103 1.784 × 103 1.814 × 103 1.718 × 103 1.808 × 103 1.775 × 103 1.785 × 103

21 2100 2.645 × 103 2.528 × 103 2.526 × 103 2.512 × 103 2.504 × 103 2.526 × 103 2.528 × 103 2.527 × 103 2.500 × 103

22 2200 8.184 × 1003 4.480 × 103 4.596 × 103 4.053 × 103 4.236 × 103 4.455 × 103 4.250 × 103 4.190 × 103 4.315 × 103

23 2300 3.352 × 1003 3.067 × 103 3.064 × 103 3.016 × 103 3.000 × 103 3.049 × 103 3.042 × 103 3.046 × 103 2.987 × 103
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Table 6. Comparison with the HFPSO method.

Function Min HFPSO Original DBSA DBSAT2
Triangular Gauss

5 500 7.43 × 102 8.40 × 102 7.359 × 102 7.364 × 102

6 600 6.54 × 102 6.732 × 102 6.494 × 102 6.505 × 102

7 700 1.063 × 103 1.355 × 103 1.070 × 103 1.074 × 103

8 800 1.017 × 103 1.075 × 103 9.971 × 102 9.983 × 102

9 900 9.04 × 103 7.602 × 103 3.775 × 103 3.874 × 103

10 1000 7.49 × 103 7.243 × 103 7.451 × 103 7.407 × 103

11 1100 2.28 × 103 5.349 × 103 1.763 × 103 1.785 × 103

21 2100 2.51 × 103 2.645 × 103 2.497 × 103 2.500 × 103

22 2200 5.80 × 103 8.184 × 103 4.328 × 103 4.315 × 103

23 2300 2.96 × 103 3.352 × 103 2.979 × 103 2.987 × 103

Table 7. Percentage of success in each experiment.

No FISTra FISGauss

1 100% 93%
2 93% 93%
3 100% 100%
4 100% 97%
5 93% 93%
6 97% 93%
7 97% 100%
8 93% 100%
9 93% 100%
10 97% 100%
11 100% 93%
12 100% 93%
13 100% 100%
14 100% 100%
15 93% 100%
16 87% 87%
17 100% 93%
18 100% 100%
19 90% 100%
20 100% 100%
21 100% 100%
22 87% 100%
23 100% 93%
24 100% 100%
25 93% 97%
26 93% 100%
27 100% 90%
28 100% 90%
29 100% 100%
30 100% 100%
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Table 8. Comparative of the results provided for the nocturnal blood pressure profile optimized
using trapezoidal membership functions.

No

Real Values Non-Optimized FS CSO DBSA

Level Quotient Linguistic
Output

Fuzzy
Result

Linguistic
Output

Fuzzy
Result

Linguistic
Output

Fuzzy
Result

1 ExtremeDipper 0.76 ExtremeDipper 0.60 ExtremeDipper 0.61 ExtremeDipper 0.61
2 Dipper 0.89 Dipper 0.85 Dipper 0.86 Dipper 0.89
3 Dipper 0.81 Dipper 0.85 Dipper 0.86 Dipper 0.83
4 Dipper 0.82 Dipper 0.85 Dipper 0.86 Dipper 0.85
5 No Dipper 0.91 Dipper 0.85 Dipper 0.85 NonDipper 0.94
6 Dipper 0.87 Dipper 0.85 Dipper 0.86 Dipper 0.85
7 ExtremeDipper 0.77 Dipper 0.85 Dipper 0.85 ExtremeDipper 0.61
8 NonDipper 0.90 Dipper 0.85 Dipper 0.85 NonDipper 0.94
9 NonDipper 0.94 NonDipper 0.96 NonDipper 0.96 NonDipper 0.94

10 Dipper 0.83 Dipper 0.85 Dipper 0.85 Dipper 0.85
11 NonDipper 0.92 Dipper 0.85 Dipper 0.85 NonDipper 0.94
12 ReverseDipper 1.03 ReverseDipper 1.16 ReverseDipper 1.1 ReverseDipper 1.15
13 Dipper 0.84 Dipper 0.85 Dipper 0.86 Dipper 0.85
14 ReverseDipper 1.07 ReverseDipper 1.17 ReverseDipper 1.16 ReverseDipper 1.16
15 NonDipper 0.91 Dipper 0.85 Dipper 0.85 NonDipper 0.94
16 Dipper 0.82 Dipper 0.85 Dipper 0.86 Dipper 0.85
17 Dipper 0.86 Dipper 0.85 Dipper 0.85 Dipper 0.85
18 NonDipper 0.90 Dipper 0.85 Dipper 0.85 NonDipper 0.94
19 Dipper 0.84 Dipper 0.85 Dipper 0.85 Dipper 0.85
20 NonDipper 0.93 Dipper 0.85 Dipper 0.85 NonDipper 0.94
21 NonDipper 0.93 NonDipper 0.96 NonDipper 0.96 NonDipper 0.94
22 Dipper 0.83 Dipper 0.85 Dipper 0.86 Dipper 0.85
23 NonDipper 0.92 NonDipper 0.96 NonDipper 0.97 NonDipper 0.94
24 ExtremeDipper 0.72 ExtremeDipper 0.59 ExtremeDipper 0.61 ExtremeDipper 0.60
25 Dipper 0.85 Dipper 0.85 Dipper 0.86 Dipper 0.85
26 Dipper 0.89 Dipper 0.85 Dipper 0.85 Dipper 0.85
27 Dipper 0.89 Dipper 0.85 Dipper 0.85 Dipper 0.85
28 NonDipper 0.93 NonDipper 0.96 NonDipper 0.96 NonDipper 0.94
29 NonDipper 0.94 NonDipper 0.96 NonDipper 0.96 NonDipper 0.94
30 Dipper 0.83 Dipper 0.85 Dipper 0.86 Dipper 0.85

Table 9. Comparative of the results provided for the nocturnal blood pressure profile optimized
using Gaussian membership functions.

No

Real Non-Optimized FS CSO DBSA

Level Quotient Linguistic
Output

Fuzzy
Result

Linguistic
Output

Fuzzy
Result

Linguistic
Output

Fuzzy
Result

1 ExtremeDipper 0.76 ExtremeDipper 0.64 ExtremeDipper 0.71 ExtremeDipper 0.61
2 Dipper 0.89 Dipper 0.85 Dipper 0.89 Dipper 0.89
3 Dipper 0.81 ExtremeDipper 0.77 Dipper 0.84 Dipper 0.83
4 Dipper 0.82 ExtremeDipper 0.79 Dipper 0.84 Dipper 0.85
5 NonDipper 0.91 Dipper 0.89 NonDipper 0.91 NonDipper 0.94
6 Dipper 0.87 Dipper 0.83 Dipper 0.87 Dipper 0.85
7 ExtremeDipper 0.77 ExtremeDipper 0.66 ExtremeDipper 0.78 ExtremeDipper 0.61
8 NonDipper 0.90 Dipper 0.86 NonDipper 0.91 NonDipper 0.94
9 NonDipper 0.94 NonDipper 0.96 Dipper 0.87 NonDipper 0.94

10 Dipper 0.83 ExtremeDipper 0.79 Dipper 0.84 Dipper 0.85
11 NonDipper 0.92 NonDipper 0.94 NonDipper 0.93 NonDipper 0.94
12 ReverseDipper 1.03 ReverseDipper 1.10 ReverseDipper 1.03 ReverseDipper 1.15
13 Dipper 0.84 Dipper 0.82 Dipper 0.85 Dipper 0.85
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Table 9. Cont.

No

Real Non-Optimized FS CSO DBSA

Level Quotient Linguistic
Output

Fuzzy
Result

Linguistic
Output

Fuzzy
Result

Linguistic
Output

Fuzzy
Result

14 ReverseDipper 1.07 ReverseDipper 1.13 ReverseDipper 1.15 ReverseDipper 1.16
15 NonDipper 0.91 NonDipper 0.90 Dipper 0.86 NonDipper 0.94
16 Dipper 0.82 ExtremeDipper 0.79 Dipper 0.84 Dipper 0.85
17 Dipper 0.86 Dipper 0.82 Dipper 0.85 Dipper 0.85
18 NonDipper 0.90 Dipper 0.88 NonDipper 0.91 NonDipper 0.94
19 Dipper 0.84 Dipper 0.80 Dipper 0.85 Dipper 0.85
20 NonDipper 0.93 NonDipper 0.95 NonDipper 0.94 NonDipper 0.94
21 NonDipper 0.93 NonDipper 0.96 NonDipper 0.94 NonDipper 0.94
22 Dipper 0.83 Dipper 0.80 Dipper 0.84 Dipper 0.85
23 NonDipper 0.92 NonDipper 0.92 NonDipper 0.92 NonDipper 0.94
24 ExtremeDipper 0.72 ExtremeDipper 0.63 ExtremeDipper 0.61 ExtremeDipper 0.60
25 Dipper 0.85 Dipper 0.83 Dipper 0.85 Dipper 0.85
26 Dipper 0.89 Dipper 0.82 Dipper 0.89 Dipper 0.85
27 Dipper 0.89 Dipper 0.83 Dipper 0.89 Dipper 0.85
28 NonDipper 0.93 NonDipper 0.95 NonDipper 0.93 NonDipper 0.94
29 NonDipper 0.94 NonDipper 0.96 NonDipper 0.94 NonDipper 0.94
30 Dipper 0.83 Dipper 0.81 Dipper 0.85 Dipper 0.85

Table 10 compares the classification percentage obtained by the 30 experiments in the
optimizations [56]. We can see that the classification percentage is higher with a fuzzy
system optimized with the proposed method, 97% for both membership functions.

Table 10. Comparative of the different optimization results.

CSO DBSA

Trapezoida_lMF Gaussian_MF Trapezoidal_MF Gaussian_MF

91.46% 87.59% 97% 97%

Figures 18 and 19 illustrate the trapezoidal membership functions optimized with the
DBSA corresponding to the input. In contrast, Figure 20 shows the membership functions
optimized by DBSA which correspond to the output.
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Figures 21 and 22 present the Gaussian membership functions optimized with the
DBSA corresponding to the inputs, while Figure 23 illustrates the membership functions
corresponding to the output.
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Table 11 presents the parameters used by the optimized and non-optimized fuzzy clas-
sifier, being a, b, c, and d for each parameter used in the trapezoidal membership functions.

Table 11. Parameters used for the nocturnal blood pressure classifier design with trapezoidal mem-
bership function.

Inputs and Output MFs
Non-Optimized Parameters Optimized Parameters

a b c d a b c d

SystolicQuotient

GreaterFall 0.4 0.4 0.6655 0.8 0.4 0.469 0.67 0.8166
Fall 0.787 0.811 0.889 0.9102 0.7858 0.8232 0.8636 0.9035

Increase 0.898 0.923 0.9821 1.02 0.8945 0.918 0.9684 1.005
GreaterIncrease 1.001 1.09 1.3 1.3 1.001 1.09 1.236 1.3

DiastolicQuotient

GreaterFall 0.4 0.4 0.6655 0.8 0.4 0.4366 0.6182 0.8182
Fall 0.787 0.811 0.889 0.9102 0.7921 0.8277 0.8644 0.9117

Increase 0.898 0.923 0.9821 1.02 0.87 0.9224 0.9581 1.006
GreaterIncrease 1.004 1.09 1.3 1.3 0.972 1.1 1.27 1.3

Nocturnal blood
pressure profile level

ExtremeDipper 0.4 0.4 0.6655 0.8 0.4 0.456 0.6951 0.8105
Dipper 0.787 0.811 0.889 0.9102 0.7972 0.8212 0.8673 0.9093

NonDipper 0.898 0.923 0.9821 1.02 0.8822 0.9257 0.965 1.013
Riser 1.006 1.09 1.3 1.3 0.9912 1.1 1.236 1.3

Table 12 presents the parameters used by the optimized and non-optimized fuzzy
classifier. In this case, a represents the mean and b the standard deviation used in each
Gaussian membership function.
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Table 12. Parameters used for the nocturnal blood pressure classifier design with Gaussian member-
ship function.

Inputs and
Output MFs

Non-Optimized
Parameters Optimized Parameters

a b a b

SystolicQuotient

GreaterFall 0.42 0.162 0.4266 0.1071
Fall 0.82 0.03337 0.8385 0.02628

Increase 0.957 0.03122 0.9478 0.02611
GreaterIncrease 1.28 0.1236 1.316 0.1119

DiastolicQuotient

GreaterFall 0.402 0.1854 0.4674 0.1088
Fall 0.8548 0.0313 0.842 0.02634

Increase 0.957 0.0315 0.9502 0.0254
GreaterIncrease 1.28 0.1236 1.31 0.1091

Nocturnal blood
pressure profile level

ExtremeDipper 0.402 0.1854 0.4343 0.1017
Dipper 0.8558 0.0325 0.8442 0.02911

NonDipper 0.9595 0.0273 0.9371 0.02413
Riser 1.28 0.1438 1.288 0.1104

The adjustment made by the DBSA for fuzzy systems that use Gaussian and trape-
zoidal membership functions, although it seems minimal, helped to improve the classification.

As seen in the experimentation carried out, the BSA generates the data sets given
for the optimization of the membership functions; this method updates its fitness in each
function until it finds the best one, generating the best vector of data for an optimal solution.

5.1. Statistical Test
5.1.1. Statistical Test for CEC 2017 Functions

The parametric Z-test is used to perform the statistical analysis, the objective being
to compare the results obtained throughout the experimentation. Mathematically, the
statistical test is expressed as:

Z =

(
X1 − X2

)
− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

(10)

where x1 − x2 is the difference between the sample mean, µ1 − µ2 is the difference between

the population mean, σ2
1

n1
+

σ2
2

n2
are the population standard deviation and (n1, n2) are the

sample size.
It should be clarified that the statistical analysis for the functions of the CEC2017

is carried out concerning the work presented by Berkan (Aydilek, 2018), which took the
parameters used in its methodology to apply it in the DBSA and make a fair comparison.

In the experiments carried out with the complex mathematical functions (CEC2017),
where type-1 fuzzy systems are used to perform the dynamic parameter adaptation, the
following is established as a null hypothesis: the results provided by the DBSA are greater
than or equal to the results of the HFPSO method. The alternative hypothesis proves
that the results provided by DBSA are lower than those obtained by the HFPOS method.
Table 13 lists the statistical parameters used for this problem.
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Table 13. Parameters used in Z-Test for DBSA vs. HFPSO.

Parameter of Z-Test for DBSA vs. HFPSO

Critical Value (Zc) 1.64
Confidence interval 95%

H0 µ1 ≥ µ2
Ha (Claim) µ1 < µ2

Alpha 0.05

The results of the Z-test applied to the 10 CEC2017 functions are presented in Table 14.
Columns 2 and 3 show the results of the HFPSO and its standard deviation; columns 4
and 5 present the results of the DBSA with the type-1 fuzzy system that uses trapezoidal
membership functions and its standard deviation. In column 6, the results of the Z-Test are
described, and column 7 indicates if significant evidence to reject the null hypothesis exists
(S) or not (NS). It can be observed that in 5 of the 10 functions used, and there is evidence
supporting the claim that our proposal provides less error than the HFPSO.

Table 14. Statistical test results for CEC2017 functions using type-1 fuzzy systems.

Function HFPSO DE DBSA FisT1 D.E Z Test Evidence

5 7.43 × 102 2.83 × 101 7.3594 × 102 4.1862 × 101 −1.384 NS
6 6.54 × 102 1.49 × 101 6.4937 × 102 9.9485 × 100 −2.791 S
7 1.06 × 103 3.82 × 101 1.0695 × 103 5.2146 × 101 1.548 NS
8 1.02 × 103 3.49 × 101 9.9711 × 102 3.0107 × 101 −4.991 S
9 9.04 × 103 2.42 × 103 3.7745 × 103 1.2676 × 103 −19.283 S

10 7.49 × 103 9.11 × 102 7.4514 × 103 8.4525 × 102 −0.322 NS
11 2.28 × 103 6.81 × 102 1.7630 × 103 2.2155 × 102 −7.25 S
21 2.51 × 103 2.92 × 105 2.4966 × 103 3.3743 × 101 0 NS
22 5.80 × 103 3.26 × 101 4.3283 × 103 2.5558 × 103 −5.742 S
23 2.96 × 103 7.41 × 101 2.9792 × 103 1.0784 × 102 1.527 NS

Regarding the experiments performed in solving the complex mathematical functions
using IT2FS, it is established as a null hypothesis that the results obtained by the DBSA
are greater than or equal to the results obtained by the HFPSO method. The alternative
hypothesis demonstrates that the results provided by DBSA are lower than those obtained
by the HFPSO method. Table 13 also lists the statistical parameters used for this problem.

The results obtained in the Z-test applied to the 10 functions of the CEC2017 are
presented in Table 15. Columns 2 and 3 show the results of the HFPSO and its standard
deviation; column 4 and column 5 list the results of our proposal using IT2FS using
trapezoidal membership functions and their standard deviation. In the sixth column, we
have described the results of the Z-Test, and in column 7, it is indicated if significant
evidence to reject the null hypothesis exists (S) or not (NS). As can be observed, in 5 of the
10 functions used, there is evidence to support the claim that our proposal provides less
error than the HFPSO
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Table 15. Statistical test results for CEC2017 functions using IT2FS.

Function HFPSO DE DBSA FisT2 D.E Z Test Evidence

5 7.43 × 102 2.83 × 101 7.364 × 102 3.930 × 101 −1.445 NS
6 6.54 × 102 1.49 × 101 6.505 × 102 1.040 × 101 −1.651 S
7 1.06 × 103 3.82 × 101 1.074 × 103 5.390 × 101 1.514 NS
8 1.02 × 103 3.49 × 101 9.983 × 102 2.850 × 101 −4.883 S
9 9.04 × 103 2.42 × 103 3.874 × 103 1.310 × 103 −18.788 S

10 7.49 × 103 9.11 × 102 7.407 × 103 8.413 × 102 −0.645 NS
11 2.28 × 103 6.81 × 102 1.785 × 103 3.203 × 102 −6.512 S
21 2.51 × 103 2.92 × 105 2.500 × 103 3.570 × 101 0 NS
22 5.80 × 103 3.26 × 101 4.315 × 103 2.580 × 103 −5.775 S
23 2.96 × 103 7.41 × 101 2.987 × 103 1.010 × 102 2.395 NS

5.1.2. Statistical Test for Optimization of the Nocturnal Blood Pressure Profile
Fuzzy Classifier

Similarly, for this second case study, a statistical analysis was performed applying the
Z-test to observe the results obtained from the different optimizations performed in the
fuzzy system that provides the nocturnal blood pressure profile. In this case, 30 experiments
are carried out with the CSO and DBSA algorithms, respectively, optimizing the fuzzy
system that uses trapezoidal membership functions and comparing the results obtained,
which correspond to the classification percentage.

As a null hypothesis, it may establish that the means of the results obtained by the
fuzzy classifier optimized with the DBSA algorithm are lower than or equal to the average
of the results of the fuzzy classifier obtained with the CSO. The alternative hypothesis
suggests that the means of the classification obtained by the fuzzy system optimized with
the DBSA algorithm are more significant than those obtained by the fuzzy system optimized
with the CSO. Table 16 presents the parameters of the Z-test.

Table 16. Parameters used in Z-Test for DBSA vs. CSO.

Parameters of Z-Test for DBSA vs. CSO

Critical Value (Zc) 1.645
Confidential interval 95%

H0 µ1 ≤ µ2
Ha (Claim) µ1 > µ2

Alpha 0.05

Table 17 present the descriptive statistics used in this test, where Var is the variable to
compare, Obs is the number of experiments, and SD corresponds to the standard deviation.

Table 17. Z-test descriptive statistics.

Var Obs Mean S. D

DBSA 30 97 0.1213
CSO 30 91.458 1.944

The results obtained using equation 10 are presented in Table 18, where Z represents
the observed value, Zc corresponds to the critical value, and α is its alpha value.

Table 18. Z-test results.

Z 15.607
p-value 0

α 0.05
Zc 1.645
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Derived from the result of the p-value, which is less than the level of significance,
alpha = 0.05, the null hypothesis is rejected, so the following is concluded: there is enough
evidence, at the 5% level of significance, to support the claim that the averages of the
classification in DBSA are more significant than the classification with CSO.

The second statistical study carried out in this case study corresponds to the optimiza-
tion of the fuzzy system that provides the nocturnal blood pressure profile with Gaussian
membership functions, for which 30 different experiments are performed using CSO and
DBSA algorithms, respectively, for comparing results.

As a null hypothesis, it may be established that the means of the classification obtained
by the fuzzy classifier optimized with the DBSA algorithm are lower than or equal to the
mean of the results of the fuzzy classifier obtained with the CSO. The alternative hypothesis
suggests that the means of the results obtained by the fuzzy classifier optimized with the
DBSA algorithm are more significant than the means of the results obtained with the fuzzy
classifier provided by CSO. In this case, the parameters shown in Table 16 are also used.

Table 19 presents the descriptive statistics used in this test.

Table 19. Z-test descriptive statistics.

Var Obs Mean S. D

DBSA 30 97 0.1161
CSO 30 87.50 2.390

The results obtained using equation 10 are presented in Table 20, where Z corresponds
to the observed value, Zc is the critical value, and α is its alpha value.

Table 20. Z-test results.

Z 21.746
p-value 0

α 0.05
Zc 1.645

Derived from the result of the p-value, which is less than the level of significance,
alpha = 0.05, the null hypothesis is rejected, so the following is concluded: there is enough
evidence at the 5% level of significance to support the claim that the averages of the
classification in DBSA are more significant than the classification with CSO.

5.1.3. ANOVA Test for Optimization of the Nocturnal Blood Pressure Profile
Fuzzy Classifier

Another metric with which we can analyze the results obtained in the classification
of patients in obtaining the nocturnal blood pressure profile is the ANOVA statistic, with
which we can determine if the average obtained with each of the membership functions
used is the same. The comparison of the information is made with the previous work [56],
from which we take the average of patients classified correctly.

Table 21 compares the results obtained with the trapezoidal membership functions.

Table 21. ANOVA comparing results of trapezoidal MFs.

Source of
Variance SS df MS F p-Value F Critic

Between groups 422.68 1 422.68 37.43 8.71 × 10−8 4.01
Within Groups 655.00 58 11.29

Total 1077.68 59
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Once the corresponding calculations have been made and the results obtained in the
variable F compared against the critical value, it is concluded with a 5% confidence level
that the average of the data has a statistical difference.

Table 22 presents the information to compare experiments with the Gaussian member-
ship functions. Analyzing the critical F with the F obtained, it can be concluded that the
data groups present different averages. We can conclude that the 5% confidence level also
shows a statistical difference in the data.

Table 22. ANOVA comparing results of Gaussian MFs.

Source of
Variance SS df MS F p-Value F Critic

Between groups 1306.67 1 1306.67 117.72 1.39 × 10−15 4.01
Within Groups 643.79 58 11.10

Total 1950.46 59

Once all the experiments have been carried out, and with the results obtained, we
can observe that the changes in the data are not abrupt. Still, they improve in the part
of the mathematical functions and the correct classification of patients. In this sense, we
can say that the proposed method is precise; it helps to improve the optimization of the
studied problems.

6. Discussion

The dynamic parameter adaptation performed in this work, called DBSA, aims to
improve the efficiency of the BSA. It is used to optimize mathematical functions and
applied in optimizing the real problem, which corresponds to obtaining the nocturnal
blood pressure profile. It is worth mentioning that we also tested the dynamic parameter
adaptation with IT2FS. Analyzing the obtained results, we can interpret that our proposal
provides satisfactory results when compared with the original method and even compared
to other methodologies. In this presented proposal, where the diversity is used as input
in addition to iterations, it is helpful for solving mathematical problems as applicable in
optimizing the parameters of fuzzy systems. It is demonstrated through statistical analysis
that there is a significant improvement in 5 of the 10 mathematical complex functions of
the CEC2017. Similarly, we present an improvement in the classification in the optimized
fuzzy system, and it can be concluded that we found sufficient evidence to determine that
our proposal provides better results. We can also determine that the proposed method can
be implemented to solve problems in different areas. It would be engaging in future work
to test the proposal in problems within the industry; it could be the case of optimization
in a particular robotic arm movement. Some other problems that could be resolved are in
the medical area, for example, the classification of blood pressure and heart rate, or in the
area of computer vision to enhance medical images. The next challenge is to test the DBSA
in other types of problems, for example, the optimization of an artificial neural network’s
architecture or even control problems.

7. Conclusions

This work implements dynamic parameter adaptation in the BSA using fuzzy logic
to improve its performance. Four different type-1 fuzzy systems are proposed, where the
variation is made in the part of the rules. In addition, the difference between this research
and previous works is that a second input is added to the fuzzy systems, which corresponds
to the diversity in the bird population. To analyze its performance, an IT2FS was also tested.
The performance of our proposal is studied by applying it to the solution of two case studies.
In the first one, the proposal is analyzed by experimenting with 10 complex functions of
the CEC 2017, where, with the results collected, it can be observed that the DBSA provides
good results in 5 of the 10 functions, compared to the HFPSO method, in addition to also
providing better results when compared to the original method.
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Regarding the proposed fuzzy systems, the system obtaining the best results is number
4, which has rules with high and medium–high values. The experimentation with the
IT2FS achieved the best results with the fuzzy system number 4, which uses Gaussian
membership functions. In the second case study, corresponding to the optimization applied
in the fuzzy inference system designed to obtain the nocturnal blood pressure profile, we
experimented with a type-1 fuzzy system using both trapezoidal and Gaussian membership
functions to determine which one obtained a better classification. The results were similar,
reaching a 97% correct classification in an average of the 30 experiments performed for
each obtained fuzzy system. It compares these results with previous experimentation with
the CSO algorithm, where the proposed method yields better classification results. The
results obtained show us the best performance of the method, using two different types of
membership functions, even so, the limitations that could exist are that the algorithm can
be stuck in a local optimum and, in this way, already could not improve vector data that
optimizes membership functions. It is concluded statistically and with different metrics
that the DBSA improves performance compared to the original method and presents better
performance compared to other bio-inspired algorithms, such as the CSO. As future work,
it is intended to apply the proposed method to other optimization problems, where noise
can be considered, in this way fully exploiting the IT2FS, and thinking about optimizing
the fuzzy systems that perform the dynamic parameter adaptation.
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