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Abstract: For analytic functions fj(z) = Y a,;z",1 < j < p, the notion of a Hadamard composition
n=0

(fix . *fp)m = OZO; ( Y Ckl'"kpa]:l-lrl et aﬁ’:p z" of genus m is introduced. The relationship
n=0 \ki+---+k,=m

between the growth of the Gelfond-Leont’ev derivative of the Hadamard composition of functions f;

and the growth Hadamard composition of Gelfond-Leont’ev derivatives of these functions is studied.

We found conditions under which these derivatives and the composition have the same order and a

lower order. For the maximal terms of the power expansion of these derivatives, I describe behavior

of their ratios.
Keywords: analytic function; Gelfond-Leont’ev derivative; Hadamard composition

MSC: 30B10; 30B20; 30B40

1. Introduction

Let o
f(z) =) an2" 1)
n=0
and .
filz) =Y a,jz", 1<j<p @)
n=0

be analytic functions. As in [1], I say that the function is similar to the Hadamard com-
position of the functions f; if a, = w(ap7,. .., an,p) for all n, where w : C? — Cis a
continuous function. Clearly, if p = 2 and w(ay, 1, a4,2) = ap1a42, then f = (f1 * fp) is [2]
the Hadamard composition (product) of the functions f; and f,. Obtained by J. Hadamard,
the properties of this composition find the applications [3,4] in the theory of the analytic
continuation of the functions represented by a power series.

Here, I consider the case when w is a homogeneous polynomial. Recall that a poly-
nomial is named homogeneous if all monomials with nonzero coefficients have the iden-
tical degree. A polynomial P(x,...,xp) is homogeneous to the degree m if, and only
if, P(txq,...,txp) = t"P(xy,...,xp) for all t from the field above that a polynomial is de-
fined. Function (1) is called a Hadamard composition of genus m > 1 of functions (2) if
ay = P(ayq, ..., an,p), where

— ky kp )
P(x1,...,xp) = Z Chy. kyXy *-oot Xy, ki € Ly
[ —

is a homogeneous polynomial of degree m > 1 with constant fixed coefficients ¢y, . 1
remark that the usual Hadamard composition is a special case of the Hadamard composition
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of the genus m = 2. The Hadamard composition of genus m > 1 of functions f; I denote by

(fix...x fp)m ie,

n=0 k1++kp:m

0 )
k k
(s fydn(z) = L = 2( L Gk ,,)
n—=

For a power series (1) with the convergence radius R[f] € [0, +oo] and a power series

I(z) = ¥ 1,z" with the convergence radius R]l] € [0, +co] and coefficients I, > 0 for all
n=0
n > 0 the power series

9] ln Y
DIf(z) = Y Ttz 3)
n=0 ‘n+k

is called [5] Gelfond-Leont’ev derivative of the n-th order. If I(z) = €%, then Dl(k) f(z) =

f®)(z) is the usual derivative of the n-th order. The Gelfond-Leont’ev derivative is a very
interesting object of investigations (see [6—8]). These derivatives found applications in the
theory of univalent analytic functions. They allows researchers to describe the growth of
these functions in other terms [7].

There are many papers on the Hadamard composition of analytic functions and the
Dirichlet series [9-11]. For example, A. Gaisin and T. Belous [10] studied the maximal term
of the Hadamard composition of the Dirichlet series with real exponents. Alower estimate
for the sum of a Dirichlet series over a curve arbitrarily approaching the convergence
line was obtained. Moreover, in [11] they established a criterion for the logarithm of the
maximal term of a Dirichlet series whose absolute convergence domain is a half-plane to
be equivalent to the logarithm of the maximal term of its Hadamard composition with
another Dirichlet series of some class on the asymptotic set. S. Vakarchuk [9] investigated
an interpolation problem for classes of analytic functions generated of the Hadamard
compositions and obtained upper and lower bounds for various n-widths for these classes.

If R[f] > 0, then, for 0 < r < R[f], let M(7, f) = max{|f(z)| : |z| =r}and u(r, f) =
max{|a,|t" : n > 0} be the maximal term of series (1). M. K. Sen [12,13] researched a
connection between the growth of the maximal term of the derivative (fi * f2)®) of the
usual Hadamard composition f; * f, of entire functions f and g and the growth of the

maximal term of derivative fl(k) * f2(k). In particular, he proved [13] that if the function has
the order ¢ and the lower order A then, for every e > 0 and all ¥ > ry(e),

pkF2)A-1-¢ V(rzf(kﬂ) *8(1{“)) < plk+2)o-1+e
T un (fxg)®)

The research of M.K. Sen was continued in [14], where, instead of ordinary derivatives,
the Gelfond-Leont’ev derivatives are considered. In particular, in [14] (see also [15] p. 128),
the following lemma is proved.

Lemma 1 ([14]). In order for an arbitrary series (1) the equalities R[f] = +o0 and R[D,(k) fl =
+o0 to be equivalent, it is necessary and sufficient that

0<q:1i7m"ln/ln+1§7@ov”ln/ln+1:Q<+w, 4)

n—oo

and, for the equivalence of the equalities R[f] = 1 and R[Dl(k) fl = 1, it is necessary and

sufficient that
lim /1, /1,41 = 1. (5)

n—oo

The generalization of the results from [14] to the case of Hadamard compositions of
genus m > 1 has become an actual problem. It allows researchers to study the growth
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properties of these function classes and consider their applications in geometric function
theory as it is achieved for usual the Gelfond-Leont’ev derivatives of univalent analytic
functions in [6-8].

2. Convergence of Hadamard Compositions of Genus m

Clearly, if function (1) is a Hadamard composition of genus m of functions (2) then

lan| < Y |Ck1...k,,||‘1n,1 o |’1n,p|kp‘ (6)

k1+‘..+kp:m

From R[f], I denote the radius of the convergence of series (1) and suppose that
R[fij=R>0forall1 < j < p. Then from the Cauchy-Hadamard formula, I have

}}i_}ingo {/lan;l = 1/R[fj] = 1/R and, thus, [a,j| < (1/R+¢)" for every ¢ > 0 and all
n > np(e). Therefore, (6) implies

1 nkq 1 nky 1 nm
|a1’l‘ S Z |Ck1...kp‘ E_‘_E E—i_g = E—i_e Z |Ck1...kp|/

ky4-tkp=m kit +kp=m

whence, {/|a,| < (1+0(1))(1/R+¢€)™ asn — oo, ie, 1/R[f] < (1/R+¢)™. In view of
the arbitrariness of ¢, I obtain the inequality R[F] > R™.

Hence, it follows that, if R[fj] = +oo for all j, then R[(f1 * ... * fy)m] = +o0, and, if
R[fj] = 1forall j, then R[(f1 *...* fy)m] > 1.

In order for R[(f1 *...* fy)m] = 1, additional conditions on 4, ; are required. For ex-
ample, I say that the function f; is dominant if |cyg_o||a,1/™ > 0 for all n > 0 and
|anj| = o(|ay1|) asn — coforall2 < j < p.

We put

r_ k1 kp kq kp m
Zn = Z Ckl---kpan,l et an,p = Z Ckl---kpan,l L an,p — Cmom()lln,l.
kit +kp=m, ki #m kit +kp=m

Since, for each monomial of the polynomial ;,, the sum of the exponents is equal to
m, I have

|an1 I |an,p|kﬂ B |apa|f2- ... |an,p|kl’

— —0, n—
NG |21 H ’ °°’

and, thus, 2}, = o(|a,1|™) as n — +-co.
Since
lemo..ollana™ = 2] < lan] < lemo..ollana|™ + 251,

we have |a,| = (1+0(1))|cmo..0||an1|™ as n — co, whence

ie, R[(fi*...* fp)m] < 1and, thus, R[(fi *...* fp)m] = 1.
It is easy to check that

ln k k

1 S n
i E Chioky Tkt " ik | 2 )
n+k k1+...+kp:m

D (fis ..k fy)u(z) = fo

is the Gelfond-Leont’ev derivative of the Hadamard composition of genus m, and

00 1, m k n
(Dl(k)fl * ...k Dl(k)fp)m(z) = 2 < > 2 Ck1~~~kpal:11+k,1 T 'anik,p z (8)

=0 \lntk kit +kp=m
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is the Hadamard composition of genus m of the Gelfond-Leont’ev derivatives.

Lemma 2. If condition (4) holds, then the equalities R[(Dl(k)fl kLK Dl(k)fp)m} = +o0 and
R[Dl(k) (fi* ... % fp)m] = oo are equivalent, and, if condition (5) holds, then the equalities
R[(D,(k)fl S Dl(k)fp)m] = 1and R[Dl(k) (fi*...% fp)m] = 1 are equivalent.

Proof. Indeed, using the Cauchy-Hadamard formula from (7) and (8) with

_ ky kP
Gk = D, Gkt Gk ©)
Kyt kp=m

we have

1 \/ m—1
= hm |a k| ) >
R[(Dl(k)fl *...%D (k " n+k lnta

L 1, i m—1 1 I (m—1)/n
> lim ¢ \an+k| lim { <l i ) = © lim <l - )
*© lntk n—oo n+1 R[D;™ (f1%...% fp)m] n—re0 \ntk

and, similarly,

1 1 _ ln (m—1)/
® By 1= R ® JEIJO(Z ) '
R[(D;" fi*...xD;” fp)m]  R[D;”(f1 ... % fp)m] n+k
The last inequality yields the validity of Lemma 2. [

3. Hadamard Compositions of Gelfond-Leont’ev Derivatives of Entire Functions

We will remind that the most widely-used descriptions of entire transcendental function

f are the lower order A[f] = lim In In M(r, f) and the order ¢[f] = lim M

o too Inr r—+co Inr

In view of the Cauchy inequality, [ have

u(r, f) < i lan|(2r)" 27" < 2u(2r, f),

whence it follows that A[f] = lim lnlr1wand olf] = lim M

rotoo nr r—+o0 Inr
Proposition 1. If condition (4) holds, then for every k

MDY 5« DI )] = ADM (Fr5 5 fo)m] = Al(fr 5+ 5 fp)l

and

oD frx ...« DI )] = oD (fr 5o )] = O[(F1 %o % Fp)m)-

Proof. At first, let k = 1. From condition (4), the existence of the numbers 0 < g1 < g5 <
+oo follows such that g < 1,/1,,41 < g3 for all n > 0. Therefore, using (9), I obtain

ru(r, Dl(l)(fl *o K fp)m) = max{lnlil|an+1|r”+1 i > 0} <

u(qar, (fr*...* fp)m)
q2

1
< — n+1 : >
<5 Hlax{|ﬂn+1\(%r) n> 0}
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and, by analogy,

ulqr, (frs... *fp)m)
7

ru(r, Dl(l)(fl ook fp)m) =

for all large-enough r.
Inr=o(In u(r, f)) asr — —+oo for each entire transcendental function, hence, I obtain

(1+o(D) In pu(qur, (fi# - % fyphm) < Inpu(r, DY (fr 5.5 fp)u) <
< (T+o(1) Inp(qar, (frx... *fp)m)

as r — +oo. Hence, it follows that )\[Dl(l)(fl *.ook fp)m] = A[(fi ... % fp)m] and
oD (frx - x fohm] = el(fix % fy)m].
Since D(k+l)f( ) = Dl(l)Dl(k)f(z), the equalities /\[Dl(k) (fix.oooxfp)m] = A[(fix...*

fp)m] and Q[ (f1  fp)m) = 0[(f1 * ... * fp)m] are proved.
On the other hand

L \"' L
u(r, (Dl(k)fl *...*Dl(k)fp)m) = max{( > [ |@ppilr" o > 0} >

ln+k
S n(m—1) In N | In (m=1) \n . >4 =
= maxs qq j|ﬂn+k|r th2z = max E’”wk‘(’h N"in > =

= y(qgmfl)r, Dl(k)(fl *...% fp)m)
and, by analogy,

u(r, (DO s« DI ) < u(@™ Ve, DO (Fr %k fo)m),

whence, as above, I obtain A[(Dl(k)ﬁ *ok Dz(k)fp)m] = )‘[Dz(k) (fi*...* fp)m] and Q[(Dl(k)fl
#o# D )] = oD (fr ok )] O

Now let me establish a connection between the growth of a function f = (f1 *...* fp)m

and the growth of functions f;. Since [a,| < Y |Cky.dep |1 [ |an,p|kP, I have
kit kp=m
™ <Y ek [ (a5 (),
kit kp=m
ie.,

p" )<l O ) f)

k1+~~~+kp:m
whence, for all r large enough, I get

Inp(™ f) < Y ok 1l )5 o f)7) + Ky =

Kyt ky=m
= 2 (In |ck1mkp\—0—k11n u(r, fi)+...+kpln pu(r, fp)) + Ky <
Kyt thp=m

< Y, (klnu(rfi)+...+kyInp(r, fp)) + Kz, (Kj = const > 0). (10)
Kyt ky=m
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Let max{¢[f;] : 1 < j < p} = @ < +oo. Then, In u(r, ;) < r¢** for every e > 0 all
r > ro(e) and all j. Therefore, in view of (10)

In u(r™, f) < r0te Z (ki +...+kp) + Ko,

Ky tkp=m
whence nl " nl "
o = T mIEO) e i f) _ote
4o In ™ r—+oo mln r m

and, in view of the arbitrariness of ¢, I obtain mo[f] < o.
Suppose now that the function f; is dominant. Then |a,| = (14 0(1))|cimo..0/|an1|™ as
n — oo and, thus, |a,|r"" = (1+0(1))|cmo..0|(|an1|r")™ as n — oo, whence it follows that

Ap(r, f)" < u(™, f) < Aop(r, 1), (A1, Ag = const > 0). (1)

Using (11), as above, I obtain mo[f] = o[f1] and mA[f] = A[f1]. Thus, the following
statement is proved.

Proposition 2. Let fi,. .., f, be entire transcendental functions, and condition (4) holds. If o[f1] =

... = olfy] = o then mo[(f1 *...* fy)m| < o, and, if among functions fi,..., fy there is a
dominant function fi, then mo[(f1 * ... * fp)m] = 0. Moreover, if among functions fi,..., fp
there is a dominant function fi then mA[(f1 * ... * fp)m] = Alf1].

u(r, (Dl(j)fl ..k Dl(j)fp)m)

k
;t(r,D,( )(f1 ..ok fp)m)
v(r, f) = max{n : |ay|r" = u(r, f)} be the central index of series (1). Then, u(r, f) =
|av(r, 1) \”V(r’f ) and, therefore,

Let us now examine the growth of the ratio ,] > k. Let

k (k)
w(r, DI (fx.x fp)m) = ; av(r,Dl(k)f)+k‘rv(r,Dl fl =

v(r,Dl(k)f)+k

m—1
_ lv(r,D,(k>f)+k lv(r,Dl(k)f) «
! ) ! (

v(r,D,(k)erkfj v r,Dl(k)f)+k7j

! (k)
,D +k—j (k) P
« v(r,D;" f) ] |a © . l|rv(r,Dl f)+k—]r]—k <
I/(V,E’ ) k_] ]
v

I
(r, D F)+k—j+j

I w S S

(r, D £)+k rD"f) i ' /

< ;17 zvilr] kV(YI(Dz(])fl*---*Dz(])fv)m)
v(r,D f)+k—j v(r, D f)+k—j

and

u(r, (D5« DY £,),) =

7,1/(r,(Dl(j)f1>»<...>~<Dl(/.)fp)m _

_ ( lv(r,(Dl(j)fl*...*D](j)fp)m
l

m
) ) |av(r,(D(j)f1*.‘.*D(j)f )m)+j|
v(r, (DY fre.. DV £ )+ ! rar

l i - " , )

_ U(r’(Dl(])fl*"‘*D](/)fp)m |ﬂ " " |rV(rr(Dl(])fl*~-~*D1(j)fp)m+j*krk*j

I () () ] v(r,(Dy” fix..xD) fp)m) +j—k+k
v(r,(Dy” fre...xDp” fp)m+]

m—1
lv(r,(D§f>f1*...*D,U)f,,)m lv(r,(D§f>f1*...*fo)fp)m
I o

, . i . .
v(r(DY ik DV )+ r,(DY fre..xDY) f)tj—k
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i , ‘
v(r,(DZ(])fl*...*Dl(/)fp)n1+j—k

Z |rv(r,(D,(j>f1*~~-*Dl(j)fp)m+f_krk_j <

|a i) () .
f j . v(r,(Dy"” fix..xD)” fp)m)+j—k+k
V(T/(Dl(j)fl*-~~*D1(])fp)m+] 1 " fp +

! 0 0 "o 0 0
< (l i L YD 22Dy fy)u *u(r, Dl(k) (fi %o fp)m)-
v(

, . I . .
v(r (DY ik DV )+ r,(DY fre..xDY) f) it j—k

Hence, it follows that

Lo N e ik (DU D)
V(D )k v k=i T (D) fu %k D fp)m)
k

! (k) lv(r,DZ(k)f) N ‘u(}’, Dl(k) (fl *...k fp)m)

v(r,D}” f)+

< (12)

i , , m=1 , .

v(r,(DY frx..sDV ), v(r, (DY frx..sDV ),

! ; ; ! ; ; ’
v(r,(D,(])fl*..A*Dlmfp)erj v(r,(D[(])fl*...*D;J)fp)mvtjfk

Using (12), I prove such a theorem.

Theorem 1. Let f] be entire transcendental functions, 1 < j < p, and (4) hold with q > 1. Then,
foreachj > k

. 0 0
lim —— InIn H=*u(r, (D) frx ... DY fp)m) .

[(fr % fp)m] (13)
rortoo IN 7 #(Y/Dz(k)(fl **fp)m) 1 p

and : () ()
i PR O fixe ot DY fyn)
4o In 7 }l(r,Dl(k)(fl*-~-*fp)m)

= ol(frx.. * fp)ml. (14)

Proof. From condition (4), with g > 1 the existence of numbers 1 < g1 < qp < +0o9, it
follows such that q’fk <In/lix < qgk for all n > ny. Therefore,

l I - N

m—1

R A > oM DEEDE N )i (DN )
1 1

v(r,Dl(k) f)

v(r,Dl(k)f)+k

_ (mj—k)(w(r,DY f)+k—j)
fry ql ,

IN

I , . m=1 . ,
( v(r,(D,(])fl*...*Dl(])fp)m) ) U(r,(Dl(/)fl*...*D,(])fp)m)
I . . i . .
v(r, (D fr..#DY) fp)m)+i v(r, (D fr.. DY) fp)m)+j—k

(mfl)v(r,(D,(j)fl*...*D;j)fp)m)q(jfk)v(r,(Dl(j)fl*...*Dl(j)fp)y,,) B q(jmfk)v(r,(Dl(j)fl*...*Dl(j)fp)m)
2 2 -2 ’

and, thus, (12) implies
rjfky(r, (D(Ii(j)fl k..Lk Dl(])fp)m) <
u(r, D7 (fr .o % fp)m)
< (mj —k)w(r, DY fy % ...« DY £,)) In go. (15)

(mj = k) (v(r, D (fy 5.4 fyp ) + K = j) In g1 < In
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It is well known ([16], p. 13) that

Inu(r, f) = (16)

1

Hence, Igetln u(r, f) <In u(1, f)+v(r, f)Inr,In u(r, f) > In u(1, f)+v(r/2,f)In 2

and, thus, A[f] = rl%; %, olf] = rEToo # Therefore, by Proposition 1
rE—TOO In v(r, D (1{11: K fp)m) ADP (Frs 5 )] = AR %5 fyp ),
T In v(r, D (fl* *fp)m) :Q[Dl(k)(fl*~~*fp)m]:Q[(fl*-‘-*fp)m]/

r—-+too Inr

and these equalities hold good if, instead of D ( fi*...% fp)m,itis possible to put (Dl(k) f1*
l fp)m. From this and (15), I obtain (13) and (14). Theorem 1 is proved. O

For j = k, Theorem 1 implies the following statement.

Corollary 1. Let f; be entire functions, 1 < j < p, and (4) holds with q > 1. Then, for each k > 1

(r, (D <">f1* 4D f)m)

lim —lnl Y =A(f1*..* fp)m]
roteo INT ( (fl * . *fp)m) ' ’
and (k)
1 u(r, ( Y f x fo)m)
im —Inln = .00k fp)ml-
r—+4co In 7 u(r,D )(fl* *fp) ) ollf fp) ]

From Corollary 1 and Proposition 2, I obtain the following corollary.

Corollary 2. Suppose that, among entire functions fi,. .., fp, there is a dominant function f;.
If condition (4) holds with q > 1 then, for each k > 1,

k k
1w (D fe D)) AL
lim s In In ® =
r——+oco INY ‘u(r,Dl (fl**fp)m) m
and NG (k)
D
lim flnl k(. (D) fl Dy fy)m) = Q[fl].
r—+o In 7 u(r,D (fl % . *fp)m) m
Let us now consider the case when, instead of condition (5), the stronger condition
e T ln
O G D S AR G Dy o
is fulfilled.

Theorem 2. Let f/ be entire functions, 1 < j < p, and (17) hold, then, for each j > k,

1 #n (D DY fy x.. *Dz(j)fﬁm)
rotoo InT u(r, D( (frx...xfp)m)

= (mj —A[(frs.. fy)m] +k—j  (18)
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and

1 u(r, OV fix . x DY )

lim —In 0
ro—4co In 1 ulr, D( (i % fo)m)

= (mj—k)o[(fr*...* fp)m] +k—j. (19

Proof. From condition (17), the existence of numbers 0 < h < hy < +oo follows such that
(hn)k < 1, /1,4 < (han)k. Therefore,

I m=1;
(r DY f)+k—j v(r,DN f)4k—j S
V(r D f)+k lv(r,Dl(k)f) a

> n" D w(r, DY £) + k= )i (r, D £) 4k — j)iF =

mj—k k N\ mi—
— W w(r, DM F) + k- ik,

! (0 O S (0

v(r, (D fl* *D f) ) v(r,(Dl f1*~--*D1 fp)m) <
1 I ; i -
v(r,(Dl fl*‘..*D, fp)m)+j v(r,(Dl(/)fl*..‘*Dl(])fp)m)Jrjfk

(hav(r, (DY 1 % ... DY £,),)) D (hyu(r, (DY fy 5 ...« DY) £,),) )i~ =
= (hav(r, (DY f 5 ... DY) £,),))mi %,
and, thus, (12) implies
(mj— k) In (v(r, DIV (fr .. % fo)m)) + Kk — ) + (mj — k) In by <
rj’k‘u(r, (Dl(j)fl ¥ ...% D,(j)fp)m)
u(r, DI (frx % fom)
< (mj—k)In(v(r, (Dl(j)fl kLK D,(j)fp)m + (mj — k) In hy.

Hence, as above, I obtain

<(j—k)Inr+In <

() ()
D D
i—k+ L 1 In p(r, ( frx...x lfp)m)

rtoo In 7 <rD< (Fi% % fp)m)

= (mj =k)A[(fr*. . fp)m]

and

1 u(r, (DY ...« DY £,))
rotoo In 7 V(”rDl(k)(fl*---*fp>m)

ie., (18) and (19) hold. Theorem 2 is proved. O

= (mj = k)el(fr*...x fp)ml,

For j = k+ 1, Theorem 2 implies the following statement.

Corollary 3. Let f] be entire functions, 1 < j < p, and (17) hold, then, for each k > 1,

1 ul, OV s DY f) )
lim —In =((m—Dk+mA[(i*...% fo)m] —
r ot InT u(r, D§k>(f1 * ook fp)m) [fl fonl




Axioms 2022, 11,478

10 of 14

and

' 1 u(r, (D k+1f *Dl(k+1)fp)m)

lim —In =((m—=1Dk+m * ..k fp)m] —
T n M I (-l

Choosing I, = 1/n!and m = 2 from Corollary 3, I get the above result of M.K. Sen [12],
i.e., Lemma 1.

4. Hadamard Compositions of Gelfond-Leont’ev Derivatives for Functions Analytic in
a Disk

For the functions analytic in the disk U = {z : |z| < 1}, the lower order Ay;[f] and the
order gy;[f] are defined as

nt In M(r —In" In M(r
ulf] = tim 2 r g1 = T )

) <M f) < 3 ol (50) (£5) < Tomm(5 ),

and in view of (16) forr > 1/e

1+7 (lH)/Zv(t,f) 1+7 1
”( 2 'f> =/ tdt:lr‘f‘(z'f) —h‘P‘(sz) >
1/e

> (17)/2V(t’f)dt>v(1’ f)l 1+r =(1+O(1)1_r1/(}’ f) rr1

- t ’ 2r 2 ) ’
I obtain ' 11’1+ In ﬂ(r/f) '711‘1+ In ]xl(?’,f)

im gy ~ Ml Im =y —elf]

and

n+ vir _ n+ vir
Aulf] Shﬁllln(f% <Aulfl+1, oulf] < 1im# <oulfl+1. ()

Proposition 3. If condition (17) holds, then, for every k,

Al(DPfy s« D F) ) = AuDP (fr 55 fo = Aul(fi % - % fo)m]

and

oul(DM fi% ... DI )] = oulD (fi s o % fod] = Qul(fi %o % Fp)m)-

Proof. At first, I remark that, for each function f and analytic in U, the equalities Ay [f'] =
Aulf] and oy (f'] = oulf] are true.

Indeed, from Cauchy formula f'(z) = 21“ i m I have M(r, f') <
[T—2]= (1 2l)/2 A

2M((1+7)/2,f)/(1 —r), and since f(z) ff’ )dt, the inequality M(r, f) <

M(r, f') + | £(0)| holds, from which the necessary equahtles follow.
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Now, in view of (17) hy(n +1) < I,/1,.1 < ha(n+1), T have, fork =1,

1
y(r,Dl(l)((fl ok fp)m)) = max{lilan+1|r" Tn> 0} <

< hymax{(n+1)|a,+1|r" : n >0} = hou(r, ((f1*... *fp)m)')

and by analogy u(r, Dl(l)(fl * .ok fp)m) = Mp(r, ((fy ... % fp)m)'). Hence, it follows

that Au[Dl(l)(fl * .ok fp)m) = Aul(fi * ... % fp)m] and Qu[Dl(l)(fl * ..k fp)m] = oul(f1*

... % fp)m] and, thus, /\u[Dl(k)(fl koo fp)m) = Aul(fi* ... * fp)m) and QU[Dz(k)(fl Kook
folud = Qul(fy s fy ). )

Since Iy /ly11 > hi(n+1) > hy, Thave (I, /1,44)™ " > Iy i e

m—1
u(r, (Dl(k)fl k... K Dl(k)fp)m) = max b l—"\an+k|r” n>0p >
ln+k ln+k

> H" D, DV (s fp)m)

and, thus, Ay (D (f ... % f)u] < Aul(DM fi 5 ...« DW£)) and ou DV (Fr # ...
k
foom) < eul(D fr ...« DI ).

On the other hand,
b < (h’z‘(n—l—l)...(n—i-k))m <
ln+k
<HE V1) k) (k1) (n+26) L (4 (m—2)k+1) . (n 4 (m—1)k).
Therefore,

m— l
u(r, (Dl(k)ﬁ k... K Dl(k)fp)m) < hg( 1 max{(n +1)...(n+ (m— 1)k)l—”|an+k|r” in > 0} =
n+k

((m=1)k)
— hg(mfl) max{ <lln|an+k|rn+(m—l)k) > O} _
n+k

(k(m—1))
= hg(mfl) max{ (rk(m—l)lln |ﬂn+k7”> 0> 0} _ hg(mfl)‘u(r,F(k(m—l))),
n+k

where F(z) = zk(’”’l)Dl(k) (fi * ... * fp)m(z). Hence it follows that Au[(Dl(k)fl kLK
DY f )] < AulEED)] = Ay[F] = Au[D(fi % ... fp)m] and oul(DVfr % ... %
Dl(k)fp)m] < Qu[Dl(k) (fi *...* fp)m]. Proposition 3 is proved. [

The following statement is an analog of Proposition 2.

Proposition 4. Let fi,..., fp be functions analytic in U and condition (17) holds. If ou[f1] =
.= oulfp) = o then ou[(f1 * ... * fp)m] < mo, and if. among functions fi, ..., fy. thereisa
dominant function f1, then oy [(f1 * ... * fp)m| = mq. Moreover, if, among functions fi, ..., fp,
there is a dominant function fy, then Ay [(f1 * ... * fp)m]) = mAu|[fi].

Proof. Indeed, since oy[fi] = ... = oulfy] = ¢, foreverye > 0Oand all r € [ro(¢, 1) L have
In pu(r, f;) < (1/(1—r))@*¢, and (10) implies In p(r™, f) < C(1/(1—r))e** forr € [ro(e, 1),
where C = const. Therefore,

—In" In u(r™, f) —
= PRV )~ )
— 1) _(Q+£)lrlgl—ln(1—rm)

—In(1-7) — 11—
< g
_(Q-FS)lrl%’l T (0+¢)m,
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and, in view of the arbitrariness of ¢, I obtain oy [(f1 * ... * fp)m] < mo.
If the function f is dominant, then, from (11), I obtain ¢ [f] = moy[f1] and Ay[f] =

m)\u[fl]. O
u(r, (DY 5.« DY £,),0)
y(r,Dl(k)(fl ..ok fp)m)

in the case of analytic functions in U. I will not dwell on this, but rather study the growth

u(r, DY (Fr .. % fo)m) u(r, DY fix...x DY fy)m)
k k k

y(r,Dl( )(fl * ... *fp)m) y(r,(Dl( )fl .. .% Dl( )fp)m)

Using (12) and (20), I can investigate the growth of the ratio

for j > k and the ratio

of the ratio

forj > k.
As above, I have
3 lv(r,D,(k)f) v(r D(k)f)
;I/l(T,Dl (fl**fp)m):l |ﬂ( D(k) )+k‘r ol =
vrp®pr P
li/(r D(k>f) lv(r D(k)f)Jrkf 1 (k) P
_ ALy D ] |a |rv(r,Dl f)+k—]r]—k <

l ! vr,D(k) tk—iti
"("Dz(k)f)‘i'k—j v(r,Dl(k>f)+k_j+j (r,D;" f)+k=j+j

B~
v(r,D;"” f) . i
< T L f 7 ky(r,Dl(])(fl .. % fp)m)
U(I’,Dl(k)f)Jrk*j

and, similarly,

-G
' (r,D/f) _ k
y(r,Dl(])(fl*...*fp)m)gil ! ,l rk Jy(r,Dl()(fl*...*fp)m).
v(r,DY f)+j—k

Therefore,

lv(r,D;k)f)+k7j - = *u(r, Dl(j)(fl ..ok fp)m) < lv(r,Dl(j)f) . 1)

L) u(r, D (Fr % fp)m) Ly D0 f)

Using (21), I prove following theorem.

Theorem 3. Let f] be analytic functions in U, 1 < j < p, and let (17) hold, then, for each j > k,

. 1 kO DP e fylm)
(G —K)Aul(fi % * fp)m] <lim ey n y(r,Dlék)(fl*...*f:)m) < G—K)Aul(fi* .- * fp)m] +1)

and

Wir oy
‘u(]",Dl] (fl fP)m) §(]—k)(Qu[(fl**fP)m]+1)

. —_— 1
U= Reullfs Sl < o e ™ L D P e fo)

Proof. Since (hin)* <1,/1,.x < (hoan)k, T have

- , Lo o® ;

v(r,D;” f)+k—j v(r,D}” f)+k—j > (h (k) Ni—k
- > (mv(r,D; f) +k—j)

lv(r,DZ(k)f) lv(r,Dl(k)f)+k*]'+]‘*k

and l
W ) £\ Y
P < (v (r, DY ).

lv(r,Dl(j)f)+j—k
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Therefore, (21) implies
(j) . % ,
(1 +0(1))( —K)In v(r, DFf) < 1n FP s Ui *Jodm) (1 4 o(1))(— k) v(r, DY)
p(r, Dy (f1 % *fp)m)
asr 1T 1,1i.e., in view of (20) and Proposition 3, I obtain
. . k(e DY (frxox fohw) _ (o
—k lim n —k
GOl Sl i ™ L, D ey O P OUUIED
and
. — 1D (e fw)
Um0l < B =0 ™ e, 0w on fypy = 0 VY
QED. O

Since series (8) differs from series (7), only that instead I /Iy, it contains (I;/Ix11)™,

I will easily prove the inequalities
! " k Lot "
v(r,D® f)+k—j < Pku(r, DY (Fr % % fo)m) - v(r.D}f)
lv(r,D[(k)f) u(r, D} (fl o fp)m) lv(r,ij)f)+j—k

whence, as in the proof of Theorem 3, I will come to the next theorem.

Theorem 4. Let f; be analytic functions in U, 1 < j < p, and let (17) hold, then, for each j > k,

m(j — k) Aul(fr + Hr, (D ...« DY fy))

ok fp)m ]<hgl—ln(1—1’)

m(j—k)(Aul(fi ... % fp)m] +1)

and

y(r,(DlU()fl * ...

« D fy)m)

Lk Dl(j)fp)m) <

* fp)m] < lim ! In

m(j —k)eul(fr ...

1 —In (1 — 7’) }l(r, (Dl(k)fl .. % Dl(k)fp)m)

m(j — k) (eu[(f1 ...

* fp)m] +1).

5. Discussion

In conclusion, I note that, in addition to the analytic continuation of functions, the usual
Hadamard composition was used in other aspects of complex analysis (in particular, in the
geometric function theory). One can naturally hope that the Hadamard composition of the
genus m will also find applications in similar areas of mathematics.
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