MDPI Article ## Hadamard Compositions of Gelfond-Leont'ev Derivatives Myroslav Sheremeta D Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, 79000 Lviv, Ukraine; m.m.sheremeta@gmail.com **Abstract:** For analytic functions $f_j(z) = \sum_{n=0}^{\infty} a_{n,j} z^n$, $1 \le j \le p$, the notion of a Hadamard composition $$(f_1 * \dots * f_p)_m = \sum_{n=0}^{\infty} \left(\sum_{k_1 + \dots + k_p = m} c_{k_1 \dots k_p} a_{n,1}^{k_1} \cdot \dots \cdot a_{n,p}^{k_p} \right) z^n$$ of genus m is introduced. The relationship between the growth of the Gelfond–Leont'ev derivative of the Hadamard composition of functions f_j and the growth Hadamard composition of Gelfond–Leont'ev derivatives of these functions is studied. We found conditions under which these derivatives and the composition have the same order and a lower order. For the maximal terms of the power expansion of these derivatives, I describe behavior of their ratios. Keywords: analytic function; Gelfond-Leont'ev derivative; Hadamard composition MSC: 30B10; 30B20; 30B40 ### 1. Introduction Let $$f(z) = \sum_{n=0}^{\infty} a_n z^n \tag{1}$$ and $$f_j(z) = \sum_{n=0}^{\infty} a_{n,j} z^n, \quad 1 \le j \le p$$ (2) be analytic functions. As in [1], I say that the function is similar to the Hadamard composition of the functions f_j if $a_n = w(a_{n,1}, \ldots, a_{n,p})$ for all n, where $w : \mathbb{C}^p \to \mathbb{C}$ is a continuous function. Clearly, if p = 2 and $w(a_{n,1}, a_{n,2}) = a_{n,1}a_{n,2}$, then $f = (f_1 * f_2)$ is [2] the Hadamard composition (product) of the functions f_1 and f_2 . Obtained by J. Hadamard, the properties of this composition find the applications [3,4] in the theory of the analytic continuation of the functions represented by a power series. Here, I consider the case when w is a homogeneous polynomial. Recall that a polynomial is named homogeneous if all monomials with nonzero coefficients have the identical degree. A polynomial $P(x_1, \ldots, x_p)$ is homogeneous to the degree m if, and only if, $P(tx_1, \ldots, tx_p) = t^m P(x_1, \ldots, x_p)$ for all t from the field above that a polynomial is defined. Function (1) is called a Hadamard composition of genus $m \ge 1$ of functions (2) if $a_n = P(a_{n,1}, \ldots, a_{n,p})$, where $$P(x_1,...,x_p) = \sum_{k_1+\cdots+k_p=m} c_{k_1...k_p} x_1^{k_1} \cdot ... \cdot x_p^{k_p}, \quad k_j \in \mathbb{Z}_+$$ is a homogeneous polynomial of degree $m \ge 1$ with constant fixed coefficients $c_{k_1...k_p}$. I remark that the usual Hadamard composition is a special case of the Hadamard composition Citation: Sheremeta, M. Hadamard Compositions of Gelfond–Leont'ev Derivatives. *Axioms* **2022**, *11*, 478. https://doi.org/10.3390/ axioms11090478 Academic Editor: Hari Mohan Srivastava Received: 19 August 2022 Accepted: 16 September 2022 Published: 18 September 2022 **Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Axioms 2022, 11, 478 2 of 14 of the genus m = 2. The Hadamard composition of genus $m \ge 1$ of functions f_j I denote by $(f_1 * ... * f_p)_m$, i.e., $$(f_1 * \dots * f_p)_m(z) = \sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} \left(\sum_{k_1 + \dots + k_p = m} c_{k_1 \dots k_p} a_{n,1}^{k_1} \cdot \dots \cdot a_{n,p}^{k_p} \right) z^n.$$ For a power series (1) with the convergence radius $R[f] \in [0, +\infty]$ and a power series $l(z) = \sum_{n=0}^{\infty} l_n z^n$ with the convergence radius $R[l] \in [0, +\infty]$ and coefficients $l_n > 0$ for all $n \ge 0$ the power series $$D_l^{(k)}f(z) = \sum_{n=0}^{\infty} \frac{l_n}{l_{n+k}} a_{n+k} z^n$$ (3) is called [5] Gelfond–Leont'ev derivative of the n-th order. If $l(z) = e^z$, then $D_l^{(k)} f(z) = f^{(k)}(z)$ is the usual derivative of the n-th order. The Gelfond–Leont'ev derivative is a very interesting object of investigations (see [6–8]). These derivatives found applications in the theory of univalent analytic functions. They allows researchers to describe the growth of these functions in other terms [7]. There are many papers on the Hadamard composition of analytic functions and the Dirichlet series [9–11]. For example, A. Gaisin and T. Belous [10] studied the maximal term of the Hadamard composition of the Dirichlet series with real exponents. Alower estimate for the sum of a Dirichlet series over a curve arbitrarily approaching the convergence line was obtained. Moreover, in [11] they established a criterion for the logarithm of the maximal term of a Dirichlet series whose absolute convergence domain is a half-plane to be equivalent to the logarithm of the maximal term of its Hadamard composition with another Dirichlet series of some class on the asymptotic set. S. Vakarchuk [9] investigated an interpolation problem for classes of analytic functions generated of the Hadamard compositions and obtained upper and lower bounds for various n-widths for these classes. If R[f] > 0, then, for $0 \le r \le R[f]$, let $M(r,f) = \max\{|f(z)| : |z| = r\}$ and $\mu(r,f) = \max\{|a_n|r^n : n \ge 0\}$ be the maximal term of series (1). M. K. Sen [12,13] researched a connection between the growth of the maximal term of the derivative $(f_1 * f_2)^{(k)}$ of the usual Hadamard composition $f_1 * f_2$ of entire functions f and g and the growth of the maximal term of derivative $f_1^{(k)} * f_2^{(k)}$. In particular, he proved [13] that if the function has the order ϱ and the lower order λ then, for every $\varepsilon > 0$ and all $r \ge r_0(\varepsilon)$, $$r^{(k+2)\lambda-1-\varepsilon} \leq \frac{\mu(r, f^{(k+1)} * g^{(k+1)})}{\mu(r, (f * g)^{(k)})} \leq r^{(k+2)\varrho-1+\varepsilon}.$$ The research of M.K. Sen was continued in [14], where, instead of ordinary derivatives, the Gelfond–Leont'ev derivatives are considered. In particular, in [14] (see also [15] p. 128), the following lemma is proved. **Lemma 1** ([14]). In order for an arbitrary series (1) the equalities $R[f] = +\infty$ and $R[D_l^{(k)}f] = +\infty$ to be equivalent, it is necessary and sufficient that $$0 < q = \underline{\lim}_{n \to \infty} \sqrt[n]{l_n/l_{n+1}} \le \underline{\lim}_{n \to \infty} \sqrt[n]{l_n/l_{n+1}} = Q < +\infty, \tag{4}$$ and, for the equivalence of the equalities R[f]=1 and $R[D_l^{(k)}f]=1$, it is necessary and sufficient that $$\lim_{n \to \infty} \sqrt[n]{l_n/l_{n+1}} = 1. \tag{5}$$ The generalization of the results from [14] to the case of Hadamard compositions of genus $m \ge 1$ has become an actual problem. It allows researchers to study the growth Axioms 2022, 11, 478 3 of 14 properties of these function classes and consider their applications in geometric function theory as it is achieved for usual the Gelfond–Leont'ev derivatives of univalent analytic functions in [6–8]. #### 2. Convergence of Hadamard Compositions of Genus m Clearly, if function (1) is a Hadamard composition of genus m of functions (2) then $$|a_n| \le \sum_{k_1 + \dots + k_n = m} |c_{k_1 \dots k_p}| |a_{n,1}|^{k_1} \cdot \dots \cdot |a_{n,p}|^{k_p}.$$ (6) From R[f], I denote the radius of the convergence of series (1) and suppose that $R[f_j] = R > 0$ for all $1 \le j \le p$. Then from the Cauchy–Hadamard formula, I have $\overline{\lim_{n \to \infty}} \sqrt[n]{|a_{n,j}|} = 1/R[f_j] = 1/R$ and, thus, $|a_{n,j}| \le (1/R + \varepsilon)^n$ for every $\varepsilon > 0$ and all $n \ge n_0(\varepsilon)$. Therefore, (6) implies $$|a_n| \leq \sum_{k_1 + \dots + k_p = m} |c_{k_1 \dots k_p}| \left(\frac{1}{R} + \varepsilon\right)^{nk_1} \cdot \dots \cdot \left(\frac{1}{R} + \varepsilon\right)^{nk_p} = \left(\frac{1}{R} + \varepsilon\right)^{nm} \sum_{k_1 + \dots + k_p = m} |c_{k_1 \dots k_p}|,$$ whence, $\sqrt[n]{|a_n|} \le (1 + o(1))(1/R + \varepsilon)^m$ as $n \to \infty$, i.e., $1/R[f] \le (1/R + \varepsilon)^m$. In view of the arbitrariness of ε , I obtain the inequality $R[F] \ge R^m$. Hence, it follows that, if $R[f_j] = +\infty$ for all j, then $R[(f_1 * \dots * f_p)_m] = +\infty$, and, if $R[f_j] = 1$ for all j, then $R[(f_1 * \dots * f_p)_m] \ge 1$. In order for $R[(f_1*...*f_p)_m]=1$, additional conditions on $a_{n,j}$ are required. For example, I say that the function f_1 is dominant if $|c_{m0...0}||a_{n,1}|^m>0$ for all $n\geq 0$ and $|a_{n,j}|=o(|a_{n,1}|)$ as $n\to\infty$ for all $2\leq j\leq p$. We put $$\Sigma'_{n} = \sum_{k_{1} + \dots + k_{p} = m, k_{1} \neq m} c_{k_{1} \dots k_{p}} a_{n,1}^{k_{1}} \cdot \dots \cdot a_{n,p}^{k_{p}} = \sum_{k_{1} + \dots + k_{p} = m} c_{k_{1} \dots k_{p}} a_{n,1}^{k_{1}} \cdot \dots \cdot a_{n,p}^{k_{p}} - c_{m0...0} a_{n,1}^{m}.$$ Since, for each monomial of the polynomial Σ'_n , the sum of the exponents is equal to m, I have $$\frac{|a_{n,1}|^{k_1}\cdot\ldots\cdot|a_{n,p}|^{k_p}}{|a_{n,1}|^m}=\frac{|a_{n,2}|^{k_2}\cdot\ldots\cdot|a_{n,p}|^{k_p}}{|a_{n,1}|^{m-k_1}}\to 0,\quad n\to\infty,$$ and, thus, $\Sigma'_n = o(|a_{n,1}|^m)$ as $n \to +\infty$. $$|c_{m0...0}||a_{n,1}|^m - |\Sigma'_n| \le |a_n| \le |c_{m0...0}||a_{n,1}|^m + |\Sigma'_n|,$$ we have $|a_n| = (1 + o(1))|c_{m0...0}||a_{n,1}|^m$ as $n \to \infty$, whence $$1 = \frac{1}{R[f_j]} \leq \frac{1}{R[f_1]} = \varliminf_{n \to \infty} \sqrt[nm]{\frac{|a_n|}{|c_{m0...0}|}} = \varliminf_{n \to \infty} \left(\sqrt[n]{|a_n|}\right)^{1/m} = \left(\frac{1}{R[f]}\right)^{1/m},$$ i.e., $R[(f_1 * \dots * f_p)_m] \le 1$ and, thus, $R[(f_1 * \dots * f_p)_m] = 1$. It is easy to check that $$D_l^{(k)}(f_1 * \dots * f_p)_m(z) = \sum_{n=0}^{\infty} \frac{l_n}{l_{n+k}} \left(\sum_{k_1 + \dots + k_p = m} c_{k_1 \dots k_p} a_{n+k,1}^{k_1} \cdot \dots \cdot a_{n+k,p}^{k_p} \right) z^n$$ (7) is the Gelfond–Leont'ev derivative of the Hadamard composition of genus m, and $$(D_l^{(k)} f_1 * \dots * D_l^{(k)} f_p)_m(z) = \sum_{n=0}^{\infty} \left(\frac{l_n}{l_{n+k}} \right)^m \left(\sum_{k_1 + \dots + k_p = m} c_{k_1 \dots k_p} a_{n+k,1}^{k_1} \cdot \dots \cdot a_{n+k,p}^{k_p} \right) z^n$$ (8) Axioms 2022, 11, 478 4 of 14 is the Hadamard composition of genus *m* of the Gelfond–Leont'ev derivatives. **Lemma 2.** If condition (4) holds, then the equalities $R[(D_l^{(k)}f_1*...*D_l^{(k)}f_p)_m] = +\infty$ and $R[D_l^{(k)}(f_1*...*f_p)_m] = +\infty$ are equivalent, and, if condition (5) holds, then the equalities $R[(D_l^{(k)}f_1*...*D_l^{(k)}f_p)_m] = 1$ and $R[D_l^{(k)}(f_1*...*f_p)_m] = 1$ are equivalent. Proof. Indeed, using the Cauchy–Hadamard formula from (7) and (8) with $$a_{n+k} = \sum_{k_1 + \dots + k_p = m} c_{k_1 \dots k_p} a_{n+k,1}^{k_1} \cdot \dots \cdot a_{n+k,p}^{k_p}, \tag{9}$$ we have $$\frac{1}{R[(D_{l}^{(k)}f_{1}*...*D_{l}^{(k)}f_{p})_{m}]} = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_{n+k}| \frac{l_{n}}{l_{n+k}} \left(\frac{l_{n}}{l_{n+1}}\right)^{m-1}} \ge$$ $$\ge \overline{\lim_{n \to \infty}} \sqrt[n]{|a_{n+k}| \frac{l_{n}}{l_{n+k}}} \underline{\lim_{n \to \infty}} \sqrt[n]{\left(\frac{l_{n}}{l_{n+1}}\right)^{m-1}} = \frac{1}{R[D_{l}^{(k)}(f_{1}*...*f_{p})_{m}]} \underline{\lim_{n \to \infty}} \left(\frac{l_{n}}{l_{n+k}}\right)^{(m-1)/n}$$ and, similarly, $$\frac{1}{R[(D_l^{(k)}f_1*\ldots*D_l^{(k)}f_p)_m]} \leq \frac{1}{R[D_l^{(k)}(f_1*\ldots*f_p)_m]} \frac{\overline{\lim}}{l_{m+k}} \left(\frac{l_n}{l_{n+k}}\right)^{(m-1)/n}.$$ The last inequality yields the validity of Lemma 2. \Box #### 3. Hadamard Compositions of Gelfond-Leont'ev Derivatives of Entire Functions We will remind that the most widely-used descriptions of entire transcendental function f are the lower order $\lambda[f] = \varliminf_{r \to +\infty} \frac{\ln \ln M(r,f)}{\ln r}$ and the order $\varrho[f] = \varlimsup_{r \to +\infty} \frac{\ln \ln M(r,f)}{\ln r}$. In view of the Cauchy inequality, I have $$\mu(r,f) \le M(r,f) \le \sum_{n=0}^{\infty} |a_n| (2r)^n 2^{-n} \le 2\mu(2r,f),$$ whence it follows that $\lambda[f] = \underline{\lim}_{r \to +\infty} \frac{\ln \ln \mu(r, f)}{\ln r}$ and $\varrho[f] = \overline{\lim}_{r \to +\infty} \frac{\ln \ln \mu(r, f)}{\ln r}$. **Proposition 1.** *If condition* (4) *holds, then for every k* $$\lambda[(D_l^{(k)}f_1*...*D_l^{(k)}f_p)_m] = \lambda[D_l^{(k)}(f_1*...*f_p)_m] = \lambda[(f_1*...*f_p)_m]$$ and $$\varrho[(D_l^{(k)}f_1*\ldots*D_l^{(k)}f_p)_m] = \varrho[D_l^{(k)}(f_1*\ldots*f_p)_m] = \varrho[(f_1*\ldots*f_p)_m].$$ **Proof.** At first, let k = 1. From condition (4), the existence of the numbers $0 < q_1 \le q_2 < +\infty$ follows such that $q_1^n \le l_n/l_{n+1} \le q_2^n$ for all $n \ge 0$. Therefore, using (9), I obtain $$r\mu(r, D_l^{(1)}(f_1 * \dots * f_p)_m) = \max \left\{ \frac{l_n}{l_{n+1}} | a_{n+1}| r^{n+1} : n \ge 0 \right\} \le$$ $$\le \frac{1}{a_n} \max \left\{ |a_{n+1}| (q_2 r)^{n+1} : n \ge 0 \right\} \le \frac{\mu(q_2 r, (f_1 * \dots * f_p)_m)}{a_n}$$ Axioms 2022, 11, 478 5 of 14 and, by analogy, $$r\mu(r, D_l^{(1)}(f_1 * \dots * f_p)_m) \ge \frac{\mu(q_1r, (f_1 * \dots * f_p)_m)}{q_1}$$ for all large-enough r. $\ln r = o(\ln \mu(r, f))$ as $r \to +\infty$ for each entire transcendental function, hence, I obtain $$(1+o(1)) \ln \mu(q_1r, (f_1 * \dots * f_p)_m) \le \ln \mu(r, D_l^{(1)}(f_1 * \dots * f_p)_m) \le$$ $$\le (1+o(1)) \ln \mu(q_2r, (f_1 * \dots * f_p)_m)$$ as $r \to +\infty$. Hence, it follows that $\lambda[D_l^{(1)}(f_1 * ... * f_p)_m] = \lambda[(f_1 * ... * f_p)_m]$ and $\varrho[D_l^{(1)}(f_1 * ... * f_p)_m] = \varrho[(f_1 * ... * f_p)_m]$. Since $D_l^{(k+1)} f(z) = D_l^{(1)} D_l^{(k)} f(z)$, the equalities $\lambda [D_l^{(k)} (f_1 * \dots * f_p)_m] = \lambda [(f_1 * \dots * f_p)_m]$ and $\varrho[D_l^{(k)} (f_1 * \dots * f_p)_m] = \varrho[(f_1 * \dots * f_p)_m]$ are proved. $$\mu(r, (D_l^{(k)} f_1 * \dots * D_l^{(k)} f_p)_m) = \max \left\{ \left(\frac{l_n}{l_{n+k}} \right)^{m-1} \frac{l_n}{l_{n+k}} |a_{n+k}| r^n : n \ge 0 \right\} \ge$$ $$\ge \max \left\{ q_1^{n(m-1)} \frac{l_n}{l_{n+k}} |a_{n+k}| r^n : n \ge 0 \right\} = \max \left\{ \frac{l_n}{l_{n+k}} |a_{n+k}| (q_1^{(m-1)} r)^n : n \ge 0 \right\} =$$ $$= \mu(q_1^{(m-1)} r, D_l^{(k)} (f_1 * \dots * f_p)_m)$$ and, by analogy, $$\mu(r, (D_l^{(k)}f_1 * ... * D_l^{(k)}f_p)_m) \le \mu(q_1^{(m-1)}r, D_l^{(k)}(f_1 * ... * f_p)_m),$$ whence, as above, I obtain $\lambda[(D_l^{(k)}f_1*...*D_l^{(k)}f_p)_m] = \lambda[D_l^{(k)}(f_1*...*f_p)_m]$ and $\varrho[(D_l^{(k)}f_1*...*f_p)_m] = \varrho[D_l^{(k)}(f_1*...*f_p)_m]$. \square Now let me establish a connection between the growth of a function $f=(f_1*\ldots*f_p)_m$ and the growth of functions f_j . Since $|a_n|\leq \sum\limits_{k_1+\cdots+k_p=m}|c_{k_1...k_p}||a_{n,1}|^{k_1}\cdot\ldots\cdot|a_{n,p}|^{k_p}$, I have $$|a_n|r^{mn} \leq \sum_{k_1+\cdots+k_p=m} |c_{k_1\ldots k_p}|(|a_{n,1}|r^n)^{k_1}\cdot\ldots\cdot(|a_{n,p}|r^n)^{k_p},$$ i.e., $$\mu(r^m, f) \le \sum_{k_1 + \dots + k_p = m} |c_{k_1 \dots k_p}| \mu(r, f_1)^{k_1} \cdot \dots \cdot \mu(r, f_p)^{k_p},$$ whence, for all r large enough, I get $$\ln \mu(r^{m}, f) \leq \sum_{k_{1} + \dots + k_{p} = m} \ln \left(|c_{k_{1} \dots k_{p}}| \mu(r, f_{1})^{k_{1}} \cdot \dots \cdot \mu(r, f_{p})^{k_{p}} \right) + K_{1} =$$ $$= \sum_{k_{1} + \dots + k_{p} = m} (\ln |c_{k_{1} \dots k_{p}}| + k_{1} \ln \mu(r, f_{1}) + \dots + k_{p} \ln \mu(r, f_{p})) + K_{1} \leq$$ $$\leq \sum_{k_{1} + \dots + k_{p} = m} (k_{1} \ln \mu(r, f_{1}) + \dots + k_{p} \ln \mu(r, f_{p})) + K_{2}, \quad (K_{j} \equiv \text{const} > 0). \tag{10}$$ Axioms 2022, 11, 478 6 of 14 > Let $\max\{\varrho[f_j]: 1 \le j \le p\} = \varrho < +\infty$. Then, $\ln \mu(r, f_j) \le r^{\varrho + \varepsilon}$ for every $\varepsilon > 0$ all $r \ge r_0(\varepsilon)$ and all j. Therefore, in view of (10) $$\ln \mu(r^m, f) \le r^{\varrho + \varepsilon} \sum_{k_1 + \dots + k_p = m} (k_1 + \dots + k_p) + K_2,$$ whence $$\varrho[f] = \overline{\lim_{r \to +\infty}} \frac{\ln \ln \mu(r^m, f)}{\ln r^m} = \overline{\lim_{r \to +\infty}} \frac{\ln \ln \mu(r^m, f)}{m \ln r} \le \frac{\varrho + \varepsilon}{m},$$ and, in view of the arbitrariness of ε , I obtain $m\varrho[f] \leq \varrho$. Suppose now that the function f_1 is dominant. Then $|a_n| = (1 + o(1))|c_{m0...0}||a_{n,1}|^m$ as $n \to \infty$ and, thus, $|a_n|r^{mn} = (1 + o(1))|c_{m0...0}|(|a_{n,1}|r^n)^m$ as $n \to \infty$, whence it follows that $$A_1\mu(r, f_1)^m \le \mu(r^m, f) \le A_2\mu(r, f_1)^m, \quad (A_1, A_2 = \text{const} > 0).$$ (11) Using (11), as above, I obtain $m\varrho[f] = \varrho[f_1]$ and $m\lambda[f] = \lambda[f_1]$. Thus, the following statement is proved. **Proposition 2.** Let f_1, \ldots, f_p be entire transcendental functions, and condition (4) holds. If $\varrho[f_1] =$... = $\varrho[f_p] = \varrho$, then $m\varrho[(f_1 * ... * f_p)_m] \le \varrho$, and, if among functions $f_1, ..., f_p$ there is a dominant function f_1 , then $m\varrho[(f_1 * ... * f_p)_m] = \varrho$. Moreover, if among functions $f_1, ..., f_p$ there is a dominant function f_1 then $m\lambda[(f_1 * ... * f_p)_m] = \lambda[f_1]$. Let us now examine the growth of the ratio $\frac{\mu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m)}{\mu(r,D_l^{(k)}(f_1*\ldots*f_p)_m)}$, $j\geq k$. Let $\nu(r,f)=\max\{n:|a_n|r^n=\mu(r,f)\}$ be the central index of series (1). Then, $\mu(r,f)=\frac{\mu(r,f)}{\mu(r,f)}$ and therefore $|a_{\nu(r,f)}|r^{\nu(r,f)}$ and, therefore, $$\mu(r, D_l^{(k)}(f_1 * \dots * f_p)_m) = \frac{l_{\nu(r, D_l^{(k)}f)}}{l_{\nu(r, D_l^{(k)}f) + k}} |a_{\nu(r, D_l^{(k)}f) + k}| r^{\nu(r, D_l^{(k)}f)} =$$ $$= \left(\frac{l_{\nu(r, D_l^{(k)}f) + k}}{l_{\nu(r, D_l^{(k)}f) + k - j}}\right)^{m-1} \frac{l_{\nu(r, D_l^{(k)}f)}}{l_{\nu(r, D_l^{(k)}f) + k - j}} \times$$ $$\times \left(\frac{l_{\nu(r, D_l^{(k)}f) + k - j}}{l_{\nu(r, D_l^{(k)}f) + k - j + j}}\right)^{m} |a_{\nu(r, D_l^{(k)}) + k - j + j}| r^{\nu(r, D_l^{(k)}f) + k - j} r^{j - k} \le$$ $$\le \left(\frac{l_{\nu(r, D_l^{(k)}f) + k}}{l_{\nu(r, D_l^{(k)}f) + k - j}}\right)^{m-1} \frac{l_{\nu(r, D_l^{(k)}f)}}{l_{\nu(r, D_l^{(k)}f) + k - j}} r^{j - k} \mu(r, (D_l^{(j)}f_1 * \dots * D_l^{(j)}f_p)_m)$$ and $$\begin{split} \mu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m) &= \\ &= \left(\frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m} \right)^m |a_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m)+j}| r^{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m)} &= \\ &= \left(\frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m} \right)^m |a_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m)+j-k+k}| r^{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j} \\ &= \left(\frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j} \right)^m |a_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m)+j-k+k}| r^{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j} \\ &= \left(\frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m} \right)^{m-1} \frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m} \times \\ &= \left(\frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j} \right)^{m-1} \frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} \times \\ &= \left(\frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j} \right)^{m-1} \frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} \times \\ &= \left(\frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j} \right)^{m-1} \frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j} \right)^{m-1} \frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j} \\ &= \left(\frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j} \right)^{m-1} \frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j} \right)^{m-j} \frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j} \\ &= \left(\frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j} \right)^{m-j} \frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j} \right)^{m-j} \frac{l}{l}_{\nu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m+j-k} r^{k-j}$$ Axioms 2022. 11, 478 7 of 14 $$\times \frac{l_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})_{m}+j-k}}{l_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})_{m}+j}}|a_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})_{m})+j-k+k}|r^{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})_{m}+j-k}r^{k-j} \leq \\ \leq \left(\frac{l_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})_{m}}}{l_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})_{m}+j-k}}r^{k-j}\mu(r,D_{l}^{(k)}(f_{1}*...*f_{p})_{m}). \right)^{m-1} \frac{l_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})_{m}}r^{k-j}\mu(r,D_{l}^{(k)}(f_{1}*...*f_{p})_{m}).$$ Hence, it follows that $$\left(\frac{l}{l} \frac{v(r, D_{l}^{(k)}f) + k - j}{l} \frac{l}{v(r, D_{l}^{(k)}f) + k - j} \le \frac{r^{j-k}\mu(r, (D_{l}^{(j)}f_{1} * \dots * D_{l}^{(j)}f_{p})_{m})}{\mu(r, D_{l}^{(k)}(f_{1} * \dots * f_{p})_{m})} \le \frac{l}{v(r, D_{l}^{(j)}f_{1} * \dots * D_{l}^{(j)}f_{p})_{m}} \le \left(\frac{l}{l} \frac{l}{v(r, (D_{l}^{(j)}f_{1} * \dots * D_{l}^{(j)}f_{p})_{m}} \frac{l}{l} \frac{l}{v(r, (D_{l}^{(j)}f_{1} * \dots * D_{l}^{(j)}f_{p})_{m}}}{\frac{l}{l} \frac{l}{v(r, (D_{l}^{(j)}f_{1} * \dots * D_{l}^{(j)}f_{p})_{m} + j - k}} \right)$$ (12) Using (12), I prove such a theorem. **Theorem 1.** Let f_j be entire transcendental functions, $1 \le j \le p$, and (4) hold with q > 1. Then, for each $j \ge k$ $$\underbrace{\lim_{r \to +\infty} \frac{1}{\ln r} \ln \ln \frac{r^{j-k} \mu(r, (D_l^{(j)} f_1 * \dots * D_l^{(j)} f_p)_m)}{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)}}_{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)} = \lambda [(f_1 * \dots * f_p)_m] \tag{13}$$ and $$\overline{\lim}_{r \to +\infty} \frac{1}{\ln r} \ln \ln \frac{r^{j-k} \mu(r, (D_l^{(j)} f_1 * \dots * D_l^{(j)} f_p)_m)}{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)} = \varrho[(f_1 * \dots * f_p)_m].$$ (14) **Proof.** From condition (4), with q > 1 the existence of numbers $1 < q_1 \le q_2 < +\infty$, it follows such that $q_1^{nk} \le l_n/l_{n+k} \le q_2^{nk}$ for all $n \ge n_0$. Therefore, $$\begin{pmatrix} \frac{l}{l}_{\nu(r,D_{l}^{(k)}f)+k-j} \\ \frac{l}{l}_{\nu(r,D_{l}^{(k)}f)+k} \end{pmatrix}^{m-1} \frac{l}{l}_{\nu(r,D_{l}^{(k)}f)+k-j} \geq q_{1}^{(m-1)(\nu(r,D_{l}^{(k)}f)+k-j)j} q_{1}^{(\nu(r,D_{l}^{(k)}f)+k-j)(j-k)} = \\ = q_{1}^{(mj-k)(\nu(r,D_{l}^{(k)}f)+k-j)}, \\ \begin{pmatrix} \frac{l}{l}_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m}) \\ \frac{l}{l}_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m}) + j \end{pmatrix}^{m-1} \frac{l}{l}_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m}) + j-k} \leq \\ q_{2}^{(m-1)\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m}) q_{2}^{(j-k)\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m})} = q_{2}^{(jm-k)\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m})},$$ and, thus, (12) implies $$(mj-k)(\nu(r,D_{l}^{(k)}(f_{1}*...*f_{p})_{m})+k-j)\ln q_{1} \leq \ln \frac{r^{j-k}\mu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})_{m})}{\mu(r,D_{l}^{(k)}(f_{1}*...*f_{p})_{m})} \leq (mj-k)\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})_{m})\ln q_{2}.$$ $$(15)$$ Axioms 2022, 11, 478 8 of 14 It is well known ([16], p. 13) that $$\ln \mu(r,f) = \ln \mu(1,f) + \int_{1}^{r} \frac{\nu(t,f)}{t} dt.$$ (16) Hence, I get $\ln \mu(r,f) \leq \ln \mu(1,f) + \nu(r,f) \ln r$, $\ln \mu(r,f) \geq \ln \mu(1,f) + \nu(r/2,f) \ln 2$ and, thus, $\lambda[f] = \varliminf_{r \to +\infty} \frac{\ln \nu(r,f)}{\ln r}$, $\varrho[f] = \varlimsup_{r \to +\infty} \frac{\ln \nu(r,f)}{\ln r}$. Therefore, by Proposition 1 $$\underline{\lim_{r\to+\infty}} \frac{\ln \nu(r, D_l^{(k)}(f_1*\ldots*f_p)_m)}{\ln r} = \lambda[D_l^{(k)}(f_1*\ldots*f_p)_m] = \lambda[(f_1*\ldots*f_p)_m],$$ $$\overline{\lim_{r\to+\infty}} \frac{\ln \nu(r, D_l^{(k)}(f_1*\ldots*f_p)_m)}{\ln r} = \varrho[D_l^{(k)}(f_1*\ldots*f_p)_m] = \varrho[(f_1*\ldots*f_p)_m],$$ and these equalities hold good if, instead of $D_l^{(k)}(f_1*...*f_p)_m$, it is possible to put $(D_l^{(k)}f_1*...*D_l^{(k)}f_p)_m$. From this and (15), I obtain (13) and (14). Theorem 1 is proved. \square For j = k, Theorem 1 implies the following statement. **Corollary 1.** Let f_i be entire functions, $1 \le j \le p$, and (4) holds with q > 1. Then, for each $k \ge 1$ $$\lim_{r \to +\infty} \frac{1}{\ln r} \ln \ln \frac{\mu(r, (D_l^{(k)} f_1 * \dots * D_l^{(k)} f_p)_m)}{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)} = \lambda [(f_1 * \dots * f_p)_m]$$ and $$\overline{\lim_{r \to +\infty}} \frac{1}{\ln r} \ln \ln \frac{\mu(r, (D_l^{(k)} f_1 * \dots * D_l^{(k)} f_p)_m)}{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)} = \varrho[(f_1 * \dots * f_p)_m].$$ From Corollary 1 and Proposition 2, I obtain the following corollary. **Corollary 2.** Suppose that, among entire functions f_1, \ldots, f_p , there is a dominant function f_1 . If condition (4) holds with q > 1 then, for each $k \ge 1$, $$\lim_{r \to +\infty} \frac{1}{\ln r} \ln \ln \frac{\mu(r, (D_l^{(k)} f_1 * \dots * D_l^{(k)} f_p)_m)}{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)} = \frac{\lambda [f_1]}{m}$$ and $$\overline{\lim_{r \to +\infty}} \frac{1}{\ln r} \ln \ln \frac{\mu(r, (D_l^{(k)} f_1 * \dots * D_l^{(k)} f_p)_m)}{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)} = \frac{\varrho[f_1]}{m}.$$ Let us now consider the case when, instead of condition (5), the stronger condition $$0 < \overline{\lim}_{n \to \infty} \frac{l_n}{(n+1)l_{n+1}} \le \overline{\lim}_{n \to \infty} \frac{l_n}{(n+1)l_{n+1}} < +\infty \tag{17}$$ is fulfilled. **Theorem 2.** Let f_i be entire functions, $1 \le j \le p$, and (17) hold, then, for each $j \ge k$, $$\lim_{r \to +\infty} \frac{1}{\ln r} \ln \frac{\mu(r, (D_l^{(j)} f_1 * \dots * D_l^{(j)} f_p)_m)}{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)} = (mj - k) \lambda [(f_1 * \dots * f_p)_m] + k - j \qquad (18)$$ Axioms 2022, 11, 478 9 of 14 and $$\frac{\overline{\lim}}{r \to +\infty} \frac{1}{\ln r} \ln \frac{\mu(r, (D_l^{(j)} f_1 * \dots * D_l^{(j)} f_p)_m)}{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)} = (mj - k) \varrho[(f_1 * \dots * f_p)_m] + k - j.$$ (19) **Proof.** From condition (17), the existence of numbers $0 < h_1 \le h_2 < +\infty$ follows such that $(h_1 n)^k \le l_n / l_{n+k} \le (h_2 n)^k$. Therefore, $$\left(\frac{l_{\nu(r,D_{l}^{(k)}f)+k-j}}{l_{\nu(r,D_{l}^{(k)}f)+k}}\right)^{m-1} \frac{l_{\nu(r,D_{l}^{(k)}f)+k-j}}{l_{\nu(r,D_{l}^{(k)}f)}} \geq \\ \geq h_{1}^{(m-1)j} (\nu(r,D_{l}^{(k)}f)+k-j)^{(m-1)j} h_{1}^{j-k} (\nu(r,D_{l}^{(k)}f)+k-j)^{j-k} = \\ = h_{1}^{mj-k} (\nu(r,D_{l}^{(k)}f)+k-j)^{mj-k}, \\ \left(\frac{l_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m})}{l_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m})+j}\right)^{m-1} \frac{l_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m})}{l_{\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m)+j-k}} \leq \\ (h_{2}\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m))^{j(m-1)} (h_{2}\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m))^{j-k} = \\ = (h_{2}\nu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})m))^{mj-k},$$ and, thus, (12) implies $$(mj - k) \ln (\nu(r, D_l^{(k)}(f_1 * \dots * f_p)_m)) + k - j) + (mj - k) \ln h_1 \le$$ $$\le (j - k) \ln r + \ln \frac{r^{j - k} \mu(r, (D_l^{(j)} f_1 * \dots * D_l^{(j)} f_p)_m)}{\mu(r, D_l^{(k)}(f_1 * \dots * f_p)_m)} \le$$ $$\le (mj - k) \ln (\nu(r, (D_l^{(j)} f_1 * \dots * D_l^{(j)} f_p)_m + (mj - k) \ln h_2.$$ Hence, as above, I obtain $$j - k + \lim_{r \to +\infty} \frac{1}{\ln r} \ln \frac{\mu(r, (D_l^{(j)} f_1 * \dots * D_l^{(j)} f_p)_m)}{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)} = (mj - k) \lambda [(f_1 * \dots * f_p)_m]$$ and $$j - k + \overline{\lim}_{r \to +\infty} \frac{1}{\ln r} \ln \frac{\mu(r, (D_l^{(j)} f_1 * \dots * D_l^{(j)} f_p)_m)}{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)} = (mj - k) \varrho[(f_1 * \dots * f_p)_m],$$ i.e., (18) and (19) hold. Theorem 2 is proved. \Box For j = k + 1, Theorem 2 implies the following statement. **Corollary 3.** Let f_j be entire functions, $1 \le j \le p$, and (17) hold, then, for each $k \ge 1$, $$\lim_{r \to +\infty} \frac{1}{\ln r} \ln \frac{\mu(r, (D_l^{(k+1)} f_1 * \dots * D_l^{(k+1)} f_p)_m)}{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)} = ((m-1)k + m)\lambda[(f_1 * \dots * f_p)_m] - 1$$ Axioms 2022, 11, 478 10 of 14 and $$\overline{\lim_{r \to +\infty}} \frac{1}{\ln r} \ln \frac{\mu(r, (D_l^{(k+1)} f_1 * \dots * D_l^{(k+1)} f_p)_m)}{\mu(r, D_l^{(k)} (f_1 * \dots * f_p)_m)} = ((m-1)k + m)\varrho[(f_1 * \dots * f_p)_m] - 1.$$ Choosing $l_n = 1/n!$ and m = 2 from Corollary 3, I get the above result of M.K. Sen [12], i.e., Lemma 1. # 4. Hadamard Compositions of Gelfond-Leont'ev Derivatives for Functions Analytic in a Disk For the functions analytic in the disk $U = \{z : |z| < 1\}$, the lower order $\lambda_U[f]$ and the order $\varrho_U[f]$ are defined as $$\lambda_{U}[f] = \underline{\lim}_{r \uparrow 1} \frac{\ln^{+} \ln M(r, f)}{-\ln (1 - r)}, \quad \varrho_{U}[f] = \overline{\lim}_{r \uparrow 1} \frac{\ln^{+} \ln M(r, f)}{-\ln (1 - r)}.$$ Since $$\mu(r,f) \leq M(r,f) \leq \sum_{n=0}^{\infty} |a_n| \left(\frac{1+r}{2}\right)^n \left(\frac{2r}{1+r}\right)^n \leq \frac{1+r}{1-r} \mu\left(\frac{1+r}{2},f\right),$$ and in view of (16) for $r \ge 1/e$ $$\nu\left(\frac{1+r}{2},f\right) \ge \int_{1/e}^{(1+r)/2} \frac{\nu(t,f)}{t} dt = \ln \mu\left(\frac{1+r}{2},f\right) - \ln \mu\left(\frac{1}{2},f\right) \ge$$ $$\geq \int_{r}^{(1+r)/2} \frac{v(t,f)}{t} dt \geq v(r,f) \ln \frac{1+r}{2r} = (1+o(1)\frac{1-r}{2}v(r,f), \quad r \uparrow 1,$$ I obtain $$\underline{\lim_{r\uparrow 1}} \frac{\ln^+ \ln \mu(r,f)}{-\ln (1-r)} = \lambda_U[f], \quad \overline{\lim_{r\uparrow 1}} \frac{\ln^+ \ln \mu(r,f)}{-\ln (1-r)} = \varrho_U[f]$$ and $$\lambda_{U}[f] \leq \underline{\lim}_{r \uparrow 1} \frac{\ln^{+} \nu(r, f)}{-\ln(1 - r)} \leq \lambda_{U}[f] + 1, \quad \varrho_{U}[f] \leq \overline{\lim}_{r \uparrow 1} \frac{\ln^{+} \nu(r, f)}{-\ln(1 - r)} \leq \varrho_{U}[f] + 1.$$ (20) **Proposition 3.** *If condition* (17) *holds, then, for every k,* $$\lambda_{U}[(D_{I}^{(k)}f_{1}*...*D_{I}^{(k)}f_{p})_{m}] = \lambda_{U}[D_{I}^{(k)}(f_{1}*...*f_{p})_{m}] = \lambda_{U}[(f_{1}*...*f_{p})_{m}]$$ and $$\varrho_{U}[(D_{I}^{(k)}f_{1}*\ldots*D_{I}^{(k)}f_{p})_{m}] = \varrho_{U}[D_{I}^{(k)}(f_{1}*\ldots*f_{p})_{m}] = \varrho_{U}[(f_{1}*\ldots*f_{p})_{m}].$$ **Proof.** At first, I remark that, for each function f and analytic in U, the equalities $\lambda_U[f'] = \lambda_U[f]$ and $\varrho_U[f'] = \varrho_U[f]$ are true. Indeed, from Cauchy formula $$f'(z) = \frac{1}{2\pi i} \int\limits_{|\tau-z|=(1-|z|)/2} \frac{f(\tau)d\tau}{(\tau-z)^2}$$ I have $M(r,f') \leq 2M((1+r)/2,f)/(1-r)$, and since $f(z)-f(0) = \int\limits_0^z f'(\tau)d\tau$, the inequality $M(r,f) \leq 2M((1+r)/2,f)$ M(r, f') + |f(0)| holds, from which the necessary equalities follow. Axioms 2022, 11, 478 11 of 14 Now, in view of (17) $h_1(n+1) \le l_n/l_{n+1} \le h_2(n+1)$, I have, for k = 1, $$\mu(r, D_l^{(1)}((f_1 * \dots * f_p)_m)) = \max \left\{ \frac{l_n}{l_{n+1}} | a_{n+1} | r^n : n \ge 0 \right\} \le 0$$ $$\leq h_2 \max\{(n+1)|a_{n+1}|r^n: n \geq 0\} = h_2 \mu(r, ((f_1 * \dots * f_p)_m)')$$ and by analogy $\mu(r, D_l^{(1)}(f_1 * \ldots * f_p)_m) \ge h_1 \mu(r, ((f_1 * \ldots * f_p)_m)')$. Hence, it follows that $\lambda_U[D_I^{(1)}(f_1*...*f_p)_m] = \lambda_U[(f_1*...*f_p)_m]$ and $\varrho_U[D_I^{(1)}(f_1*...*f_p)_m] = \varrho_U[(f_1*...*f_p)_m]$... * f_p)_m] and, thus, $\lambda_U[D_I^{(k)}(f_1 * ... * f_p)_m] = \lambda_U[(f_1 * ... * f_p)_m]$ and $\varrho_U[D_I^{(k)}(f_1 * ... * f_p)_m]$ $[f_p)_m] = \varrho_U[(f_1 * \ldots * f_p)_m].$ Since $l_n/l_{n+1} \ge h_1(n+1) \ge h_1$, I have $(l_n/l_{n+k})^{m-1} \ge h_1^{k(m-1)}$, i. e. $$\mu(r, (D_l^{(k)}f_1*...*D_l^{(k)}f_p)_m) = \max\left\{\left(\frac{l_n}{l_{n+k}}\right)^{m-1}\frac{l_n}{l_{n+k}}|a_{n+k}|r^n: n \geq 0\right\} \geq n$$ $$\geq h_1^{k(m-1)}\mu(r,D_l^{(1)}((f_1*\ldots*f_p)_m))$$ and, thus, $\lambda_{U}[D_{l}^{(k)}(f_{1}*\ldots*f_{p})_{m}] \leq \lambda_{U}[(D_{l}^{(k)}f_{1}*\ldots*D_{l}^{(k)}f_{p})_{m}]$ and $\varrho_{U}[D_{l}^{(k)}(f_{1}*\ldots*f_{p})_{m}]$ $[f_p)_m] \le \varrho_U[(D_l^{(k)}f_1*\ldots*D_l^{(k)}f_p)_m].$ On the other hand, $$\left(\frac{l_n}{l_{n+k}}\right)^{m-1} \le \left(h_2^k(n+1)\dots(n+k)\right)^{m-1} \le$$ $$\leq h_2^{k(m-1)}(n+1)\dots(n+k)(n+k+1)\dots(n+2k)\dots(n+(m-2)k+1)\dots(n+(m-1)k).$$ Therefore, $$\begin{split} \mu(r,\,(D_l^{(k)}f_1*\ldots*D_l^{(k)}f_p)_m) &\leq h_2^{k(m-1)}\max\left\{(n+1)\ldots(n+(m-1)k)\frac{l_n}{l_{n+k}}|a_{n+k}|r^n:\,n\geq 0\right\} = \\ &= h_2^{k(m-1)}\max\left\{\left(\frac{l_n}{l_{n+k}}|a_{n+k}|r^{n+(m-1)k}\right)^{((m-1)k)}:\,n\geq 0\right\} = \\ &= h_2^{k(m-1)}\max\left\{\left(r^{k(m-1)}\frac{l_n}{l_{n+k}}|a_{n+k}|r^n\right)^{(k(m-1))}:\,n\geq 0\right\} = h_2^{k(m-1)}\mu(r,F^{(k(m-1))}), \end{split}$$ where $F(z) = z^{k(m-1)}D_l^{(k)}(f_1*\ldots*f_p)_m(z)$. Hence it follows that $\lambda_U[(D_l^{(k)}f_1*\ldots*f_p)_m(z)]$ $D_l^{(k)} f_p)_m] \le \lambda_U[F^{(k(m-1))}] = \lambda_U[F] = \lambda_U[D_l^{(k)} (f_1 * \dots * f_p)_m] \text{ and } \varrho_U[(D_l^{(k)} f_1 * \dots * f_p)_m]$ $D_l^{(k)} f_p)_m \le \varrho_U [D_l^{(k)} (f_1 * \dots * f_p)_m]$. Proposition 3 is proved. The following statement is an analog of Proposition 2. **Proposition 4.** Let f_1, \ldots, f_p be functions analytic in U and condition (17) holds. If $\varrho_U[f_1] =$ $\ldots = \varrho_U[f_p] = \varrho$, then $\varrho_U[(f_1 * \ldots * f_p)_m] \leq m\varrho$, and if. among functions f_1, \ldots, f_p . there is a dominant function f_1 , then $\varrho_U[(f_1 * \ldots * f_p)_m] = m\varrho$. Moreover, if, among functions f_1, \ldots, f_p , there is a dominant function f_1 , then $\lambda_U[(f_1 * \ldots * f_p)_m] = m\lambda_U[f_1]$. **Proof.** Indeed, since $\varrho_U[f_1] = \ldots = \varrho_U[f_p] = \varrho$, for every $\varepsilon > 0$ and all $r \in [r_0(\varepsilon, 1)]$ I have $\ln \mu(r, f_i) \le (1/(1-r))^{\varrho+\varepsilon}$, and (10) implies $\ln \mu(r^m, f) \le C(1/(1-r))^{\varrho+\varepsilon}$ for $r \in [r_0(\varepsilon, 1), r_0]$ where C = const. Therefore, $$\varrho_{U}[f] = \overline{\lim_{r \uparrow 1}} \frac{\ln^{+} \ln \mu(r^{m}, f)}{-\ln (1 - r^{m})} \leq (\varrho + \varepsilon) \overline{\lim_{r \uparrow 1}} \frac{-\ln (1 - r)}{-\ln (1 - r^{m})} \leq (\varrho + \varepsilon) \overline{\lim_{r \uparrow 1}} \frac{1 - r^{m}}{1 - r} = (\varrho + \varepsilon)m,$$ Axioms 2022. 11, 478 12 of 14 and, in view of the arbitrariness of ε , I obtain $\varrho_U[(f_1 * \ldots * f_p)_m] \leq m\varrho$. If the function f_1 is dominant, then, from (11), I obtain $\varrho_U[f] = m\varrho_U[f_1]$ and $\lambda_U[f] = m\lambda_U[f_1]$. \square Using (12) and (20), I can investigate the growth of the ratio $\frac{\mu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m)}{\mu(r,D_l^{(k)}(f_1*\ldots*f_p)_m)}$ in the case of analytic functions in U. I will not dwell on this, but rather study the growth of the ratio $\frac{\mu(r,D_l^{(j)}(f_1*\ldots*f_p)_m)}{\mu(r,D_l^{(k)}(f_1*\ldots*f_p)_m)} \text{ for } j>k \text{ and the ratio } \frac{\mu(r,(D_l^{(j)}f_1*\ldots*D_l^{(j)}f_p)_m)}{\mu(r,(D_l^{(k)}f_1*\ldots*D_l^{(k)}f_p)_m)}$ for j>k. As above, I have $$\begin{split} \mu(r,D_l^{(k)}(f_1*\ldots*f_p)_m) &= \frac{l_{\nu(r,D_l^{(k)}f)}}{l_{\nu(r,D_l^{(k)}f)+k}} |a_{\nu(r,D_l^{(k)}f)+k}| r^{\nu(r,D_l^{(k)}f)} = \\ &= \frac{l_{\nu(r,D_l^{(k)}f)}}{l_{\nu(r,D_l^{(k)}f)+k-j}} \frac{l_{\nu(r,D_l^{(k)}f)+k-j}}{l_{\nu(r,D_l^{(k)}f)+k-j+j}} |a_{\nu(r,D_l^{(k)}f)+k-j+j}| r^{\nu(r,D_l^{(k)}f)+k-j}r^{j-k} \leq \\ &\leq \frac{l_{\nu(r,D_l^{(k)}f)}}{l_{\nu(r,D_l^{(k)}f)+k-j}} r^{j-k} \mu(r,D_l^{(j)}(f_1*\ldots*f_p)_m) \end{split}$$ and, similarly, $$\mu(r, D_l^{(j)}(f_1 * \ldots * f_p)_m) \leq \frac{l_{\nu(r, D_l^{(j)}f)}}{l_{\nu(r, D_l^{(j)}f) + j - k}} r^{k-j} \mu(r, D_l^{(k)}(f_1 * \ldots * f_p)_m).$$ Therefore, $$\frac{l}{l}_{\nu(r,D_l^{(k)}f)+k-j} \leq \frac{r^{j-k}\mu(r,D_l^{(j)}(f_1*\ldots*f_p)_m)}{\mu(r,D_l^{(k)}(f_1*\ldots*f_p)_m)} \leq \frac{l}{l}_{\nu(r,D_l^{(j)}f)+j-k}.$$ (21) Using (21), I prove following theorem. **Theorem 3.** Let f_j be analytic functions in U, $1 \le j \le p$, and let (17) hold, then, for each $j \ge k$, $$(j-k)\lambda_{U}[(f_{1}*...*f_{p})_{m}] \leq \underline{\lim}_{r\uparrow 1} \frac{1}{-\ln(1-r)} \ln \frac{\mu(r, D_{l}^{(j)}(f_{1}*...*f_{p})_{m})}{\mu(r, D_{l}^{(k)}(f_{1}*...*f_{p})_{m})} \leq (j-k)(\lambda_{U}[(f_{1}*...*f_{p})_{m}]+1)$$ $$(j-k)\varrho_{U}[(f_{1}*\ldots*f_{p})_{m}] \leq \overline{\lim_{r\uparrow 1}} \frac{1}{-\ln{(1-r)}} \ln{\frac{\mu(r,D_{l}^{(j)}(f_{1}*\ldots*f_{p})_{m})}{\mu(r,D_{l}^{(k)}(f_{1}*\ldots*f_{p})_{m})}} \leq (j-k)(\varrho_{U}[(f_{1}*\ldots*f_{p})_{m}]+1).$$ **Proof.** Since $(h_1 n)^k \le l_n / l_{n+k} \le (h_2 n)^k$, I have $$\frac{l}{l}_{\nu(r,D_l^{(k)}f)+k-j} = \frac{l}{l}_{\nu(r,D_l^{(k)}f)+k-j+j-k} \ge (h_1\nu(r,D_l^{(k)}f)+k-j)^{j-k}$$ and $$\frac{l_{\nu(r,D_l^{(j)}f)}}{l_{\nu(r,D_l^{(j)}f)+j-k}} \le (h_2\nu(r,D_l^{(j)}f))^{j-k}.$$ Axioms 2022. 11, 478 13 of 14 Therefore, (21) implies $$(1+o(1))(j-k)\ln\nu(r,D_l^{(k)}f) \le \ln\frac{\mu(r,D_l^{(j)}(f_1*\ldots*f_p)_m)}{\mu(r,D_l^{(k)}(f_1*\ldots*f_p)_m)} \le (1+o(1))(j-k)\ln\nu(r,D_l^{(j)}f)$$ as $r \uparrow 1$, i.e., in view of (20) and Proposition 3, I obtain $$(j-k)\lambda_{U}[f] \leq \underline{\lim}_{r \uparrow 1} \frac{1}{-\ln(1-r)} \ln \frac{\mu(r, D_{l}^{(j)}(f_{1} * \dots * f_{p})_{m})}{\mu(r, D_{l}^{(k)}(f_{1} * \dots * f_{p})_{m})} \leq (j-k)(\lambda_{U}[f] + 1)$$ and $$(j-k)\varrho_{U}[f] \leq \overline{\lim}_{r \uparrow 1} \frac{1}{-\ln{(1-r)}} \ln{\frac{\mu(r, D_{l}^{(j)}(f_{1} * \dots * f_{p})_{m})}{\mu(r, D_{l}^{(k)}(f_{1} * \dots * f_{p})_{m})}} \leq (j-k)(\varrho_{U}[f] + 1).$$ Q.E.D. Since series (8) differs from series (7), only that instead l_k/l_{k+1} , it contains $(l_k/l_{k+1})^m$, I will easily prove the inequalities $$\left(\frac{l_{\nu(r,D_l^{(k)}f)+k-j}}{l_{\nu(r,D_l^{(k)}f)}}\right)^m \leq \frac{r^{j-k}\mu(r,D_l^{(j)}(f_1*\ldots*f_p)_m)}{\mu(r,D_l^{(k)}(f_1*\ldots*f_p)_m)} \leq \left(\frac{l_{\nu(r,D_l^{(j)}f)}}{l_{\nu(r,D_l^{(j)}f)+j-k}}\right)^m,$$ whence, as in the proof of Theorem 3, I will come to the next theorem. **Theorem 4.** Let f_j be analytic functions in U, $1 \le j \le p$, and let (17) hold, then, for each $j \ge k$, $$m(j-k)\lambda_{U}[(f_{1}*...*f_{p})_{m}] \leq \underline{\lim}_{r\uparrow 1} \frac{1}{-\ln(1-r)} \ln \frac{\mu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})_{m})}{\mu(r,(D_{l}^{(k)}f_{1}*...*D_{l}^{(k)}f_{p})_{m})} \leq m(j-k)(\lambda_{U}[(f_{1}*...*f_{p})_{m}]+1)$$ and $$m(j-k)\varrho_{U}[(f_{1}*...*f_{p})_{m}] \leq \overline{\lim_{r\uparrow 1}} \frac{1}{-\ln(1-r)} \ln \frac{\mu(r,(D_{l}^{(j)}f_{1}*...*D_{l}^{(j)}f_{p})_{m})}{\mu(r,(D_{l}^{(k)}f_{1}*...*D_{l}^{(k)}f_{p})_{m})} \leq m(j-k)(\varrho_{U}[(f_{1}*...*f_{p})_{m}]+1).$$ #### 5. Discussion In conclusion, I note that, in addition to the analytic continuation of functions, the usual Hadamard composition was used in other aspects of complex analysis (in particular, in the geometric function theory). One can naturally hope that the Hadamard composition of the genus m will also find applications in similar areas of mathematics. Funding: This research received no external funding. Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Data Availability Statement: Not applicable. **Acknowledgments:** I cordially thank the anonymous reviewers for their valuable comments, which have significantly improved the text. Conflicts of Interest: The author declares no conflict of interest. Axioms 2022, 11, 478 14 of 14 #### References 1. Mulyava, O.M.; Sheremeta, M.M. Compositions of Dirichlet series similar to the Hadamard compositions, and convergence classes. *Mat. Stud.* **2019**, *51*, 25–34. [CrossRef] - 2. Hadamard, J. Theoreme sur le series entieres. Acta Math. 1899, 22, 55–63. [CrossRef] - 3. Hadamard, J. La serie de Taylor et son prolongement analitique. Sci. Phys.-Math. 1901, 12, 43–62. - 4. Bieberbach, L. Analytische Fortzetzung; Springer: Berlin, Germany, 1955. - 5. Gel'fond, A.O.; Leont'ev, A.F. On a generalization of Fourier series. Matem. Sb. 1951, 29, 477–500. (In Russian) - 6. Patel, J.; Kapoor, G.P. Analytic functions with some univalent Gelfond–Leontev derivatives II. *Period. Math. Hung.* **1993**, 27, 213–222. [CrossRef] - 7. Kapoor, G.P.; Juneja, O.P.; Patel, J. Growth of Entire Functions With Some Univalent Gelfond–Leontev Derivatives. *Int. J. Math. Math. Sci.* **1989**, 12, 15–28. [CrossRef] - 8. Juneja, O.P.; Shah, S.M. Univalent functions with univalent Gelfond–Leontev derivatives. *Bull. Aust. Math. Soc.* **1984**, *29*, 329–348. [CrossRef] - 9. Vakarchuk, S.B. Estimates of the Values of n-Widths of Classes of Analytic Functions in the Weight Spaces $H_{2,\gamma}(D)$. *Math. Notes* **2020**, *108*, 775–790. [CrossRef] - 10. Gaisin, A.M.; Belous, T.I. Estimation over curves of the functions given by Dirichlet series on a half-plane. *Sib. Math. J.* **2003**, 44, 22–36. [CrossRef] - 11. Gaisin, A.M.; Belous, T.I. B-stability of the maximal term of the Hadamard composition of two Dirichlet series. *Sib. Math. J.* **2002**, 43, 1027–1038. [CrossRef] - 12. Sen, M.K. On the maximum term of a class of integral functions and its derivatives. Ann. Pol. Math. 1970, 22, 291–298. [CrossRef] - 13. Sen, M.K. On some properties of an integral function f * g. Riv. Mat. Univ. Parma 1967, 8, 317–328. - 14. Luhova, L.L.; Mulyava, O.M.; Sheremeta, M.M. Properties of Hadamard's composition of Gelfond–Leont'ev derivatives for analytic functions. *Ufim. Mat. Zh.* **2010**, 2, 90–101. (In Russian) - 15. Mulyava, O.M.; Sheremeta, M.M. Convergence Classes of Analytic Functions: Monograph; Publishing Lira-K: Kyiv, Ukraine, 2020. - 16. Polya, G.; Szego, G. *Aufgaben und Lehrsatze aus der Analysis*; Springer: Berlin/Gottingen/Heidelberg, Germany; New York, NY, USA, 1964; 432p.