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Abstract: In this paper, a new Modified Meta-Heuristic algorithm is proposed. This method contains
some modifications to improve the performance of the simulated-annealing algorithm (SA). Most
authors who deal with improving the SA algorithm presented some improvements and modifications
to one or more of the five standard features of the SA algorithm. In this paper, we improve the
SA algorithm by presenting some suggestions and modifications to all five standard features of
the SA algorithm. Through these suggestions and modifications, we obtained a new algorithm
that finds the approximate solution to the global minimum of a non-convex function. The new
algorithm contains novel parameters, which are updated at each iteration. Therefore, the variety and
alternatives in choosing these parameters demonstrated a noticeable impact on the performance of
the proposed algorithm. Furthermore, it has multiple formulas by which the candidate solutions are
generated. Diversity in these formulas helped the proposed algorithm to escape a local point while
finding the global minimizer of a non-convex function. The efficiency of the proposed algorithm
is reported through extensive numerical experiments on some well-known test problems. The
performance profiles are used to evaluate and compare the performance of our proposed algorithm
against the other five meta-heuristic algorithms. The comparison results between the performance
of our suggested algorithm and the other five algorithms indicate that the proposed algorithm is
competitive with, and in all cases superior to, the five algorithms in terms of the efficiency, reliability,
and effectiveness for finding the global minimizers of non-convex functions. This superiority of the
new proposed algorithm is due to those five modified standard features.

Keywords: global optimization problem; nonlinear function; unconstrained minimization;
meta-heuristics; simulated annealing; efficient algorithm; numerical comparisons; test problems

MSC: 65D05

1. Introduction

The main aim of this paper is to find the global minimizer of the objective function of
an unconstrained problem that is defined by:

min
x∈Rn

f (x), (1)

where the function f is assumed to be continuous.
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Several practical applications of global optimization problems arise in different fields,
such as technical sciences, industrial engineering, economics, operations research, networks,
chemical engineering, etc. See, for example, [1–11].

Therefore, many new problems are being generated continuously. These problems
need to be solved. A mathematical modeling process is an important tool that is used to
formulate them as mathematical problems. The result is that these problems are formulated
as unconstrained, constrained and multi-objective optimization problems.

The unconstrained optimization problems grow immediately in several practical
applications [12]. Therefore, these problems have attracted the attention and concerns
of many researchers for suggesting many algorithms that solve these problems, see, for
example, [13–17].

Finding the global minimum of the function f is far more difficult—analytical methods
are frequently not applicable, and the use of numerical solution algorithms often leads to
challenges.

Therefore, there has been a great development in optimization algorithms that are
designed to deal with these problems. The ideas of those proposed methods depend on the
principle of meta-heuristic strategies (stochastic methods). There are different classifications
for meta-heuristic methods [18].

Mohamed et al. [7] presented a brief description of these classifications, such as nature-
inspired against non-nature-inspired, single-point search versus population-based, static
objective function against dynamic objective function, different neighborhoods against
one single neighborhood and memory usage versus memory fewer methods. In stochastic
methods, the minimization process depends partly on probability.

In contrast, in the deterministic methods, no probabilistic information is used [19].
The numerical global optimization algorithms are capable of approximating the opti-

mal solutions to these problems. The main feature of the global optimization methods is
to prevent convergence to local optima and increase the probability of finding the global
optimum [19].

Therefore, for finding the global minimum of the unconstrained problem by using
deterministic methods, it needs an exhaustive search over the feasible region of the function
f and additional assumptions on the function f . On the antithesis of that, to approximate the
global minimum of the unconstrained problems using stochastic methods, the asymptotic
convergence probability can be proved, i.e., these methods are asymptotically effective
with a probability of 1; see, for example, [20–22].

Hence, the computational results of the stochastic methods are better than those of the
deterministic methods [23].

Therefore, a meta-heuristics strategy (stochastic method) is used to guide the search
process [23]. Thus, the meta-heuristic is a technique designed for solving a problem more
quickly when classic methods are too slow, or for finding an approximate solution when
classic methods fail to find any exact or near-exact solution. This is achieved by trading
optimality, completeness, accuracy or precision for speed [18,24,25].

The simulated-annealing algorithm (SA) is considered one of the most successful meta-
heuristic strategies and has been developed to be capable of dealing with many problems
in different fields. However, the process of developing and improving the SA algorithm
is still open in order to gain the advantages of this method and overcome its drawback.
Indeed, the numerical results demonstrate that the simulated-annealing technique (SA) is
very efficient and effective for finding the global minimizer. See, for example, [3,9,26–29].

The SA has a major advantage of being able to avoid getting trapped at a local
minimum [30,31].

In the rest of this section, we present a historical survey of some developments on the
simulated-annealing algorithm, which is proposed by many authors.

Metropolis et al. [32] suggested an algorithm to numerically find equilibrium distri-
bution, which is known as the Metropolis Algorithm (MA). SA is a sequence of MA. They
applied the algorithm to simulate the behavior of physical systems in the presence of a
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heat bath, for finding the equilibrium configuration of a collection of atoms at a given tem-
perature. Since that date, various developments and suggestions were presented by many
authors. Kirkpatrick et al. [33] linked the simulated-annealing algorithm (SA) of solids with
combinatorial discrete minimization problems. Vanderbilt and Louie [34] and Bohachevsky
et al. [35] modified the simulated-annealing method for continuous variable problems.
Anily and Federgruen [36] provided probabilistic analysis of different designs of simulated-
annealing algorithms to prove a convergence for the simulated-annealing algorithm with
general acceptance probability functions. Corona et al. [30] proposed an adaptive method
of the simulated annealing for continuous optimization problems. Dekkers and Aarts [31]
presented a stochastic approach to address global optimization based on the simulated-
annealing algorithm, which is similar to the formulation of the simulated annealing applied
to discrete optimization problems. They also proved asymptotic convergence to the set of
global minimizers. Ingber [37] introduced a study about the advantages and disadvantages
of the simulated-annealing method. Bertsimas et al. [38] described the simulated-annealing
algorithm, its convergence and its behavior in an application. Goffe et al. [39] presented
some improvements to the simulated-annealing algorithm as an extension to Corana’s
algorithm. Tsallis and Stariolo [40] presented a generalized simulated-annealing algorithm
for finding the global minimum of a continuous function. Siarry et al. [41] introduced some
suggestions for the simulated-annealing algorithm to solve highly multimodal functions of
2 to 100 variables. Nouraniy and Andresenz [42] presented a comparison of the cooling
strategies for the simulated-annealing algorithms. In the study, the authors compared
different proposed cooling schedules in order to find the best cooling strategy.

A self-learning simulated-annealing algorithm is presented by [43]. It is developed
by combining the characteristics of the simulated annealing and the domain elimination
methods. Ali et al. [44] proposed various simulated-annealing algorithms for optimization
involving continuous variables. Bouleimen and Lecocq [45] presented simulated annealing
adaptations for the resource-constrained project scheduling problem (RCPSP) and its multi-
mode version. Ali and Gabere [46] presented a simulated annealing driven multi-start
algorithm for continuous global optimization. They also studied the convergence properties
of their algorithm and test its performance on a set of 50 problems.

Wang et al. [47] proposed a new improved meta-heuristic simulated-annealing-based
krill herd (SKH) method for global optimization. Rere et al. [48] proposed a simulated an-
nealing to improve the performance of convolution neural network (CNN), as an alternative
approach for optimal deep learning (DL) using a modern optimization technique.

Certa et al. [49] proposed a new innovative cooling law for simulated-annealing
algorithms. Poorjafari et al. [29] presented a study to compare the genetic algorithms and
the simulated annealing for minimizing transfer waiting time in transit systems. Gonzales
et al. [28] presented a comparative study of the simulated annealing with different cooling
schedules for geometric optimization of a heat transfer problem according to constructed
design.

Xu et al. [50] combined the genetic algorithm with the simulated-annealing algorithm
to solve optimization problems. Guodong et al. [51] proposed a Gauss perturbation bats
optimization algorithm based on the simulated annealing (SAGBA) to solve the optimiza-
tion problems. Chakraborti and Sanyal [27] proposed an algorithm based on simulated
annealing to solve multi-objective optimization problems in the Internet of Things design
to come out with a set of solutions which are non-dominated by each other.

In light of the above, the numerical results show that the simulated-annealing is quite
effective and efficient for finding the global minimizer.

The five standard features of simulated-annealing algorithms are the generation of
a new step, acceptance criteria, cooling schedule, algorithm’s loops and stopping criteria.
Please, see the basic SA algorithm in Algorithm 1.

Most authors who deal with improving the SA algorithm presented some improve-
ments and modifications to one or more of these five standard features.

Therefore, the main contributions of this paper are presented as follows.
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In this paper, we improve the SA algorithm by presenting some suggestions and
modifications to all five standard features. Through these suggestions and modifications to
the five standard features, we obtained a new algorithm that includes the five modified
standard features that have novel parameters, which are updated at each iteration. These
five modified standard features contain multiple formulas to generate the candidate so-
lutions that are capable of helping the proposed algorithm to escape a local point while
finding the global minimizer of a non-convex function. These modifications and sugges-
tions gave the new algorithm enough time to visit most research spaces (feasible region).
The five modified standard features contain two stopping criteria, which ensure that most
of the research domains will be surveyed by the new algorithm. Diversity in choosing the
initial values of the parameters T (temperatures) and the (cooling coefficient “reduction
coefficient”) are new suggestions regarding the cooling schedule criterion.

Figures 1 and 2 depict the cooling phases of solid material. They show the metastable
state of weak bonds and the stable state of stronger bonds in physics. Both cases are similar
to a local point and the global point in optimization algorithms respectively.

Fast Cooling  case 2 liquid  state  High T  case 1   

Slow cooling  (crystalline solid) case 3 

frozen state : T≈0 

Figure 1. The cooling phases of solid material.

Case 2 a metastable state of weaker bond 

 Case 3 stable state of stronger bond  

  transitional 'saddle' configuration  

Figure 2. Representation of the ground state and the meta-stable state in Figure 1.
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Algorithm 1 The Basic SA Algorithm

Compute the initial control parameter T0 and the initial configuration.
while stop criterion not satisfied do

while no convergence do
Generate a move; calculate objective function
if accept then

update state and objective function
end if
Update T

end while
end while

Therefore, variety and alternatives in choosing the cooling schedule demonstrated a
noticeable impact on the performance of the proposed algorithm.

Consequently, these modifications and suggestions gave the new algorithm enough
time to visit most research spaces (feasible region).

The rest of this paper is organized as follows. In the next section, the basic simulated-
annealing algorithm is depicted. The proposed method is described in Section 3, as follows.

The five modified standard features are explained and described with their parameters
as follows.

The generation of a new step is explained and described in Sections 3.1, 3.1.1 and 3.1.2.
Sections 3.1.1 and 3.1.2, contain the two new approaches by which the candidate solutions
are generated.

Therefore, those scenarios are implemented by Formulas (2)–(5). In addition, the two
new approaches are summarized by Algorithms 2 and 3, respectively. The acceptance
criteria are explained and described in Section 3.2. The cooling schedule is explained and
described in Section 3.3. The algorithm’s inner loop and outer loop are explained and
described in Section 3.4. The stopping criteria are explained and described in Section 3.5.
All parameters of the five modified standard features are set in Section 4.1. All of the
mentioned above are summarized in Figure 3 and Algorithm 4, respectively. Our numerical
results are given in Section 4. In Section 5, conclusions and further work are presented.

2. Simulated-Annealing Algorithm (SA)

Simulated-annealing algorithm’s roots are in thermodynamics. It is originated from the
analogy between the physical annealing process and the problem of finding a minimizer.
The analogy between the physical system and the optimization problem is as follows
Table 1.

Table 1. Analogy between simulated annealing and optimization.

Thermodynamic Simulation Optimization Problem

States of system i Solutions xi

Energy of a state Ei Cost of a solution f (xi)

Change of a state Neighbor of a solution

Temperature T Control parameter T

Minimum energy E Minimum cost f (x)

Ground-state energy Eg Global minimizer xg
Note: The information which is listed in Table 1 is taken from [52], with a few modifications and additions.

By using the computer simulation method, Metropolis et al. [32] suggested an al-
gorithm to numerically find the equilibrium distribution, which is known as Metropolis
Algorithm (MA). SA is a sequence of MA.
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In their method, a given state with energy E1 is compared against a state that is
obtained by moving one of the particles of the state to another position by a small distance.
This new state, with energy E2 , is accepted if E2 − E1 ≤ 0, i.e., if the move brings the
system into a state with lower energy. If E2 − E1 > 0, the new state is not rejected, instead,

it is accepted with probability e
−(E2−E1 )

KT , where K is the Boltzmann constant and T is the
temperature of the heat bath. Therefore, a move to a state of higher energy is accepted
in a limited manner. By repeating this process for a large enough number of moves, [32]
assumed that the Boltzmann distribution is approached at a certain temperature.

2.1. Metropolis Algorithm [32]

Statistical mechanics is the central discipline of condensed matter physics (the field of
physics that deals with the macroscopic and microscopic physical properties of matter [53]),
where annealing is known as a thermal process for obtaining low energy states of a solid in a
heat bath. Simulation algorithm for the annealing process proposed by Metropolis et al. [32]
in 1953. Annealing process states of a solid in a heat bath is conducted as follows:
• Increase the temperature of the solid until it melts. In other words, the entropy

(entropy is a measure of disorder and chaos in a system [54–56]) of the disorder in the
system of particles is greater than zero, i.e., ∆S > 0, where ∆S denotes the change in
entropy for the system.

• Decrease carefully the temperature of the solid to reach a ground state (minimal
energy state, crystalline structure.

The physical matter in the heat bath has two phases: (1) the solid state at the beginning
of the process and (2) the liquid state when the temperature of the heat bath is sufficiently
high. In this case, all particles of the solid arrange themselves randomly. In the ground
state, the particles are arranged in a highly structured lattice and the energy of the system
is minimal. The ground state of the solid is obtained only if the maximum temperature is
sufficiently high and the cooling is sufficiently slow. Otherwise, the solid will be frozen into
a metastable state rather than into the ground state. We can imagine this physical process
(thermodynamic) in Figure 1 and the curve of states in Figure 2. From those phases, we can
conclude the following:

◦ In case 1, the matter is in its liquid state, where T is sufficiently high;
◦ In case 2, the liquid will be frozen into a metastable state (in physics, metastability is a

stable state of a dynamical system other than the system’s state of least energy [57])
(converts to a meta-stable state of weaker bond “at fast cooling”);

◦ In case 3, the liquid will be frozen into the ground state (the ground state of a quantum
mechanical system is its lowest-energy state; the energy of the ground state is known
as the zero-point energy of the system [58]) (at slow cooling).

The detailed description of the simulated-annealing algorithm can be found in [30,38,59].

2.2. Improving the Performance of SA

The simulated annealing algorithm is inspired from the physical annealing. It is also
a stochastic method to avoid getting stuck in a local, non-global minima. The simulated
annealing is a local search algorithm capable of escaping local optima.

The simulated-annealing algorithm is one of the most successful meta-heuristic compu-
tational algorithms, which have been initially designed for discrete optimization especially
in the field of combinatorial optimization problems [33]. The SA has also been extended to
optimization problems for continuous variables [31]. The fundamental idea of the SA is to
allow moves resulting in solutions of worse quality than the current solution (uphill moves)
in order to escape from local minima. The probability of such a move is decreased during
the search. The basic SA algorithm is listed in Algorithm 1. There are many researchers
interested in using the simulated annealing algorithm.

Most authors who deal with improving the SA algorithm considered improving one
or more of the following five issues: generation of points, cooling schedule, acceptance
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criteria, stopping criteria, and inner and outer loops. The authors of [30,31,46] presented
various modifications and suggestions to improve the performance of the SA. In this paper,
we improve the SA algorithm even farther by considering all of the above five issues. This
is the topic of the next section.

3. Proposed Method

As mentioned above, our modifications and suggestions to improve the performance
of the simulated annealing algorithm contain five issues. The generation of a candidate
solution, acceptance criteria, stopping criterion, and inner loop and outer loop are common
points of all algorithms that seek to solve Problem (1). While the cooling schedule is one of
the important standards that characterize the simulated annealing algorithms. However,
we have made the generation of a candidate solution, acceptance criteria, stopping criterion,
and inner loop and outer loop depend on the cooling schedule, as we will see in the next
sections, which discuss the five issues.

3.1. Research Direction and a Step Length

The generation of a new point and a best direction are considered as a one of the
most important phases of the simulated-annealing algorithm. See [30,31,46] for various
suggestions to determine a direction and step length. In the next two subsections, we
discuss two approaches to generate a direction and step length along the direction.

In the remaining parts of this section, the notation xac denotes the best point accepted
so far with its value fac = f (xac). At k = 1, we set xac = x0, where x0 is the starting point.

3.1.1. First Approach

The first approach is to generate a research direction and step size randomly as follows.
They are described in Algorithm 2.

Algorithm 2 First approach for generating a direction and step length
Step 1: Generate a random vector V ∈ [−1, 1]n.
Step 2: Set Vd = ±1, if Vi < 0, Vd = −1, otherwise Vd = 1.
Step 3: Generate a random number p ∈ (−0.5, 0.5).
Step 4: Compute g = 0.5− p.
Step 5: Compute dg = g ·Vd.
Step 6: Compute C = | fac |

‖dg‖2
2
.

Step 7: Compute d = C ·Vd.

In Step 1 of Algorithm 2, V ∈ [−1, 1]n is a random vector of n dimensions. In Step 2,
Vd = sign(V) is a vector of either 1 or−1. It represents a direction. In Step 3, p ∈ (−0.5, 0.5)
is a random number. In Step 5, since g and Vd are both random, then dg is a random vector.
In Step 6, we compute C as a step size of Vd. In Step 7, d is the step along the direction Vd.

We compute a new point by setting:

x1 = xac + d. (2)

After computing x1, we compute f1 = f (x1). We now compute4 f . If4 f < 0, then
the point x1 is accepted and we set xac ← x1, fac ← f1. Otherwise, we generate another
point by the second approach as in Section 3.1.2 below. We note the following.

Note 1: The above-mentioned processes are repeated at each iteration k, with
k = 1, 2, . . . , M, where M denotes the inner loop maximum number of iterations and its
value is set in advance.

Note 2: We set xg = xac as the global minimum, when the outer criterion is satisfied
as we will see later in Section 3.5.
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3.1.2. Second Approach

This approach is similar to the approach suggested in [30,31,46,60], with some major
modifications. We specify a step length δi and a direction dvi of this step. Let us first state
Algorithm 3.

Algorithm 3 Second approach to generate a direction and step length
Step 1: Set i = 0.
Step 2: Compute µi = 10(0.1·i)

Step 3: Generate a random vector vi ∈ [−1, 1]n.

Step 4: Compute dj
i =

(1+µi)
|vj

i |−1
µi

, where j = 1, 2, . . . , n.

Step 5: Set dvj
i = ±1, if vj

i < 0, dvj
i = −1, otherwise dvj

i = 1.

Step 6: Compute dej
i = dj

i · dvj
i .

Step 7: Compute δ
j
i = bj · dej

i .
Step 8: i← i + 1.
Step 9: Repeat steps 2-8 until i = N.

In Algorithm 3, N is the maximum number of possible trials and is set in advance.
The parameter vi is a random vector having a uniform distribution U[−1, 1], b is the upper
bound of the domain search and n is the dimension of x. In Step 5, dvj

i is the jth component
of the vector dvi . In general, the superscript j denotes the jth component of a vector. Thus,
vj

i is the jth component of the vector vi . In Step 7, we multiply dei by b to ensure that the
vector δi does not approach zero quickly in order to obtain the best point.

We compute a new point by using the following equation:

x2i
= xac + δi . (3)

The new point x2i
is obtained by adding the point xac as the best point accepted so far

to δi, at a number of trials i. For example, at i = 1, the processes in Algorithm 3, give dv1 as
a direction, δ1 is a step length, a point x21

is computed as a new point using Equation (3).
The value f2 = f (x21

) is computed. We now compute 4 f = f2 − fac. The point x21
is

tested for acceptance. Steps 2–8 in Algorithm 3 are repeated until i = N. At every iteration
i, we obtain a candidate point x2i . The points are either accepted or rejected according to
the Metropolis et al. [32] criteria as we will show in Section 3.2 below. In this case, if the
point x2i is rejected, we generate another point randomly as follows.

x2i
=

{
x2i−1

+ βi if x2i−1
in (3) is accepted, i.e., i ≥ 2,

βi otherwise, i.e., i ≥ 1, (4)

where βi is a random vector βi ∈ (0, 1)n. After N trials, we obtain a succession of candidate
points x20

, x21
,. . . , x2i

,. . . , x2N
. They are computed by Equations (3) or (4).

Note 1: The point x2i
is generated by Equation (4) if the point in Equation (3) is not

accepted so far.
Note 2: If the point x2i

in Equation (3) is accepted at least once, then the next point is
generated either using Equation (3) or Equation (4). As we will see in Section 3.2.

Note 3: The interior-point technique is used when a simple bounded [a; b]n exists in
the test problem to ensure that the new point lies inside [a; b]n.

3.2. Acceptance of Steps

In our proposed method, we start with any point x0, set xac = x0 and compute fac.
A point x1 is generated using Equation (2). Compute the value ∆ f = f1 − fac, if ∆ f < 0,
then the point x1 is accepted and set xac ← x1, fac ← f1. Otherwise, we have two cases to
generate another point x2i as follows:
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Case 1: We generate a point x2i using Equation (3) and compute the value ∆ f =

f2i
− fac if ∆ f < 0 or r < e

−4 f
T , where r ∈ (0, 1) is a random number, then we accept the

point x2i
and set xaci

← x2i
, faci

← f (x2
i
).

Case 2: If the point x2i in case 1 is rejected, we generate another point x2i
by using

Formula (4). and directly accept it.
Now, we set xaci

← x2i , faci
← f (x2i

).
As a summary of the above two cases, we obtain a new point denoted by xaci

, as an
accepted point according to the following:

xaci
=


x2i

in (3); if4 f < 0 or r < e
−4 f

T ,

x2i
in (4); if x2i−1

in (3) is accepted, i.e., i ≥ 1, (5)

x2i
in (4); otherwise, i.e., i ≥ 0,

where the first branch of Equation (5) is the acceptance criteria of Metropolis in [32]. The
second branch of Equation (5) is applied if a point in Equation (3) is rejected after acceptance.
Therefore, we obtained a sequence of accepted points xac1

, xac2
,. . . , xaci

,. . . , xacN
. We pick

the best of them, xbest, as the point that gives the best optimal value of f and set xac ← xbest,
fac ← f (xbest). This scenario is shown by Figure 3 and Algorithm 4.

Initialize parameters 
Stopping 

criteria  outer 

Go to Eq (2) 

Go to Eq (3) 

∆𝒇<0 

𝒆
−∆𝒇

𝑻   >r 

 
Accept the new point    

  

Store M points in matrix 𝑩𝑴×(𝒏+𝟏) 

Cooling scheduling 

End 

Pick  the pest point in B 

No 

Yes 

Go to  Eq (4) 

Yes 
No 

No 

No 

Yes 

No 

Store N points    in matrix 𝑨𝑵×(𝒏+𝟏) 

Pick  the pest point in   A 

𝑁 > 𝑖 

Yes 

No 

i=0, 𝜶 = 𝟏 

i=i+1 

𝜶 = 𝟎 

∆𝒇<0 
𝜶 = 𝟎 

Go to Eq (5) 

No 

Yes 

Yes 

Yes 

𝒌 = 𝟎 

𝑀 > 𝑘 

k=k+1 

Figure 3. The framework of the proposed method.
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Algorithm 4 Efficient Modified Meta-Heuristic Technique “EMST”

Input: f : Rn → R, x0 ∈ Rn, M, N, T, Tf 1, Tf 2, ε > 0
Output: xg = xac the global minimizer of f , f (xg ), the value of f at xg .

1: Compute f (x0).
2: Set xac = x0, fac = f (x0), fb = f (x0), and λ = 1. . .

3: while
(

T > Tf 1 and λ > ε
)

or (T > Tf 2) do
4: for k = 0 to M do
5: Compute xk = xac + d, as in Equation (2).
6: Compute f (xk) and set4 f = f (xk)− fac.
7: if4 f < 0 then
8: xac ← xk and fac ← f (xk).
9: else

10: for i = 0 to N do
11: Compute x2i

= xac + δi as in Equation (3).
12: Compute f (x2i

) and4 f = f (x2i
)− fac.

13: if4 f < 0 then
14: Accept=True.

15: else if r < e−
4 f
T then

16: Accept=True.
17: else
18: Compute x2i , by using Formula (4).
19: Compute f (x2i ).
20: Accept=True.
21: end if
22: if Accept == True then
23: xaci

← x2i
and faci

← f (x2i
).

24: Store accepted points with their values in the matrix Ai×(n+1) = [xaci
:

faci
].

25: end if
26: end for
27: Sort AN×(n+1) with respect to fac we get the minimum value fbest at a point

xbest.
28: Set xac ← xbest, fac ← fbest.
29: end if
30: Store accepted points with their function values in the matrix Bk×(n+1) = [xac :

fac].
31: end for
32: Sort BM×(n+1) with respect to fac we get the minimum value fbest at a point xbest.
33: Set xac ← xbest, fac ← fbest.
34: Set fa ← fac.
35: Compute λ = | fb − fa|.
36: fb ← fa.
37: Decrease temperature T = rT ∗ T.
38: end while
39: Set xg ← xac, fg ← fac.
40: return xg the global minimizer and the value of function at xg, f (xg).

3.3. Cooling Schedule

The choice of a cooling scheduling has an important impact on the performance of
the simulated-annealing algorithm. The cooling schedule includes two terms: the initial
value of the temperature T and the cooling coefficient rT , which is used to reduce T. Many
suggestions have been proposed in the literature for determining the initial value of the
temperature T and the cooling coefficient rT , see, for example, [30,31,46,49].
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In general, it is a unanimous fact that the initial temperature T must be sufficiently
high and rT ∈ (0.1, 1). In this section, we suggest that the initial value of T be related to
the number of variables and the value of f (x) at the starting point x0. See Section 4.1. The
cooling coefficient is taken to be rT ∈ [0.8, 1) to decrease the temperature T slowly.

3.4. Algorithm’s Loops

The loop iterations is presented in different formats in the literature, see, for
example, [30,31,41,44,46].

In this section, we suggest three loop iterations for the whole process of the proposed
method. They are as follows.

• The outer loop, which reduces the temperature T.
• The inner loop, which has a finite number of iterations. Particularly from 1 to M,

where M is a preconceived maximum number of iterations.
• In the second approach, we generate N trials to obtain N points at each iteration k.

3.5. Stopping Criteria

To terminate the simulated-annealing algorithm, several stopping rules are given in
the literature. See, for example, [30,31,46]. Almost all stopping criteria presented in the
literature are based on the idea that the algorithm should be terminated, when the system
freezes (i.e., T → 0) and no further changes occur.

In this proposed algorithm, the stopping criteria considered are as follows:

• Outer loop stopping criterion: the algorithm will be terminated if one of the following
is satisfied: Either (T < Tf 1 and λ = 0) or (T < Tf 2), where λ = | fb − fa|, fa denotes
a value of function at a best point after “M” iterations as inner loop iterations, fb
denotes a value of function at the starting point. The value of λ is computed, we set
fb ← fa, Tf 2 and Tf 1 are sufficiently small with (Tf 2 < Tf 1).

• Inner loop stopping criterion: this loop continues until it reaches a pre-specified
maximum number of inner iterations denoted by M.

The overall algorithm is presented below. It contains all suggestions and modifications
that are presented in Sections 3.1–3.5 to obtain the new proposed algorithm. We call it
“Efficient Modified Meta-heuristic Technique”, abbreviated by “EMST”.

4. Numerical Experiments

To test the efficiency of the proposed Algorithm “EMST”, we solved thirty-one test
problems. The functions in the test problems have different convexity shapes. The results
show that the new algorithm is promising.

4.1. Setting Parameters

The parameters Tf 1 and Tf 2, are introduced in Section 3.5. In our numerical testing,
we set the follows values for Tf 1.

Tf 1 =


10−4 if n < 4
10−10 if n < 10 and | f0| < 100n
10−6 otherwise,

where | f0| denotes the absolute value of the function at the starting point x0, and n is the
number of variables. The parameter Tf 2 takes the values:

Tf 2 =


10−6 if n < 4
10−15 if n < 10 and | f0| < 100n
10−10 otherwise.
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The parameter M in the inner loop is taken to be:

M =


3n if n < 4
2n if4 ≤ n ≤ 10
10n otherwise.

For the parameter T, we take T = 100n + | f0| as a starting value for the temperature.
The parameter rT is the cooling coefficient. It is taken to be:

rT =


0.8 if T > 200n
0.95 if Tnew > 10n
0.8 otherwise.

For all test problems with parameter T, that satisfies T > 200n, the parameter rT will
be 0.8 for each iteration k (until the outer criteria are satisfied). Otherwise, the parameter rT
will be 0.95, until the condition Tnew < 10n is satisfied. After that, rT will be 0.8, until the
outer criteria are satisfied.

We update the temperature by using Tnew = Tnew ∗ rT . However, at the beginning, we
take Tnew = T. The parameter N denotes the maximum number of iterations needed by
Algorithm 3 to generate a new step, see Section 3.1.2. We let N take the values:

N =


80 if n < 10 and | f0| < 100n
40n if n ≤ 10 and | f0| > 100n
400 otherwise.

Note: the parameters proposed above have different values due to the difficultly of
some problems. Some problems of high dimension require many iterations to reach the
optimality.

4.2. Testing Efficiency of Algorithm

We use the same criteria used by the authors of [41,61,62] because we compare the
results of our algorithm against the results obtained by the algorithms given in [41,61,62].
The criteria are as follows.

(1) The rate of success “RS”, which represents the rate of success for trials leading to the
global minimum of a problem.

(2) The average number of function evaluations “AFE”.
(3) The quality of the final result (average error) “AE”.

We use the definition of average error as given in [41,61,62]. It is defined to be:

| f (x∗)− fg| ≤ ε1 | f (x∗)|+ ε2 , (6)

where f (x∗) is the exact global minimum and fg is the best function value obtained by the
methods.

A run is considered successful if Inequality (6) is met, where ε1 = 10−8 and ε1 = 10−6.

4.3. Results

All experiments were run on a PC with Intel(R) Core(TM) i5-3230M CPU@2.60 GHz
2.60 GHz with RAM 4.00GB of memory on Windows 10 operating system, all six algorithms
are programmed using MATLAB version 8.5.0.197613 (R2015a) and the machine epsilon is
about 10−16.

In Table 2, we present the algorithms that will be used in the comparisons. Column 2
presents the name of the algorithms, Column 3 gives the abbreviated names.

In Table 3, we present the test problems used to test the performance of our algorithm.
Columns 1, 2 and 3 give the data of the problems. Column 1 represents the name of the
function f , Column 2 gives the number of variables n, Column 3 gives the exact global
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solution of the problem f (x∗) and Column 4 gives the reference in which it appears.
Columns 1–4 are repeated in Columns 5–8.

Note: The mathematical expressions of the corresponding test functions can be found
in References given in Table 3.

Table 2. Listing of different algorithms used in the comparisons.

No Algorithm Name Algorithm Reference

1 Global Optimization and Simulated Annealing “SA” [31]
2 Direct Search Simulated Annealing DSSA [15]
3 Enhancing PSO Methods for Global Optimization “Center-PSO” [63]
4 Simulated Annealing Driven multi-Start “SAMS” [46]
5 A new DIRECT type Algorithm BIRECT [64]
6 Efficient Modified Stochastic Technique “EMST” This work

Table 3. Listing of test problems and their exact solutions.

f n f (x∗) Reference f n f (x∗) Reference

BR 2 0.397887 [31,63] P22 2 24776.51 [31]
ES 2 −1 [61–63,65] RA 10 0 [65]
GP 2 3 [31,41,61,62,65] P8 3 0 [31]
Ras 2 −2 [63] CB 2 −1.0316285 [63,65]
SH 2 −186.7309 [31,61,62,65] CV 4 0 [65]
H3 3 −3.86278 [31,41,61–63,65] DJ 3 0 [61,62]
S5 4 −10.1532 [31,41,61–63,65,66] Bh1 2 0 [65]
S7 4 −10.4029 [31,41,61–63,65,66] P16 5 0 [31]
S10 4 −10.5364 [31,41,61–63,65,66] GW 6,10 0 [65]
H6 6 −3.32237 [31,41,61–63,65] Bh2 2 0 [65]
DX10 10 0 [65] PWQ 4 0 [65]
Rn 2–10 0 [61,62,65] Tr10 10 0 [65]
CM 4 0.4 [65] MGP 2 1.29695 [65]
Ack 10 0 [65]

The final results which are obtained by Algorithm 4 are listed in Table 4. Column 1 of
Table 4 gives the name of the function which is denoted by f . Column 2 of Table 4 gives
the average of the error (the accuracy of the solution) that is denoted by AE. Column 3 of
Table 4 gives the average of the number of the function evaluation that is denoted by AFE.
Columns 4–9 are as Columns 1–3.

Table 4. Results of the proposed “EMST” Algorithm.

f AE AFE f AE AFE f AE AFE

BR 3.6 × 10−7 456 P22 7.3 × 10−12 541 ES 1.1 × 10−16 501
GP 1.1 × 10−14 456 RA10 0 13,232 Ras 0 506
CB 4.6 × 10−8 456 SH 6.8 × 10−6 506 DJ 2.5 × 10−14 736
P8 6.9 × 10−14 729 H3 2.1 × 10−6 722 CV 4 × 10−9 6700
S5 1.4 × 10−6 1486 S7 3.9 × 10−5 1486 S10 9.6 × 10−6 1486
P16 1.3 × 10−9 1838 H6 1.68 × 10−5 2172 GW 0 13,636
DX10 4.1 × 10−23 11,100 R2 1.21 × 10−7 456 R4 2.26 × 10−5 6288
R5 2.56 × 10−5 8133 R8 9.48 × 10−7 13,771 R10 1.0 × 10−6 16,756
Bh1 1.36 × 10−12 426 Bh2 7.7 × 10−13 430 Tr10 2.53 × 10−12 10,976
PWQ4 2.86 × 10−9 5609 Ack 2.58 × 10−14 13,030 CM 2.4 × 10−10 1495
MGP 4.05 × 10−6 501
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In the following section, the performance profiles of the six algorithms are presented.

4.4. Performance Profiles

Performance profiles are an important tool used to evaluate and compare the perfor-
mance of optimization algorithms [67–70].

Barbosa et al. [67] apply performance profiles to analyze the results of the 2006 CEC
constrained optimization competition.

A fair comparison among different solvers should be based on the number of func-
tion evaluations, instead of based on the number of iterations or on the CPU time. The
number of iterations is not a reliable measure because the amount of work in each iter-
ation is completely different among solvers since some are population-based and other
are single-point-based since the quality of the solution is also an important measure of
performance [69,70].

In this paper, therefore, the average of function emulations is used to compare the
performance of the six algorithms. Hence, we present the numerical results in the form of
performance profiles, as described in [68]. This procedure was developed for benchmark
optimization software, i.e., to compare different solvers on several test problems.

One advantage of the performance profiles is that they can be presented in one figure,
by plotting for the different solvers a cumulative distribution function ρs(τ).

The performance ratio is defined by first setting rp,s =
tp,s

min{tp,s :s∈S} , where p ∈ P, P is
a set of test problems, S is the set of solvers and tp,s is the value obtained by solver s on test
problem p.

Then, define ρs(τ) = 1
|P| size{p ∈ P : rp,s ≤ τ}, where |P| is the number of test

problems.
In the following, we show how the performance profiles are used to compare the

performance of the six algorithms S = {EMST, BIRECT, SAMS, Center− spo, DSSA, SA},
according to the average function emulations, which is denoted by AEFs.

Therefore, the term tp,s denotes the AFEp,s, |P| is the number of test problems. For
each problem p and solver s, the performance ratio is defined as:

rp,s =


fitp,s

min{AFEp,s :s∈S} if convergence test passed,

∞ otherwise,
(7)

where AFEp,s represents the function evaluations for the test problem p, which is obtained
by the solver s.

Note: Formula (7) means that if the final result f (x∗), obtained by a solver s ∈ S
satisfies Inequality (6), then the first branch of (7) is computed, otherwise, we set rp,s = ∞.

The performance profile of a solver s is defined as follows:

δ(rp,s, τ) =

{
1 if rp,s ≤ τ,
0 otherwise.

(8)

Therefore, the performance profile for solver s is then given by the following function:

ρs(τ) =
1
|P|

{
∑
p∈P

δ(rp,s, τ)
}

, τ ≥ 1. (9)

By definition of AFEp,s, ρs(1) denotes the fraction of test problems for which solver s
performs the best, ρs(2) gives the fraction of problems for which the solver’s performance
is within a factor of two of the best, and that for τ sufficiently large, ρs(τ) is the fraction
of problems solved by s. In general, ρs(τ) can be interpreted as the probability for solver
s ∈ S that the performance ratio rp,s is within a factor τ of the best possible ratio. Therefore,
ρs(1) measures the efficiency of the solver, while its robustness (high probability of success
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on the set P) is measured in terms of ρs(∞). Hence, if we are only interested in determining
which solver is the best, i.e., wins the most, we compare the values of ρs(1) for all solvers.

A core feature of performance profiles is that they give information on the relative
performance of many solvers [68,69].

In the following, the results of the six algorithms are annualized by showing the
performance profiles for each algorithm.

Performance Analysis of Algorithms Using Performance Files

Figure 4 shows the performance profiles of the set solvers (algorithms) S regarding
the average of function evaluations. The performance of each algorithm depends on the
value of parameter τ, we can distinguish the following cases of the values of the τ to find
out how superior each algorithm is.

Case 1: τ ∈ [1, 20], EMST solves 20–95% of test problems, BIRECT solves 30–65% of
test problems, SA solves 25–75% of test problems, SAMS solves 0–68% of test problems,
DSSA solves 25–50% of test problems and Center-spo solves 0–11% of test problems. In
this case, the three algorithms EMST, BIRECT and SA are the best. However, the proposed
algorithm EMST is slightly superior to the BIRECT and SA algorithms.

Case 2: τ ∈ [21, 40], EMST solves all test problems, BIRECT solves 70% of test prob-
lems, SA solves 75% of test problems, SAMS solves 68–74% of problems, DSSA solves 50%
of test problems and Center-spo solves 33% of problems. In this case, the three algorithms
EMST, SA and SAMS are the best algorithms. However, the proposed algorithm EMST is
capable of solving all test problems.

In general, for any value of the parameter τ > 40, the EMST algorithm can solve all
test problems with less cost compared to other algorithms. Figure 5 shows the percentage
of fails of all six algorithms according to the function evaluations.

Figure 4. Performance profiles for an average of function evaluations for six algorithms.

Figure 5. Performance profile fails for an average of function evaluations for six algorithms.
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5. Concluding Remark

We have presented an efficient modified stochastic technique. The computational
experiments show the efficiency of the proposed algorithm, for finding the global minima.
The suggested “EMST” Algorithm finds the global minimum at each run for all test prob-
lems, even though some of the proposed methods in the literature were unable to find the
global minima of some test problems at each run.

Combining this suggested stochastic technique “EMST” with classical optimization
methods, such as direct search methods, indirect search methods or even with other meta-
heuristics methods will improve the performance of the “EMST” algorithm on many problems.

In other words, it is possible to minimize the number of function evaluations by
combining (in a hybrid way) the proposed “EMST” algorithm with another inexpensive
traditional method. This is a research topic that should be considered.

We think it is possible to extend the proposed method to deal with constrained opti-
mization problems. This is the topic of our future work. Convergence analysis of the “EMST”
algorithm will be considered in future work by using homogeneous or inhomogeneous
Markov chain theory.

In principle, all meta-heuristic strategies depend on the stochastic search for the next
solution. Consequently, the current version of the simulated-annealing algorithm is distin-
guished from the other algorithms mentioned in this study by the following: the five modi-
fied and proposed standard features have granted the new suggested algorithm consecutive
opportunities to escape from a local point at each run during finding the global minimizer of
the non-convex function. Therefore, this novelty in the proposed algorithm makes it capable
of finding the global minimizer of the non-convex function at each run compared to the algo-
rithms that are listed in this study.
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