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Abstract: In this article, we develop a faster iteration method, called the A∗∗ iteration method, for
approximating the fixed points of almost contraction mappings and generalized α-nonexpansive
mappings. We establish some weak and strong convergence results of the A∗∗ iteration method
for fixed points of generalized α-nonexpansive mappings in uniformly convex Banach spaces. We
provide a numerical example to illustrate the efficiency of our new iteration method. The weak
w2-stability result of the new iteration method is also studied. As an application of our main results,
we approximate the solution of a fractional Volterra–Fredholm integro-differential equation. Our
results improve and generalize several well-known results in the current literature.
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1. Introduction

The fixed-point theory is important to many applied and theoretical fields, such
as linear and variational inequality, nonlinear analysis, approximation theory, dynamic
system theory, mathematical modelling, mathematics of fractals, mathematical economics
(equilibrium problems, game theory and optimization problems), differential and integral
equations. Let J be a nonempty subset of a Banach space M, N the set of all positive integers
and R the set of all real numbers. The fixed point of a self-mapping H defined on J is a
point g ∈ J satisfying g = Hg. The set of all fixed point of H is denoted by FH = {g ∈
J : g = Hg}. The mapping H is said to be nonexpansive if ‖Hg−Ht‖ ≤ ‖g− t‖, for all
g, t ∈ J and it is said to be quasi-nonexpansive if ‖Hg−m∗‖ ≤ ‖g−m∗‖, for all g ∈ J and
m∗ ∈ FH.

In the past few years, the fixed-point theory for nonexpansive mappings has attracted
several authors as a results of their vast applications in integral equations, differential
equations, convex optimization, control theory, signal processing, game theory, and many
more. The first result concerning the existence of fixed points of nonexpansive mappings
was given in Hilbert spaces by Browder [1]. In [2,3], Browder and Göhde independently
extended the result of Browder [1] to uniformly convex Banach spaces. In [4,5], Goebel
and Kirk further extended the result of Browder [1] to reflexive Banach spaces. Several
extensions and generalizations of the class of nonexpansive mappings have been studied

Axioms 2022, 11, 470. https://doi.org/10.3390/axioms11090470 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11090470
https://doi.org/10.3390/axioms11090470
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-7742-5993
https://orcid.org/0000-0002-4410-3269
https://orcid.org/0000-0002-5228-1073
https://doi.org/10.3390/axioms11090470
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11090470?type=check_update&version=2


Axioms 2022, 11, 470 2 of 18

in the past two decades. One of these important generalizations of the class of nonexpan-
sive mappings, known as Suzuki generalized nonexpansive mappings, was provided by
Suzuki [6]. This class of mappings is also known as mappings satisfying the condition (C).
In [7], Aoyama and Kohsaka introduced the class nonexpansive-type mappings known
as α-nonexpansive mappings. In [8], Pant and Shukla considered another generalized
nonexpansive-type mapping called generalized α-nonexpansive mappings. The authors
showed that this class of mappings is more general than the class of mappings satisfying
the condition (C). In [9], Pant and Pandey developed the class of Reich–Suzuki nonex-
pansive mappings and proved that this class of mappings is more general than the class
of mappings satisfying the condition (C). Furthermore, they proved some existence and
fixed-point results for such mappings.

Recently, Pandy et al. [10] combined the classes of generalized α-nonexpansive map-
pings and Reich–Suzuki nonexpansive mappings and defined a new class of mappings
as follows:

Definition 1 ([10]). Let H be a self-mapping defined on a nonempty subset J of a Banach space
M. Then,H is said to be a generalized α-Reich–Suzuki nonexpansive mapping if for all g, t ∈ J,
there exists α ∈ [0, 1) such that

1
2
‖g−Hg‖ ≤ ‖g− t‖ implies ‖Hg−Ht‖ ≤ max{W(g, t),T(g, t)},

where

W(g, t) = α‖g−Hg‖+ α‖t−Ht‖+ (1− 2α)‖g− t‖,

and

T(g, h) = α‖g−Ht‖+ α‖t−Hg‖+ (1− 2α)‖g− t‖.

The Banach contraction theorem, also known contraction principle, is one of the fun-
damental results in metric spaces. This theorem was established in 1922 by Banach [11] and
it works with the Picard iteration method for contraction mappings in a complete metric
space. The Banach contraction principle guarantees the existence and uniqueness of fixed
point of a given contraction mapping. It has been shown that the Picard iteration method
always converges to the fixed points of some higher classes of mappings than contraction
mappings even when there exist fixed points of such mappings. Thus, the Banach contrac-
tion principle has some drawbacks. Based on simplicity and better rate of convergence,
many iteration methods have recently been developed by many authors to overcome the
drawback in the Banach contraction principle (see [12–20] and the references therein).

For control sequences {am}, {bm} and {cm} in (0, 1), the following iteration methods
are called Mann [21], Ishikawa [14], Noor [16], S [22], Abbas [23], Thakur [20], M [24] and
F [25]. {

g1 ∈ J,
gm+1 = (1− am)gm + amHgm,

m ∈ N. (1)


g1 ∈ J,
tm = (1− bm)gm + bmHgm,
gm+1 = (1− am)gm + amHtm,

m ∈ N. (2)


g1 ∈ J,
pm = (1− cm)gm + cmHgm
tm = (1− bm)gm + bmHpm,
gm+1 = (1− am)gm + amHtm,

m ∈ N. (3)
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
g1 ∈ J,
tm = (1− bm)gm + bmHgm,
gm+1 = (1− am)Hgm + amHtm,

m ∈ N. (4)


g1 ∈ J,
pm = (1− cm)gm + cmHgm,
tm = (1− bm)Hgm + bmHpm,
gm+1 = (1− am)Htm + amHpm,

m ∈ N. (5)


g1 ∈ J,
pm = (1− bm)gm + cmHgm,
tm = H((1− am)gm + am pm),
gm+1 = Htm,

m ∈ N. (6)


g1 ∈ J,
pm = (1− am)gm + amHgm,
tm = Hpm,
gm+1 = Htm,

m ∈ N. (7)


g1 ∈ J,
pm = H((1− am)gm + amHgm),
tm = Hpm,
gm+1 = Htm,

m ∈ N. (8)

In [25], Ali et al. showed that the F iterative method (8) converges faster than some of
the above-mentioned iteration methods and several others in the literature.

Motivated by the ongoing research in this direction, we introduce a faster iteration
method, called the A∗∗ iteration method, as follows:

g1 ∈ J,
pm = H((1− am)gm + amHgm),
tm = H2 pm,
gm+1 = H2tm,

m ∈ N, (9)

where {am} is a sequence in (0, 1). In this paper, we prove the weak and strong convergence
theorems of the A∗∗ iteration method for approximation of the fixed points of almost
contraction mappings and generalized α-Reich–Suzuki nonexpansive mappings in Banach
spaces. We provide a numerical example to show that our new iteration method (9)
converges faster than the iteration methods (1)–(8). The stability results of (9) are also
studied. As an application, we find the solution of a fractional Volterra–Fredholm integro-
differential equation via A∗∗ iteration method.

2. Preliminaries

We give some basic definitions and lemmas that will be useful in this article.

Definition 2 ([9]). A Banach space M is said to be uniformly convex if for each ε ∈ (0, 2],
there exists δ > 0 such that for g, t ∈ M with ‖g‖ ≤ 1, ‖t‖ ≤ 1 and ‖g − t‖ > ε, implies∥∥∥ g+t

2

∥∥∥ < 1− δ.
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Definition 3 ([24]). We say Banach M enjoys Opial’s condition if for any sequence {gm} inM
which converges weakly to g ∈M implies

lim sup
m→∞

‖gm − g‖ < lim sup
m→∞

‖gm − t‖, ∀ t ∈M with t 6= g.

Definition 4 ([19]). Let J be a nonempty closed convex subset of a Banach space M and {gm} be a
bounded sequence inM. For g ∈M, we set

r(g, {gm}) = lim sup
m→∞

‖gm − g‖.

The asymptotic radius of {gm} relative to J is defined by

r(J, {gm}) = inf{r(g, {gm}) : g ∈ J}.

The asymptotic center of {gm} relative to J is given as:

A(J, {gm}) = {g ∈ J : r(g, {gm}) = r(J, {gm})}.

It is known generally that in a uniformly convex Banach A(J, {gm}) consists of only one
element.

Definition 5 ([10]). Let J be a nonempty closed convex subset of a Banach space M. A mapping
H : J→ J is said to be demiclosed with respect to g ∈M if for each sequence {gm} which is weakly
convergent to g ∈ J and {Hgm} converges strongly to t implies thatHg = t.

Definition 6 ([26]). A mapping H : J → J is said to satisfy condition (I) if a nondecreasing
function h : [0, ∞) → [0, ∞) exists with h(0) = 0 and for all c > 0, then h(c) > 0 with
‖g−Hg‖ ≥ h(d(g, FH)) for all g ∈ J, where d(g, FH) = infg∗∈FH ‖g− g∗‖.

Lemma 1 ([27]). Let M be a uniformly convex Banach space and {km} be any sequence satisfying
0 < g ≤ km ≤ t < 1 for all m ≥ 1. Assume that {gm} and {tm} are any sequences of M such that

lim sup
m→∞

‖gm‖ ≤ y,

lim sup
m→∞

‖tm‖ ≤ y and

lim sup
m→∞

‖kmgm + (1− km)tm‖ = y

hold for some y ≥ 0. Then, lim
m→∞

‖gm − tm‖ = 0.

Lemma 2 ([10]). Let M be a Banach space and J be a nonempty subset of M. Suppose the mapping
H : J → J is a generalized α-Reich–Suzuki nonexpansive. Then, for all g, t ∈ J, the following
condition holds:

‖g−Mt‖ ≤
(

3 + α

1− α

)
‖g−Hg‖+ ‖g− t‖.

3. Convergence Analysis

In this section, we study weak and strong convergence results for fixed points of
generalized α-Reich–Suzuki nonexpansive mappings in the setting of uniformly convex
Banach spaces.

Theorem 1. Let J be a nonempty, closed and convex subset of a uniformly convex Banach space M.
IfH : J→ J is a generalized α-Reich–Suzuki nonexpansive mapping with FH 6= ∅ and {gm} is
the A∗∗ iterative method defined by (9), then lim

m→∞
‖gm − g∗‖ exists for each g∗ ∈ FH .
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Proof. Assume g∗ ∈ FH and g ∈ J. Since H is a α-Reich–Suzuki nonexpansive mapping
with FH 6= ∅, we have

‖Hg−Hm∗‖ ≤ ‖g− g∗‖. (10)

By (9), we have

‖pm −m∗‖ = ‖H((1− am)gm + amHgm)− g∗‖
≤ ‖(1− am)gm + amHgm − g∗‖
≤ (1− am)‖gm − g∗‖+ am‖Hgm − g∗‖
≤ (1− am)‖gm − g∗‖+ am‖gm − g∗‖
= ‖gm − g∗‖. (11)

Using (9) and (11), we have

‖tm − g∗‖ = ‖H2 pm − g∗‖
= ‖H(Hpm)− g∗‖
≤ ‖Hpm − g∗‖
≤ ‖pm − g∗‖
≤ ‖gm − g∗‖. (12)

Finally, from (9) and (12), we have

‖gm+1 − g∗‖ = ‖H2tm − g∗‖
= ‖H(Htm)− g∗‖
≤ ‖Htm − g∗‖
≤ ‖tm − g∗‖
≤ ‖gm − g∗‖. (13)

This implies that the sequence {‖gm − g∗‖} is nonincreasing and bounded below.
Thus, lim

m→∞
‖gm − g∗‖ exists for each g∗ ∈ FH .

Theorem 2. Let M, J,H and {gm} be as defined in Theorem 1. Then, FH 6= ∅ if and only if {gm}
is bounded and lim

m→∞
‖gm −Hgm‖.

Proof. From Theorem 1, we know that {gm} is bounded and lim
m→∞

exists for any g∗ ∈ FH.

Assume that
lim

m→∞
‖gm −m∗‖ = y. (14)

From (11) and (14), we have

lim sup
m→∞

‖pm − g∗‖ ≤ lim sup
m→∞

‖gm − g∗‖ = y. (15)

Using (10) and (14), we have

lim sup
m→∞

‖Hgm − g∗‖ ≤ lim sup
m→∞

‖gm − g∗‖ = y. (16)
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By (9), we have

‖gm+1 − g∗‖ = ‖H2tm − g∗‖
= ‖H(Htm)− g∗‖
≤ ‖Htm − g∗‖
≤ ‖tm − g∗‖
= ‖H2 pm − g∗‖ (17)

= ‖H(Hpm)− g∗‖
≤ ‖Hpm − g∗‖
≤ ‖pm − g∗‖.

Therefore,
y ≤ lim inf

m→∞
‖pm − g∗‖. (18)

By (15) and (18), we have

y = lim
m→∞

‖pm − g∗‖

= lim
m→∞

‖H((1− am)gm + amHgm)− g∗‖

≤ lim
m→∞

‖(1− am)gm + amHgm − g∗‖

= lim
m→∞

‖(1− am)(gm − g∗) + am(Hgm − g∗)‖

= lim
m→∞

((1− am)‖gm − g∗‖+ am‖Hgm − g∗‖)

≤ lim
m→∞

((1− am)‖gm − g∗‖+ am‖gm − g∗‖)

≤ y. (19)

Hence,
lim

m→∞
‖(1− am)(gm − g∗) + am(Hgm − g∗)‖ = y. (20)

Using (14), (16), (20) and Lemma 1, we obtain

lim
m→∞

‖gm −Hgm‖ = 0. (21)

Conversely, if {gm} is bounded and lim
m→∞

‖gm −Hgm‖ = 0. Let g∗ ∈ A(J, {gm}), then,

by Lemma 2, we have

r(Hg∗, {gm}) = lim sup
m→∞

‖gm −Hg∗‖

≤
(

3 + v

1−v

)
lim sup

m→∞
‖gm −Hgm‖+ lim sup

m→∞
‖Hgm − g∗‖

= lim sup
m→∞

‖gm − g∗‖

= r(g∗, {gm}).

This shows that Hg∗ ∈ A(J, {gm}). Since the Banach space M is uniformly convex,
we know that A(J, {gm}) is a set with one element and it follows that Hg∗ = g∗. Hence,
FH 6= ∅.

Theorem 3. Let M, J,H and {gm} be as defined in Theorem 1 such that FH 6= ∅. Suppose that
M posses the Opial’s condition, then the A∗∗ iteration method {gm} converges weakly to a point
in FH.
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Proof. For FH 6= ∅, we have established in Theorems 1 and 2 that lim
m→∞

‖gm − g∗‖ exists

and lim
m→∞

‖gm −Hgm‖ = 0. Now, we will prove that it is not possible for {gm} to have two

weak subsequential limits in FH. Suppose that q and w are two weak subsequential limits
of {gmi} and {gmj}, respectively. Then, by Theorem 2, we know that (I −H) is demiclosed
at 0—this implies that (I −H)q = 0. Thus, Hq = q. By a similar argument, we can show
thatHw = w. Next, we show uniqueness. Assume q 6= w, then, from Opial’s property,

lim
m→∞

‖gm − q‖ = lim
mi→∞

‖gmi − q‖ < lim
mi→∞

‖gmi − w‖ = lim
m→∞

‖gm − w‖

= lim
mj→∞

‖gmj − w‖ < lim
mj→∞

‖gmj − q‖ = lim
m→∞

‖gm − q‖,

which is a contradiction, so q = w. Hence, {gm} converges weakly to q ∈ FH.

We now prove some convergence theorems.

Theorem 4. Let M, J, H and {gm} be as defined in Theorem 1 such that FH 6= ∅. Then, the
iteration method {gm} converges to a point in FH if and only if lim inf

m→∞
d(gm, FH) = 0, where

d(gm, FH) = inf{‖gm − g∗‖ : g∗ ∈ FH}.

Proof. The necessity is trivial.
Now, we prove the converse. Suppose lim inf

m→∞
d(gm, FH) = 0 and g∗ ∈ FH. From

Theorem 1, lim
m→∞

‖gm − g∗‖ exists, for each g∗FH. It suffices to show that {gm} is Cauchy in

J. Since lim
m→∞

d(gm, FH) = 0, then for ε > 0, there exists l0 ∈ N such that for all m ≥ l0,

d(gm, FH) <
ε

2

inf{‖gm − g∗‖ : g∗ ∈ FH} <
ε

2
.

Particularly, inf{‖gl0 − g∗‖ : g∗ ∈ FH} < ε
2 . Thus, there exists g∗ ∈ FH such that

‖gl0 − g∗‖ < ε

2
.

Let l, m ≥ l0—we obtain

‖gm+l − gm‖ ≤ ‖gm+l − g∗‖+ ‖gm − g∗‖
≤ ‖gl0 − g∗‖+ ‖gl0 − g∗‖
= 2‖gl0 − g∗‖ < ε.

This shows that {gm} is Cauchy in J. By the closeness J, there must be a point
v ∈ J satisfying lim

m→∞
gm = v. Now, lim

m→∞
d(gm, FH) = 0 implies that d(v, FH) = 0, that

is v ∈ FH.

Theorem 5. Let M,H and {gm} be as defined in Theorem 1 such that FH 6= ∅. If J is a nonempty
convex compact subset of M, then the A∗∗ iteration method {gm}converges strongly to a point
in FH.

Proof. By Theorem 2, we have lim
m→∞

‖gm −Hgm‖ = 0. Since J is compact, then we know

that {gm} has a strong convergent subsequence {gmi}with a strong limit k. Using Lemma 2,
we have

‖gmi −Hk‖ ≤
(

3 + α

1− α

)
‖gmi −Hgmi‖+ ‖gmi − k‖.
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As i → ∞, we have gmi → Hk. Therefore, Hk = k, i.e., k ∈ FH. By Theorem 1,
lim

m→∞
‖gm − k‖ exists. This shows that k is a strong limit for {gm}.

Theorem 6. Let M,H and {gm} be as defined in Theorem 1 such that FH 6= ∅. If J is a nonempty
convex compact subset of M, then the A∗∗ iteration method {gm}converges strongly to a fixed point
in FH.

Proof. By Theorem 2, it is established that

lim
m→∞

‖gm −Hgm‖ = 0. (22)

From Definition 6 and (22), we obtain

0 ≤ lim
m→∞

f (d(gm, FH)) ≤ lim
m→∞

‖gm −Hgm‖ = 0 ⇒ f (d(gm, FH)) = 0.

Since h : [0, ∞)→ [0, ∞) is a nondecreasing function with h(0) = 0 and h(c) > 0, for
all c > 0, we obtain

lim
m→∞

d(gm, FH) = 0.

By the application of Theorem 4, the conclusion follows.

In this section, we provide an example of a mapping which is generalized α-Reich–
Suzuki nonexpnsive, but does not satisfy condition (C). With the provided example, we
will conduct an experiment to demonstrate the efficiency of our new iterative method (2)
over some existing iterative methods.

Example 1. Let M = R with the usual norm and J = [7, 10]. DefineH : J→ J by

Hg =

{
g+56

8 , if g < 10,
7, if g = 10,

for all g ∈ J.

(1). Let g = 9 and t = 10, then we have

1
2
‖g−Hg‖ = 7

8
< 1 = ‖g− t‖.

However,

‖Hg−Hh‖ = 9
8
> 1 = ‖g− h‖.

Therefore,H does not satisfy condition (C).
(2). We will now show that H is a generalized α-Reich–Suzuki nonexpansive mappings with

α = 1
3 . We consider the following cases:

Case I: Let g, h < 10, then

W(g, t) = α‖g−Hg‖+ α‖t−Ht‖+ (1− 2α)‖g− t‖

=
1
3

∣∣∣∣g−( g + 56
8

)∣∣∣∣+ 1
3

∣∣∣∣t−( t + 56
8

)∣∣∣∣+ 1
3
|g− t|

=
1
3

∣∣∣∣7g− 56
8

∣∣∣∣+ 1
3

∣∣∣∣7t− 56
8

∣∣∣∣+ 1
3
|g− t|

≥ 1
8
|g− t| = ‖Hg−Ht‖.



Axioms 2022, 11, 470 9 of 18

Moreover,

T(g, t) = α‖g−Ht‖+ α‖t−Hg‖+ (1− 2α)‖g− t‖

=
1
3

∣∣∣∣g−( t + 56
8

)∣∣∣∣+ 1
3

∣∣∣∣t−( g + 56
8

)∣∣∣∣+ 1
3
|g− h|

≥ 1
8
|g− t| = ‖Hg−Ht‖.

Case II: Let g < 10 and t = 10, we have

W(g, t) = α‖g−Hg‖+ α‖t−Ht‖+ (1− 2α)‖g− t‖

=
1
3

∣∣∣∣g−( g + 56
8

)∣∣∣∣+ 1
3
|10− 7|+ 1

3
|g− 10|

=
1
3

∣∣∣∣7g− 56
8

∣∣∣∣+ 1 +
1
3
|g− 10|

≥ 1
8
|g| = ‖Hg−Ht‖.

Also,
T(g, t) = α‖g−Ht‖+ α‖t−Hg‖+ (1− 2α)‖g− t‖

=
1
3
|g− 7|+ 1

3

∣∣∣∣10−
(

g + 56
8

)∣∣∣∣+ 1
3
|g− 10|

=
1
3
|g− 7|+ 1

3

∣∣∣∣24− g
8

∣∣∣∣+ 1
3
|g− 10|

≥ 1 +
1
3

∣∣∣∣24− g
8

∣∣∣∣
≥ 1

8
|g| = ‖Hg−Ht‖.

Case III: Let g = 10 and h < 10—we obtain

W(g, t) = α‖g−Hg‖+ α‖t−Ht‖+ (1− 2α)‖g− t‖

=
1
3
|10− 7|+ 1

3

∣∣∣∣t−( t + 56
8

)∣∣∣∣+ 1
3
|10− t|

= 1 +
∣∣∣∣7t− 56

7

∣∣∣∣+ 1
3
|10− t|

≥ 1
8
|t| = ‖Hg−Ht‖.

Additionally,

T(g, t) = α‖g−Ht‖+ α‖t−Hg‖+ (1− 2α)‖g− t‖

=
1
3

∣∣∣∣10−
(

t + 56
8

)∣∣∣∣+ 1
3
|t− 7|+ 1

3
|10− t|

=
1
3

∣∣∣∣24− t
8

∣∣∣∣+ 1
3
|t− 7|+ 1

3
|10− t|

≥ 1
3

∣∣∣∣24− t
8

∣∣∣∣+ 1

≥ 1
8
|t| = ‖Hg−Ht‖.

Case IV: Let g = t = 10, we obtain

W(g, t) = α‖g−Hg‖+ α‖t−Ht‖+ (1− 2α)‖g− t‖ ≥ 0 = ‖Hg−Ht‖.
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Also,

T(g, t) = α‖g−Ht‖+ α‖t−Hg‖+ (1− 2α)‖g− t‖ ≥ 0 = ‖Hg−Ht‖.

In all the cases above, it clear that ‖Hg−Ht‖ ≤ max{W(g, h),T(g, h)} for α = 1
3 . Hence,H is

a generalized α-Reich–Suzuki nonexpansive mapping with fixed point g∗ = 8.
If we choose starting g1 = 7 and control sequences am = bm = cm = 10

11 , then the following
Tables 1 and 2 and Figures 1 and 2 show that the A∗∗ iteration method (9) converges faster to 8 than
the Mann (1), Ishikiwa (2), Noor (3), Abbas (4), S (5), Thakur (6), M (7) and F (8) iteration methods.

Table 1. Comparison of speed of convergence of the A∗∗ iteration method with some known itera-
tion methods.

gm Mann Ishikawa S M A∗∗

g1 7.0000000000 7.0000000000 7.0000000000 7.0000000000 7.0000000000
g2 7.7954545455 7.8858471074 7.9653925620 7.9968039773 7.9999937578
g3 7.9581611570 7.9869691171 7.9988023252 7.9999897854 8.0000000000
g4 7.9914420548 7.9985124870 7.9999585515 7.9999999674 8.0000000000
g5 7.9982495112 7.9998301961 7.9999985656 7.9999999999 8.0000000000
g6 7.9996419455 7.9999806164 7.9999999504 8.0000000000 8.0000000000
g7 7.9999267616 7.9999977873 7.9999999983 8.0000000000 8.0000000000
g8 7.9999850194 7.9999997474 7.9999999999 8.0000000000 8.0000000000
g9 7.9999969358 7.9999999712 8.0000000000 8.0000000000 8.0000000000
g10 7.9999993732 7.9999999967 8.0000000000 8.0000000000 8.0000000000
g11 7.9999998718 7.9999999996 8.0000000000 8.0000000000 8.0000000000
g12 7.9999999738 8.0000000000 8.0000000000 8.0000000000 8.0000000000
g13 7.9999999946 8.0000000000 8.0000000000 8.0000000000 8.0000000000
g14 7.9999999989 8.0000000000 8.0000000000 8.0000000000 8.0000000000
g15 7.9999999998 8.0000000000 8.0000000000 8.0000000000 8.0000000000
g16 8.0000000000 8.0000000000 8.0000000000 8.0000000000 8.0000000000

Table 2. Comparison of speed of convergence of the A∗∗ iteration method with some known itera-
tion methods.

gm Noor Abbas Thakur F A∗∗

g1 7.0000000000 7.0000000000 7.0000000000 7.0000000000 7.0000000000
g2 7.8961189895 7.9763629320 7.9956740702 7.9996004972 7.9999937578
g3 7.9892087357 7.9994412890 7.9999812863 7.9999998404 8.0000000000
g4 7.9988789926 7.9999867937 7.9999999190 7.9999999999 8.0000000000
g5 7.9998835486 7.9999996878 7.9999999996 8.0000000000 8.0000000000
g6 7.9999879029 7.9999999926 8.0000000000 8.0000000000 8.0000000000
g7 7.9999987433 7.9999999998 8.0000000000 8.0000000000 8.0000000000
g8 7.9999998695 8.0000000000 8.0000000000 8.0000000000 8.0000000000
g9 7.9999999864 8.0000000000 8.0000000000 8.0000000000 8.0000000000
g10 7.9999999986 8.0000000000 8.0000000000 8.0000000000 8.0000000000
g11 7.9999999999 8.0000000000 8.0000000000 8.0000000000 8.0000000000
g12 8.0000000000 8.0000000000 8.0000000000 8.0000000000 8.0000000000
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4. w2-Stability Result

In this section, we prove the convergence and weak w2-stability results of A∗∗ iteration
method (9) with respect to almost contraction mappings. Before that, we will recall the
following definitions that will serve as an important tool in achieving our results.

Definition 7 ([28]). A mapping H : J → J is said to be an almost contraction if there exists
γ ∈ [0, 1) and some constant L ≥ 0, such that

‖Hg−Ht‖ ≤ γ‖g− t‖+ L‖g−Hg‖, ∀ g, t ∈ J. (23)

Definition 8 ([29]). Two sequences {gm} and {tm} are said to be equivalent if

‖gm − tm‖ → 0, as m→ ∞.
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Definition 9 ([30]). LetH : J→ J be a self-map and for arbitrary g1 ∈ J, let {gm} be the iterative
algorithm defined by

gm+1 = f (H, gm), m ≥ 1. (24)

Assume that gm → g∗ as m → ∞, for all g∗ ∈ FH and for any sequence {wm} ⊂ J which is
equivalent to {gm}, we have

lim
m→∞

εm = lim
m→∞

‖wm+1 − f (H, wm)‖ = 0 =⇒ lim
m→∞

wm = g∗,

then we say that the iterative algorithm (10) is weak w2-stable with respect toH.
Now, we present our main results in this section as follows:

Theorem 7. Let J be a nonempty closed convex subset of a Banach space M and H : J → J be
an almost contraction mapping. If {gm} is the sequence defined by (2), then {gm} converges to a
unique fixed point ofH. Moreover, {gm} is weakly w2-stable with respect toH.

Proof. First, we show that lim
m→∞

gm = g∗ ∈ FH. Using (9), we obtain

‖pm −m∗‖ = ‖H((1− am)gm + amHgm)− g∗‖
≤ γ‖(1− am)gm + amHgm − g∗‖
≤ γ((1− am)‖gm − g∗‖+ am‖Hgm − g∗‖)
≤ γ((1− am)‖gm − g∗‖+ amγ‖gm − g∗‖)
= γ(1− (1− γ)am)‖gm − g∗‖. (25)

Using (9) and (25), we obtain

‖tm − g∗‖ = ‖H2 pm − g∗‖
= ‖H(Hpm)− g∗‖
≤ γ‖Hpm − g∗‖
≤ γ2‖pm − g∗‖
≤ γ3(1− (1− γ)am)‖gm − g∗‖. (26)

Finally, by (9) and (26), we obtain

‖gm+1 − g∗‖ = ‖H2tm − g∗‖
= ‖H(Htm)− g∗‖
≤ γ‖Htm − g∗‖
≤ γ2‖tm − g∗‖
≤ γ5(1− (1− γ)am)‖gm − g∗‖. (27)

Since 0 ≤ γ < 1 and 0 < am < 1, we have 1− (1− γ)am < 1. Therefore, (27) becomes

‖gm+1 − g∗‖ ≤ γ5‖gm − g∗‖. (28)

Inductively, we obtain

‖gm+1 − g∗‖ ≤ γ5(m+1)‖g0 − g∗‖.

Since 0 ≤ γ < 1, it follows that lim
γ→∞

uγ = g∗.

Now, we will prove that {gm} is weak w2-stable with respect toH.
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We assume that the sequence {wm} ∈ J is equivalent to sequence {gm} defined by (9).
Let the sequence εm ∈ R+ be defined by

w1 ∈ J,
qm = H((1− am)wm + amHwm),
hm = H2qm,
εm = ‖wm+1 −H2hm‖,

m ∈ N, (29)

where {am} is a sequences in (0,1).
Suppose lim

m→∞
εm = 0. From (9) and (29), we set um = (1− am)gm + amHgm and vm =

(1− am)wm + amHwm. Noting that 0 ≤ γ < 1 and 0 < am < 1, implies 1− (1− γ)am < 1,
then we have

‖um − vm‖ = ‖(1− am)gm + amHgm − ((1− am)wm + amHwm)‖
≤ (1− am)‖gm − wm‖+ am‖Hgm −Hwm‖
≤ (1− am)‖gm − wm‖+ amγ‖gm − wm‖+ amL‖gm −Hgm‖
= (1− (1− γ)am)‖gm − wm‖+ amL‖gm −Hgm‖
≤ ‖gm − wm‖+ amL‖gm −Hgm‖. (30)

Using (9), (29) and (30), we obtain

‖pm − qm‖ = ‖Hum −Hvm‖
≤ γ‖um − vm‖+ L‖um −Hum‖
≤ γ[‖gm − wm‖+ amL‖gm −Hgm‖] + L‖um −Hum‖
≤ ‖gm − wm‖+ amL‖gm −Hgm‖+ L‖um −Hum‖. (31)

By (9), (29) and (31), we have

‖tm − hm‖ = ‖H2 pm −H2qm‖
= ‖H(Hpm)−H(Hqm)‖
≤ γ‖Hpm −Hqm‖+ L‖Hpm −H(Hpm)‖
≤ ‖Hpm −Hqm‖+ L‖Hpm −H(Hpm)‖
≤ γ‖pm − qm‖+ L‖pm −Hpm‖+ L‖Hpm −H(Hpm)‖
≤ ‖pm − qm‖+ L‖pm −Hpm‖+ L‖Hpm −H(Hpm)‖
≤ ‖gm − wm‖+ amL‖gm −Hgm‖+ L‖um −Hum‖+ L‖pm −Hpm‖

+L‖Hpm −H(Hpm)‖. (32)

Using (9), (29) and (32), we have

‖wm+1 − g∗‖ ≤ ‖wm+1 − gm+1‖+ ‖gm+1 − g∗‖
≤ ‖wm+1 −H2hm‖+ ‖H2hm − gm+1‖+ ‖gm+1 − g∗‖
= εm + ‖H(Htm)−H(Hhm)‖+ ‖gm+1 − g∗‖
= εm + γ‖Htm −Hhm‖+ L‖Htm −H(Htm)‖+ ‖gm+1 − g∗‖
≤ εm + ‖Htm −Hhm‖+ L‖Htm −H(Htm)‖+ ‖gm+1 − g∗‖
≤ εm + γ‖tm − hm‖+ L‖tm −Htm‖+ L‖Htm −H(Htm)‖+ ‖gm+1 − g∗‖
≤ εm + ‖tm − hm‖+ L‖tm −Htm‖+ L‖Htm −H(Htm)‖+ ‖gm+1 − g∗‖
≤ εm + ‖gm − wm‖+ amL‖gm −Hgm‖+ L‖um −Hum‖+ L‖pm −Hpm‖

+L‖Hpm −H(Hpm)‖+ L‖tm −Htm‖
+L‖Htm −H(Htm)‖+ ‖gm+1 − g∗‖. (33)
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As shown above, lim
m→∞

‖gm − g∗‖ = 0. Thus, observe that

‖um −Hum‖ ≤ ‖um − g∗‖+ ‖g∗ −Hum‖
≤ ‖um − g∗‖+ γ‖g∗ − um‖
= (1 + γ)‖um − g∗‖
= (1 + γ)‖(1− am)gm + amHgm − g∗‖
≤ (1 + γ)[(1− am)‖gm − g∗‖+ am‖Hgm − g∗‖]
≤ (1 + γ)[(1− am)‖gm − g∗‖+ amγ‖gm − g∗‖]
= (1 + γ)(1− (1− γ)am)‖gm − g∗‖
≤ (1 + γ)‖gm − g∗‖ → 0 as m→ ∞.

Again, by (11), we have

‖Hpm −H(Hpm)‖ ≤ ‖Hpm − g∗‖+ ‖g∗ −H(Hpm)‖
≤ γ‖pm − g∗‖+ γ‖g∗ −Hpm‖
≤ γ‖pm − g∗‖+ γ2‖g∗ − pm‖
= γ(1 + γ)‖pm − g∗‖ → 0, as m→ ∞.

Similarly, we can use same approach as above to show that

‖Htm −H(Htm)‖ → 0 as m→ ∞.

Additionally, observe that

‖gm −Hgm‖ ≤ ‖gm − g∗‖+ ‖g∗ −Hgm‖
≤ ‖gm − g∗‖+ γ‖g∗ − gm‖
= (1 + γ)‖gm − g∗‖ → 0 as m→ ∞.

Using the same argument above, we can show that

‖pm −Hpm‖ = ‖tm −Htm‖ → 0 as m→ ∞.

Since lim
m→∞

‖gm − g∗‖ = 0, then we know that lim
m→∞

‖gm+1 − g∗‖ = 0. Now, from the

equivalence of {gm} and {wm}, we also know that lim
m→∞

‖gm − wm‖ = 0.

Thus, taking the limit of both sides of (33), we have

lim
m→∞

‖wm − g∗‖ = 0.

This implies that A∗∗ iterative method (9) is weakly w2-stable with respect toH.

5. Application to Fractional Volterra–Fredholm Integro-Differential Equations

Fractional differential equations remain a significant tool for modeling several prob-
lems in various field of engineering and applied sciences. It is well known that fraction
models are more reliable than the classical models. In fact, fractional differential equa-
tions can be applied in certain fields such as economics, physics, blood flow phenomena,
image processing, aerodynamics, and so on (see [31] and the references therein). Many
applications of the fractional calculus can be found in the literature [32]. Different analyt-
ical and numerical methods have been used for solving nonlinear fractional differential
equations [33]. Most of the physical processes are modeled by nonlinear fractional order
differential equations. Solving nonlinear fractional differential equations by analytical
methods is very difficult [34]. In this article, we will use our iterative method (9) to solve a
nonlinear fractional order differential equation.
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Definition 10. The fractional derivative of f (u) in the sense of Caputo is defined by

CDk
u f (u) =

1
Γ(k−m)

∫ u

b
f (m)(ν)(u− ν)n−k−1dν, (m− 1 < k < m),

where k is the order of the derivation which could be real or complex number with <k > 0.

In this article, we consider the following nonlinear fractional Volterra–Fredholm
integro-differential equation:

CDkg(u) = c(u)g(u) + r(u) +
∫ u

0
M1(u, s)K1(g(s))ds +

∫ 1

0
M2(u, s)K2(g(s))ds, (34)

with initial condition
z(i)(0) = ηi, i = 0, 1, 2, · · · , m− 1. (35)

where CDk is the Caputo fractional derivative, m− 1 < k ≤ m and m ∈ N, g : G → R,
where G = [0, 1] is the unknown continuous function, d : G→ R and Mi : G×G→ R, are
continuous functions. Ki : R→ R, i = 1, 2 are Lipschitz continuous functions.

Suppose the following hypotheses are performed:

(H1) Two constants LK1 and LK2 exist such that for any g1, g2 ∈ C(G,R) we have

|K1(g1(u))− K1(g1(u))| ≤ LK1 |g1 − g2|

and

|K2(g1(u))− K2(g1(u))| ≤ LK2 |g1 − g2|.

(H2) Two functions M∗1 , M∗2 ∈ C(D,R+) exist, the set of all positive functions is continuous
on D = {(u, s) ∈ R×R : 0 ≤ s ≤ u ≤ 1} such that

M∗1 = sup
u,s∈[0,1]

∫ u

0
|M1(u, s)|ds < ∞, M∗2 = sup

u,s∈[0,1]

∫ u

0
|M2(u, s)|ds < ∞.

(H3) The functions c, r : G→ R are continuous.
(H4) (‖c‖∞ + M∗1 LK1 + M∗2 LK2

Γ(k + 1)

)
< 1.

A function g∗ ∈ (G,R) is said to be a solution of the initial value problem if it satisfies (34)
and (35). For g0(u) ∈ (G,R), finding the solution of (34) and (35) is equivalent to finding
the solution of the following integral equation [35]:

g(u) = g0 +
1

Γ(k)

∫ u

0
(u− t)k−1c(t)g(t)dt +

1
Γ(k)

∫ u

0
(u− t)k−1r(t)dt

+

(∫ t

0
M1(t, τ)K1(g(τ))dτ +

∫ 1

0
M2(t, τ)K2(g(τ))dτ

)
dt, (36)

for each u ∈ J, and g0 = ∑m−1
n=0 gn(0+) un

n! . Under the Hypotheses (H1)–(H4),
Hamoud et al. [35] prove that the problem (34) and (35) has a unique solution.

In the following Theorem, we approximate the solution of (34) and (35) via A∗∗

iteration method (9).
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Theorem 8. Let M = (G,R) be a Banach space with the Chebyshev norm ‖ f − h‖∞ =
maxy∈G | f (y) − h(y)|. Let {gm} be the iteration method (9) for the operator H : M → M
which is define by

Hg(u) = g0 +
1

Γ(k)

∫ u

0
(u− t)k−1c(t)g(t)dt +

1
Γ(k)

∫ u

0
(u− t)k−1r(t)dt

+

(∫ t

0
M1(t, τ)K1(g(τ))dτ +

∫ 1

0
M2(t, τ)K2(g(τ))dτ

)
dt. (37)

If Hypotheses (H1)–(H4) are fulfilled, then the problem (34) and (35) has a unique solution
g∗ ∈ (G,R) and the A∗∗ iteration method converges to g∗.

Proof. The existence of the unique solution g∗ follows from [35]. If g∗ ∈ (G,R) is a fixed
point of H, then g∗ is a solution of (34) and (35). Now, we show that the A∗∗ iteration
method converges to g∗. First, we will prove that the operatorH, which is defined by (37),
is an almost contraction.

Using the Hypotheses (H1)–(H4), we have

|Hg(u)−Hg∗(u)| ≤ 1
Γ(k)

∫ u

0
(u− t)k−1|c(t)||g(t)− g∗(t)|

+
1

Γ(k)

∫ u

0
(u− t)k−1

{ ∫ t
0 |M1(t, τ)|K1(g(τ))− K1(g∗(τ))|dτ

+
∫ t

0 |M2(t, τ)|K2(g(τ))− K2(g∗(τ))|dτ

}
dt

≤
(
‖c‖∞

Γ(k + 1)
+

M∗1 LK1

Γ(k + 1)
+

+M∗2 LK2

Γ(k + 1)

)
|g(u)− g∗(u)|

=

(‖c‖∞ + M∗1 LK1 + M∗2 LK2

Γ(k + 1)

)
|g(u)− g∗(u)|.

Therefore,

‖Hg−Hg∗‖ ≤
(‖c‖∞ + M∗1 LK1 + M∗2 LK2

Γ(k + 1)

)
‖g− g∗‖. (38)

By Hypothesis (H4), we have
(
‖c‖∞+M∗1 LK1+M∗2 LK2

Γ(k+1)

)
< 1. If we take γ =

(
‖c‖∞+M∗1 LK1+M∗2 LK2

Γ(k+1)

)
.

Then, for any L ≥ 0, (38) can be written as

‖Hg−Hg∗‖ ≤ γ‖g− g∗‖+ L‖g−Hg‖. (39)

This implies thatH is an almost contraction mapping. Therefore, by Theorem 7, the
A∗∗ iteration method {gm} defined by (9) converges strongly to the unique solution of the
problem (34) and (35).

6. Conclusions

In this article, we have introduced a new iteration method called the A∗∗ iteration
method (9). We have proven several weak and strong convergence results of our new
method involving the fixed points of generalized α-nonexpansive mappings. A novel
numerical example has been used to show that our new iteration method enjoys a better
speed of convergence than several existing iteration methods. Additionally, the convergence
results of the A∗∗ iteration method are also established for almost contraction mappings.
We have shown that the A∗∗ iteration method is weak w2-stable with respect to almost
contraction mappings. As an application of our main results, we approximated the solution
of fractional Volterra–Fredholm integro-differential equation.
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