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Abstract: The evolution analysis of networks whose links are either positive or negative, representing
opposite relationships such as friendship and enmity, has been revealed to be particularly useful
in sociological contexts. Using a large relational dataset containing the last two centuries of state-
wise geopolitical information (the correlates of war–alliance conflicts), a machine learning approach
is presented to predict network dynamics. The combination of geometric as well as information–
theoretic measures to characterize the resulting discrete time series together with the power of deep
learning machines is used to generate a model whose predictions are even accurate on the few days
in two centuries of international relations when the typical value (i.e., Alliance or Neutral) changed
to a war or a conflict. In other words, the model can predict the next state of the network with a
probability of error close to zero.
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1. Introduction

Time evolving networks are currently one of the subjects of active research in the field
of complex networks. The increasing availability of large relational datasets during the last
decades has favored a widely extended study of complex networks [1–3], represented as a set
of relationships/links between pairs of actors/nodes. The qualified term complex is given to
those graphs whose topology departs from the regularity of classical lattices. This complex
architecture, with properties, such as scale invariance and high clustering, is found in real
networks from a variety of fields [4] such as biology and medicine in the context of biological
temporal networks, which describes the mechanisms and evolution of the cellular functions
and their resistance to stimuli [5], deterministic/stochastic model of epidemic spreading on
temporal networks [6,7], symptom networks in cancer diseases [8], blockchain implemen-
tation [9], wireless intelligent control in healthcare [10], or psychology in the context of the
construction of temporal networks models that examine directionality between symptoms over
time [11].

While static network topologies are now well understood, time-evolving networks are
still the subject of active research [12–17]. One important problem is that of link prediction,
which is the prediction of the next state of the network, which has a direct interest in
applications. Indeed, the study of temporal network evolution can identify the relevant
mechanisms that drive network dynamics. Link prediction methods are essentially related
to social networks, where rapid social network growth is related to link prediction analysis
such as dynamic network, weighted network, heterogeneous network, cross-network, and
so on [18]. Recommender systems and link prediction techniques have also been widely
used in areas such as online information filtering and improving user retrieval [19]. In
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addition, graph embedding for link prediction, which effectively preserves the network
structure and converts node information into a low-dimensional vector space, has been
recently proposed [20]. An interesting application of these methods is the prediction in
criminal networks, such as the case study of the Sicilian Mafia [21], where an original
dataset extracted from judicial documents of the Italian law enforcement agencies against
Individuals affiliated with the Sicilian Mafia has been used.

Signed networks constitute the simplest multilayer networks [22]. Here, positive–
negative links are used to represent two opposite relationship types, such as activation–
inhibition, friendship–enmity, or alliance–conflict [23–25]. The study of signed networks
is especially relevant in sociological contexts where it leads to the notion of Structural
Balance: For example, establishing notions of weak and strong balance and comparing their
performance on a range of tasks [26] have a direct application in sociology and psychology
in the study of how signed networks move towards and away from the balance at different
points over time [27].

The study of international relations over time as an analysis of network evolution for
alliance, war, and relation graphs by considering the roles of individual nodes, structural
motifs, and graph-level communities permits to support of many historical results of
how countries interact. Research has been performed by previous authors using different
datasets, including Correlates of War data, by applying pre-specified signed block modeling
to characterize the structure of the network [28]. Structural balance theory is very useful by
pointing to the more important study of how signed networks move towards and away
from the balance at different points over time.

The evolution of political networks has also been modeled by spectral transformation
on the signed graph Laplacian [29,30] or using statistical physics approaches [31]. Un-
fortunately, none of these works can reproduce with enough precision empirical signed
networks. Results have been obtained in the context of political corruption networks [32],
political parties [33], the European Parliament [34], and the US Congress [25]. In the latter
case, signed networks of political collaboration and opposition are analyzed to identify the
members of polarized coalitions in the US Congress to use these coalitions to examine the
impact of polarization on effectiveness in passing bills.

Recent research results in the field [28,35] have pointed out that temporal predictabil-
ity of political networks is harder compared to their topological-temporal predictability
suggesting the need for more accurate predictive algorithms, especially for conflictual
events [36]. Applying measures of predictability to detect the changing points of temporal
networks and investigating the impact of predictability on dynamical processes and control
on temporal networks, in general, are challenges that need to be resolved.

The purpose of this paper is to investigate whether deep learning machines can learn the
link state prediction problem with enough accuracy. The outline of the paper is as follows.
We first present the general steps of the approach and its theoretical foundations. Particularly
how the network state prediction problem can be re-casted in terms of a classification problem,
and especially how the model selection procedure is carried out based on the theory of
dynamical systems [37,38]. Section 3 is focused on the presentation of the geometrical and
information-theoretic measures and their interpretation. Then, in Section 4, the model selection
procedure based on deep networks is presented together with results derived from the
approach. Section 5 is devoted to discussing the drawbacks and advantages of the approach.
Specifically, the fact of considering pairwise relationships between countries rather than global
patterns together with the influence of the under-represented samples in the predictive power
of the model. Furthermore, the influence of historical events is also discussed within the
context of international signed relations. Finally, a summary of the present study and some
concluding remarks are provided in Section 6.

2. Proposed Approach

The link state prediction problem basically consists of predicting the next state of every
single link associated with the entire set of nodes comprising the structure of the network.
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The motivation of this problem is principally due to the interest not only in understanding
the relevant mechanisms that drive network dynamics for its strong implications with
the theory of structural balance [26,39], that is, the theoretical approach that has been
traditionally used to study international relations, but especially because of the fact that
current state of the art approaches [28,35] agree that their temporal predictability is harder
compared to their topological-temporal predictability suggesting the need of more accurate
predictive algorithms. This work focuses on predictive analysis of the individual time series
associated with every single link of the international network of signed relations extracted
from the correlates of war projects [40], that is, a large relational database containing the
last two centuries of state-wise geopolitical information. Therefore, countries are only
considered pairwise.

2.1. Theoretical Background and Main Steps of the Approach

From a theoretical point of view, the network of international relations can be seen as a
discrete-time dynamical system whose only available information is contained within the set
of discrete time series associated with the links of the network (the observables of the system).
Accordingly, the pillars of the approach (yet to be presented) are grounded on two facts:
Firstly, the embedding theorem [41] that is a fundamental result in dynamic reconstruction
theory that provides the conditions under the phase space of a dynamical system can be
reconstructed from the information contained in a time series obtained from measurements on
one of the observables of the system. Secondly, the fact that the information about the features
of the phase space of the dynamical system (i.e., the network of international signed relations)
is shared and, at the same time, embedded in the temporal evolution of any of the links that
model the pairwise relationships between countries.

Thus, if one can extract such information from the temporal evolution of any given link
(a single observable of the dynamical system), hopefully, such information might be used
to predict the next state of any other link of the network. In other words, global patterns
going beyond pairwise relationships are not considered, firstly, because our goal here is
to generate a simple model as much as possible but at the same time able to reproduce
with enough precision the temporal evolution of political international relations between
countries. Secondly, because of the reasons stated before, that is, the idea that the features of
the phase space of the network of international signed relations are shared and embedded
within the individual time series associated with the network links. Furthermore, achieving
a model with good accuracy at the local level (i.e., predicting the next state of network
links) may be used as a starting point to develop more complex models to understand
patterns at regional and/or global levels in these kinds of temporal networks [28].

Bearing in mind the considerations stated above, the approach is conceived in three
steps (see Figure 1): Firstly, using the public correlates of the war dataset [40], the network
state prediction problem is re-casted in terms of a supervised learning classification problem.
Specifically, each node of the network graph represents a country, and the time-evolving
values of its links describe the political relationship between countries. Namely, alliance
(or friendship) relationships (i.e., discrete value +1), conflict (or enmity) relationships (i.e.,
discrete value −1), and neutral relationships (discrete value 0). It is important to note that
a conflict does not mean strictly a “War” between the countries involved, a conflict may
be simply a political tension (e.g., a diplomacy incident, an increase in taxes for certain
products imported by one of those countries, and so forth).
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Figure 1. Schematic representation of the approach: Firstly, the link state prediction problem is
re-casted in terms of a classification problem where the categories to discriminate are : Alliance,
Neutral and Conflict (point 1). Secondly, Geometric and Information-theoretic measures are used to
characterize the complexity of the time series and the resulting classification dataset (point 2). Finally,
Deep Learning Machines are used to learn the categories representing the state of network links
(point 3).

Figure 1. Schematic representation of the approach: Firstly, the link state prediction problem is
re-casted in terms of a classification problem where the categories to discriminate are: Alliance,
Neutral, and Conflict (point 1). Secondly, Geometric and Information-theoretic measures are used to
characterize the complexity of the time series and the resulting classification dataset (point 2). Finally,
Deep Learning Machines are used to learn the categories representing the state of network links
(point 3).

Secondly, the dynamics of every single link of the network graph are represented in
terms of a discrete time series whose values represent the state of the link at any given instant
of time. Geometric and information-theoretic measures (yet to be described) are used to
characterize the complexity of the discrete time series, the resulting datasets, and to help
with the model selection procedure. Finally, Deep learning machines (the model) [42,43] are
used to learn the categories representing the state of network links to predict the next state of
the network (one step ahead prediction).

Taking these considerations into account and to show the suitability of the approach,
we focus the analysis hereafter (without a loss of generality) on a subset of four nodes of
the entire signed network corresponding to the countries of England, France, Spain, and
the United States of America.

2.2. The Correlates of War Data

The Correlates of War project (CoW project hereafter) is explained, [40] where an
overview of the war typology, the description of the basic variables, and coding rules are
provided. The database covers the period ranging from 1816 to 2007, and it reflects the
evolution of the network of international signed relations. This dataset encompasses wars
and/or conflicts that took place between or among the recognized countries, that is, states
that possess the status of a territorial entity. Furthermore, in the aforementioned dataset,
positive ties between countries are assigned with a numerical value equal to +1, whereas
negative ties are assigned with a value −1.

Moreover, positive ties are defined by joint memberships in alliances, being in unions
of countries, and/or sharing inter-governmental agreements. In contrast, negative ties are
used to describe two countries being at war or in conflict with each other without military
involvement, being involved in border disputes, or having sharp ideological or policy
disagreements [28].

This network, as expected, changes over time. For example, in 1946 the network was
composed of only 64 nodes (i.e., countries) and 362 links: 320 Alliance links (positive ties
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with assigned value equal to +1) and 42 Conflict links (negative ties with assigned value
equal to −1). Surprisingly, in 1990 the number of countries in the network had increased
up to 155, and the network was composed of a total of 1288 links, specifically, 1160 positive
ties and 128 negative ties. For example, certain countries, such as USA and USSR, or China
and North Korea, are involved in an unusually large number of negative ties with other
countries.

Finally, it is important to note that in our study, as in others, to build the discrete time
series associated with each link of the network, the absence of information in the CoW
database during certain periods of time of the signed relations (not a positive tie nor a
negative tie) is treated by the category Neutral, with an assigned numerical value equal
to zero.

3. Geometric and Information-Theoretic Measures

Let us suppose a dataset DN composed of N patterns belonging to a space dimension
d. Furthermore, it is assumed that each sample of the dataset belongs to a category wi where
i = 1, 2, . . . , C. In other words, there are C different pattern categories (or classes) defined
in the input space. If the input variables xi are grouped into a vector ~x = (x1, x2, x3, . . . , xd),
the dataset can be formally defined as a set of vectors ~xk in d dimensions where 1 ≤ k ≤ N,
where each pattern belongs to one of the categories defined in the input space, ∀~xk ∈ DN the
category of a pattern ~xk is represented using the notation class(~xk) = wi where 1 ≤ i ≤ C.

3.1. Inertias

Inertia [44] is a classical measure for the variance of high-dimensional data. Three
types of inertia can be distinguished, namely, global inertia (IG), within-class inertia (IW),
and between-class inertia (IB):

IG =
1
N

N

∑
n=1
‖~xn‖2 (1)

Iwi =
1
Ni

Ni

∑
l=1
‖~xl − gi‖2 ∀xl |class(~xl) = wi (2)

IW =
1
N

C

∑
i=1

Ni Iwi (3)

IB =
1
N

C

∑
i=1

Ni‖gi‖2 (4)

where ‖.‖2 is the square of the Euclidean norm: ‖~x‖ = ~x~xt, and the coefficients gi =
1
Ni

∑Ni
n=1~x

n

represent the centers of gravity of category i, where 1 ≤ i ≤ C. Global inertia IG (1) is com-
puted over the entire dataset. In contrast, within-class inertia IW (see expressions (2) and (3)) is
the weighted sum of the inertia computed on each category where wi, where the weighting is
the a priori probability of each category (Ni is representing the number of patterns belonging to
category wi). Between-class inertia IB (4) is computed on the centers of gravity of each category.
They are typically used to characterize the variance of high-dimensional data [44].

Within the context of this study, inertias are used hereafter simply as a part of the
definition of the geometrical measures presented in the next section.

3.2. Dispersion and Fisher Criterion

Generally speaking, in a supervised classification problem, classification performance
depends on the discrimination power of the features, that is to say, the set of input dimen-
sions that compose the patterns of the dataset. Dispersion and the Fisher criterion are two
measures [44] for the discrimination between classes (categories defined in the input space).
The overlapping rate between categories is measured by the Fisher criterion and is defined
as the quotient between the between-class inertia (IB) and the within-class inertia (IW) (see
expression (5)). In addition, a simple measure for the dispersion between categories is the
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mean dispersion of category wi in category wj defined in expression (6)). It is important to
note that the dispersion matrix is not symmetric.

FC =
IB
IW

(5)

Dispersion(i, j) =
‖~gi −~gj‖√

Iwj

1 ≤ i, j ≤ C (6)

As it can be deduced, the discrimination is better if the Fisher criterion is large.
Similarly, if the dispersion measure (6) between two categories is large, then these categories
are well separated, and the between-category distance is larger than the mean dispersion
of the classes. Furthermore, if this measure is close to or lower than one, the categories are
highly overlapped. To apply the Fisher criterion and dispersion measures, the dataset is
normally pre-processed using a linear re-scaling [45] to arrange all the input dimensions
to have similar values. In addition, it is important to note that a high degree of overlap
between two categories does not necessarily imply significant confusion between them
from the classification point of view. For instance, that is the case for multi-modal or very
elongated categories.

Having said this, it is important to note that the methodology used to generate the
datasets associated with every single network link basically consists of the following: a
window containing a number of data points equal to λ is displaced from the first data
point till arriving to the last but one point of the discrete time series, where λ represents
the number of delayed signals used as regressors to model the dynamics of the time series
(the calculation of λ is described in Section 4.1). Specifically, at each window displacement
step, the features of each pattern are composed of the data points under the window, and
its target is the category represented by the next data point found after the window.

Thus, a dataset DN with a total of N = L− λ + 1 patterns in a dimension equal to λ is
generated, being L the number of data points of the discrete time series. It is important to
remember that the categories of the patterns belonging to the aforementioned datasets are
those corresponding to the possible states of the links, that is, Alliance, Neutral, and Conflict. For
example, the dataset associated to the link France–Spain contains 62,206 patterns (N=62,206) in
dimension 16,499 (d=16,499), the corresponding dataset to the link England–Spain contains
63,203 patterns in dimension 14,219, and so forth.

Table 1 shows the a priori probabilities of each category for the datasets associated
with the network links under consideration. It is important to note that the category
Conflict as expected is under-represented in the whole dataset. Specifically, the number of
patterns associated with this category ranges from one up to three orders of magnitude
lower (network link France–Spain) compared to the rest of the categories, thus, potentially
affecting the performance of any machine learning classifier. It is important to note that
the interest here is to explore the possibility of generating a predictive model able to be
correct in the few days where the state of a link changed to a Conflict as in most of the cases
the state of a link will remain the same from one day to the next with a high probability
(e.g., state of Alliance or Neutral). Furthermore, to avoid the bias imposed by the pattern
generation procedure, a random shuffle of the rows of the matrix representing each dataset
was performed in a number of steps big enough to avoid the aforementioned bias.

Moreover, applying the Fisher criterion to the datasets associated to the four links
under study the following values were obtained: FCSP–FR = 0.3418, FCSP–UK = 0.4744,
FCUK–FR = 0.2087, and FCUK–USA = 1.4286 for the link England–USA. Thus, indicating a
high degree of overlap between the patterns for all the links under study except for the
link England–USA. This fact is of particular interest taking into consideration the high
dimension of the patterns associated to the considered datasets (e.g., d = 16,499 for the link
France–Spain, d = 14,219 for the link Spain–England, d=9181 for the link England–France,
and d=6408 for the link England–USA).
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Table 1. Prior probabilities of each of the categories (Alliance, Neutral, Conflict) representing the
possible states of network links for the generated supervised learning datasets (i.e., discrete time
series). The data presented was generated using the database containing the last two centuries (i.e.,
covering the period from 1816 up to 2007) of state-wise geopolitical information of those countries
included in the Correlates of War Project. [40].

Prior Probabilities

Network Link Alliance Neutral Conflict

England–France P = 81,147
97,135 = 0.8354 P = 14,907

97,135 = 0.1533 P = 1081
97,135 = 0.0111

England–Spain P = 23,061
63,203 = 0.36487 P = 38,959

63,203 = 0.6164 P = 1183
63,203 = 0.01872

England–USA P = 43,646
74,357 = 0.58698 P = 29,800

74,357 =0.4010 P = 891
74,357 = 0.01198

France–Spain P = 24,017
62,206 = 0.3861 P = 38,179

62,206 =0.6138 P = 10
62,206 = 0.0001608

The dispersion matrix for the link France–Spain is shown below:

DFrance−−Spain =

 0 0.0566 0.0874
4.4028 0 0.0753
6.6242 0.0734 0


The first dimension of the matrix corresponds to the category Conflict, whereas di-

mension two and three correspond to the categories Neutral, and Alliance, respectively. Of
particular interest is the fact that the dispersion between the categories Alliance–Conflict is
almost two orders of magnitude larger (remember that the dispersion is not commutative)
compared to the dispersion Conflict–Alliance, indicating that the average distance of the
patterns belonging to the category Alliance to its center of gravity is larger compared to
those of category Conflict. In other words, the dispersion of the patterns belonging to the
category Alliance is larger compared to those belonging to the category Conflict. Indepen-
dently of those facts, the dispersion matrix suggests a high degree of overlap between the
categories defined in the classification problem, and this is not surprising if one takes into
account that the state of a link may remain constant for several years.

Similarly, the dispersion matrices for the network links England–Spain and England–
USA are shown below:

DEngland–Spain =

 0 0.0349 0.0712
0.2162 0 0.0601
0.4209 0.0575 0



DEngland–USA =

 0 0.0307 0.0890
0.1503 0 0.0945
0.5266 0.1142 0


As occurred before (i.e., link France–Spain) the dispersion between the categories

Alliance–Conflict is larger compared to the dispersion Conflict–Alliance (one order of mag-
nitude larger in this case), indicating that the dispersion of the patterns belonging to the
category Alliance is larger compared to those of the category Conflict. This fact appears to
suggest that the mechanism (or strategies) used by countries to generate alliances are, in
general, more complex (i.e., there are more possibilities) compared to those mechanisms
leading to a conflict, and thus, it would permit one to speculate with the possibility that the
transitions from a state of Alliance to a state of Conflict would be easier to detect compared
to the opposite transitions (lower dispersion value).

Independently of those facts, the dispersion matrices suggest a high degree of overlap
between the categories defined in the classification problem. Of particular interest is the
fact that the dispersion of the category Neutral with respect to the category Alliance is one
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order of magnitude larger in the dispersion matrix corresponding to the link England–USA
compared to the rest of matrices considering this fact is responsible for a value of the Fisher
criterion, which is slightly larger for this dataset.

3.3. Mutual Information

The mutual information of two random variables [46] x and y, I(x, y) is defined in
terms of the entropy as I(x, y) = S(x) + S(y)− S(x, y), and is interpreted as the reduction
in the uncertainty about the random variable x as a consequence of the new observation
of random variable y. The mutual information I(x, y) is zero if and only if the random
variables x and y are statistically independent. Furthermore, one of the most interesting
characteristics of mutual information is that it permits the detection of nonlinear correlations
between the variables involved.

Figure 2 represents the time delayed mutual information [47] from the discrete time
series representing the evolution of the political relationships between Spain, France, and
England using the database containing the last two centuries (i.e., covering the period from
1816 up to 2007) of state-wise geopolitical information of those countries included in the
Correlates of War Project [40]. The time-delayed mutual information was computed using
the nonlinear time series analysis software package presented in [48]. Furthermore, the
unit of time employed in the graphs are days (see also Figure, 3 which contains the graph
representing the link England–USA).

Figure 2. Time delayed mutual information I(x, x− λ) [47] for the discrete time series corresponding
to the nodes of the network representing the countries of Spain, France, and England. The time
delay λ is expressed in days ranging from 1 up to approximately 164 years, a value that ensures
the statistical independence of the stochastic processes and its delayed versions representing the
temporal evolution of the political relationships of the aforementioned countries covering the period
from 1816 till 2007. The correlations of the three graphs for a certain range of values of the delay
evidence the existence of historical events that directly or indirectly affected the political relationships
between those countries.
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Figure 3. Time delayed mutual information I(x, x− λ) for the discrete time series corresponding to
the nodes of the network representing the countries of England and the United States of America.
As before, the time delay λ is expressed in days ranging from 1 up to approximately 164 years, a
value that ensures the statistical independence of the stochastic processes and its delayed versions
representing the temporal evolution of the political relationships of the aforementioned countries
covering the period from 1816 till 2007.

In the following, these graphs are used to determine the number of regressors needed
to reconstruct the dynamics of the nonlinear systems that generated the data.

4. Deep Networks

This section aims to introduce the model structure selection procedure used to identify
the nonlinear dynamical systems driving link dynamics. Selecting a model structure in a
time-dependent predictive model using deep networks implies selecting the number of
delayed signals used as regressors (i.e., the number of inputs of the network) and specifying
how to combine those regressors into a one-step ahead prediction (i.e., the architecture
of the deep network). The qualifier lag space is used hereafter to denote the number of
delayed signals used as regressors [49].

4.1. The Optimal Number of Regressors

Selecting the appropriate number of regressors is crucial to developing a good predic-
tive model. A wrong choice of lag space may have a disastrous impact on the predictive
model. Too small obviously implies that essential dynamics of the nonlinear system will
not be modeled, but too large can also be a problem, for example, due to the computa-
tional complexity (e.g., memory requirements and/or training times for the case of deep
networks) [49]. The optimal choice for the lag space λ is that value of λ that makes the
discrete time series y(n) and its delayed version y(n− λ) independent, that is, having no
correlation with each other. It is important to remember that the mutual information is
zero if and only if the input and output of the system are statistically independent. This
requirement is best satisfied by using the particular λ for which the mutual information
between y(n) and y(n− λ) attains its first minimum [47].

Taking these considerations into account the optimal lag space for the time series France–
Spain, England–Spain, England–France, and England–USA was computed leading respectively to the
values λFrance–Spain =16,499 days, that is, approximately 45 years, λEngland–Spain =14,219 days
(39 years), λEngland–France =9181 days (25 years), and λEngland–USA =6408 days (16 years). In
other words, the datasets to be learned by the machine learning classifier were generated using
this information.

Denoting as L the length of the discrete time series, the patterns of the datasets are
generated by displacing a window containing a number of data points equal to the lag
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space λ from the first data point until arriving at the end of the time series to generate a
dataset DN with a total of N = L− λ + 1 patterns in a dimension equal to λ. For example,
the dataset associated to the link France–Spain contains 62,206 patterns in dimension 16,499,
the corresponding dataset to the link England–Spain contains 63,203 patterns in dimension
14,219, and so forth. Furthermore, to avoid the bias imposed by the pattern generation
procedure, a random shuffle of the rows of the matrix representing each dataset was
performed in a number of steps big enough (i.e., the length of the random walk) to avoid
the aforementioned bias.

4.2. Deep Networks Structure

The architecture of the deep learning machines was selected according to the theory
presented in [50,51]. Specifically, the criterion used was roughly to fix a number of neurons
big enough to ensure that the overparameterization condition was largely fulfilled (i.e.,
W�N) for the entire set of learning datasets, afterward selecting those networks attaining
larger entropy values for those links with associated datasets leading to lower values
of the Fisher criterion. To this end deep learning machines with a hierarchical structure
composed of 756 units, and five hidden layers were used with the following architectures:
293× 248× 143× 51× 18× 3 for the link France–Spain, 292× 239× 150× 53× 19× 3 for
the link England–Spain, and finally 281× 280× 134× 43× 15× 3 for the link England–France.
The three units that are present at the output of the networks implement a 1-to-c coding [45],
where c represents the number of categories defined in the input space, that is, three in
our case.

4.3. Results from the Deep Learning Approach

Table 2 shows the results of the one step ahead link state prediction problem. Specifically,
the table shows the probability of error of the model associated with each of the defined
categories in the supervised learning problem (i.e., the possible states of network links: Alliance,
Neutral, and Conflict). Deep learning machines were used with a total of 756 units with a
hierarchical topology, and the set of architectures described in the previous section. The
networks were trained 1000 Epochs with the scaled conjugate gradients algorithm [45,52].
The generalization capability of the networks was validated using a statistical ten-fold cross-
validation procedure [53] obtaining the probabilities of error that are shown in the table.

Table 2. The table shows the results of the one step ahead link state prediction of the political signed
network using deep learning machines with five hidden layers and a total of 756 units hierarchically
arranged and trained 1000 Epochs with the scaled conjugate gradients algorithm [45,52]. The results
were validated using a statistical ten-fold cross-validation procedure [53] using the datasets built
from the discrete time series corresponding to the evolution of network links (i.e., the evolution of
political relationships between pairs of countries). Clearly, the model can predict the next state of the
network with a probability of error close to zero.

Probability of Error

Network Link Alliance Neutral Conflict

England–France 0.000098± 0.000052 0.0014± 0.00095 0.0084± 0.0053
England–Spain 0.00013± 0.00028 0.00015± 0.00028 0.0069± 0.0079
England–USA 0.000069± 0.00011 0.00027± 0.00026 0.0099± 0.0098
France–Spain 0.000086± 0.00018 0.000078± 0.00017 0.88± 0.27

It is important to remember that the goal is to generate a predictive model able to
reproduce with enough precision the dynamics of the links. This is equivalent to developing
a predictive model being right on the few days in 200 years of state-wise geopolitical
information (see Table 1) when the typical relationship (i.e., Alliance or Neutral) changed to
a war or a conflict (i.e., category Conflict) as in most cases the state of the link will remain
at the same state as it was today. That is the reason to show the probability of error of the



Axioms 2022, 11, 464 11 of 19

model associated with each category to show the goodness of the model at predicting those
big events.

The most important fact is that the predictive models are obtained with a probability
of error close to zero, including those events leading to a conflict except for the link France-
Spain although this is due to the extremely low number of samples belonging to the
category Conflict, that is, only 10 days of conflict in 200 years compared for example to
891 days of conflict for the link England–USA (see Table 1). These kinds of nodes are scarce
from the point of view of the dynamics of international signed relations, that is, countries
that are neighbors and have no conflicts, at least within the period of time covered by the
correlates of war database.

Moreover, of particular interest is also the fact that predictive models obtained using
lower learning times (200 Epochs) lead to probabilities of error close to zero with respect to
the categories well represented in the datasets (Alliance and Neutral categories). However,
they are unable to predict those big events mentioned before (i.e., patterns belonging to
the category Conflict). Independently of those facts, we can conclude that the proposed
methodology can reproduce with enough precision empirical signed networks time series.
More specifically, for each category, an accurate indicator of the predictions of the model
can be obtained by averaging the probabilities of error associated with the subset of nodes
considered in Table 2. Thus, for the category Alliance the model produce on average 1 error
each 10,000 predictions. Similarly, for the category Neutral 5 errors are obtained on average
each 10,000 predictions. Finally, for the category Conflict, excluding the link France–Spain
for the reasons explained above the predictive model produces approximately 84 errors
each 10,000 predictions.

Having said this, with respect to the time of the training procedure it is important to
note that, as expected, it is computationally expensive principally due to the dimension-
ality of the samples. For example, the ten-fold cross-validation procedure (i.e., each fold
comprises a learning and test phase) for the links France–Spain, and England–United States
of America took 80 and 37 days, respectively, using a computer with 4 GB of RAM with a
dual-core Intel Celeron CPU at 1.6 GHz, and using Windows 10 as the operating system.
For the links England–France and England–Spain, the time of the cross-validation procedure
was reduced to 11 and 12 days, respectively, using a computer with 12 GB of RAM with an
iCore 7 Intel CPU (first Generation) at 2.66 GHz. Furthermore, those times were further
reduced to the range of a few days using a computer running windows with 8 GB of RAM
with an Intel iCore 5 CPU (eleventh Generation) at 2.4 GHz. For example, the time of the
cross-validation procedure for the link England–Spain took only 5 days.

Finally, it is important to emphasize that the lag space can be interpreted as the mem-
ory of the underlying stochastic process driving link dynamics, and the values obtained
are huge, for instance, λ= 45 years for the link France–Spain, or λ= 39 years for the link
Spain–England. In other words, current political relationships between countries are influ-
enced to a great extent by past historical events. Indeed, the complexity of the processes
driving link state dynamics, and thus, of the resulting supervised learning datasets, was
evidenced not only by the aforementioned values of the lag space but also by the infor-
mation obtained from the geometrical measures explained before. Clearly, the complex
interactions of the countries comprising the signed network graph are implicitly embedded
in the temporal dynamics exhibited by the state of network links. However, deep learning
machines can extract such information that permits the reconstruction of the underlying
dynamical process.

5. Discussion

The study of complex social and political phenomena from the perspective and meth-
ods of complex networks has proven fruitful in a variety of areas [14], including applications
in political science and, more specifically, in the field of international relations. Within
this context, understanding the temporal evolution of international signed relationships is
currently a subject of active research. Particularly, in these kinds of networks, the existence
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of processes operating at different levels (i.e., local, regional, and global) shape the level of
organization and interconnectivity of international relations. Furthermore, the existence of
those processes operating at different scales plays an important role in interpreting network
dynamics and function, especially in understanding the strategies and actions of the actors
involved. Unfortunately, the dynamics of conflicts, both regional and global, have led to
the notion that constructing a general modeling strategy for change in signed networks
over time will be very difficult.

Using the data produced by the Correlates of War project in this study, we have
proposed a predictive model that captures the regularities of international signed relations.
The main contributions of this work and the methodology employed can be summarized
as follows:

• The fact of employing information-theoretic measures such as mutual information
provides substantial information not only with regards to the influence of certain
historical events but especially in a better comprehension of international signed
relations (e.g., to better understand the role and actions of the actors involved).

• The predictive model can capture with enough accuracy the regularities of interna-
tional signed relations (i.e., an average accuracy ranging from 1 up to 5 errors each
10,000 predictions for the well-represented categories), including the prediction of con-
flictual events at the local level (i.e., the under-represented category Conflict achieving
an average accuracy of 84 errors each 10,000 predictions) thus, outperforming state of
the art approaches.

• Given the accuracy of the predictions obtained at the local level, our results suggest
that this model might be extended by incorporating both temporal and topological
aspects of networks to improve predictions of dynamical processes at regional and
global levels aimed at achieving a complete understanding of the overall pattern of
signed international relations.

5.1. Under-Represented Samples: The Conflict Category

One of the important implications of the present study was to show that even though
the patterns leading to conflictual events, that is, patterns belonging to the category Conflict
are under-represented (i.e., the number of available samples for this category is around 1%
of the total number of samples contained in the generated datasets ) the set of predictive
models obtained using the Deep Network Architectures shown in Table 2 (Networks with
756 artificial neurons trained 1000 Epochs) were able to learn this category also with a
probability of error close to zero. This fact is of particular interest as the same set of
architectures trained lower learning times (200 Epochs) lead to probabilities of error close
to zero with respect to the categories well represented in the datasets (Alliance and Neutral
categories) but they were unable to learn the patterns belonging to the category Conflict.
Furthermore, using a Deep Network with a higher quotient Entropy/Internal Energy [50],
that is, a model with higher complexity 933 × 511 × 250 × 51 × 16 × 3 (1764 Artificial
Neurons) trained only 200 Epochs was able to obtain the same prediction accuracy for the
three categories (Alliance, Neutral, Conflict) as that obtained with the networks of 756 units
but trained 1000 Epochs.

Having said this, it is important to note that in network links such as Spain–France
where the number of samples available for the under-represented category are extremely
scarce (i.e., around 0.016% with respect to the total number of samples) the performance
of the predictive model is clearly affected because of this fact. For any machine learning
classifier learning under-represented categories is always a challenge principally because
of the fact that the training phase of any supervised learning task (i.e., learning categories)
selects patterns from the dataset randomly, that is, using a uniform distribution and thus,
the probability of selecting a sample of the under-represented categories is extremely low,
leading to a low exposure of the machine learning classifier to these kinds of samples
impairing its classification performance.
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However, it is important to emphasize that even though in this link, the category
Conflict is extremely under-represented because of the absence of samples belonging to
this category (�1%), they are scarce from the point of view of the dynamics international
signed relations (e.g., countries that are neighbors and having practically no conflicts at
all in its history), it has been possible to show according to the conclusions presented
before that using either a higher complexity model or larger learning times it was possible
to circumvent this problem, something that it could be even enhanced using a uniform
distribution for sampling the patterns of the datasets but focused on its number of categories
rather than on its number of samples during the learning phase of the predictive models.

5.2. Global Patterns versus Pairwise Relationships

The first important implication of this study was to show that the proposed methodol-
ogy can predict the temporal evolution of political signed networks with enough precision.
Furthermore, according to the methodology proposed, developing a more complex model,
for instance, using global patterns instead of pairwise relationships would be justified in
case of the impossibility of obtaining an appropriate accuracy in the predictions, something
that is not the case, but even in that case a model of that kind would be intractable from
a computational point of view due to the memory requirements and the time required for
the learning phase. For example, simply the dataset associated with the link France–Spain is
composed of 62,206 patterns embedded in a space dimension equal to 16,499.

The second important implication was to show the possibility of the reconstruction
of the phase space of the dynamical system (the first point of the theoretical foundations
of the approach) to predict the next state of the network with enough precision, although
this procedure is opaque as is carried out by deep networks (that act as black boxes) the
advantage of the proposed methodology is the fact that is potentially comprehensible for
experts outside the field of deep learning. Furthermore, the advantage of the proposed
approach is that it might be easily extended by incorporating both temporal and topological
aspects of networks, slightly increasing the complexity of the resulting model to achieve
predictions of dynamical processes at regional and global levels. More specifically, the
proposed model is principally based on a set of deep networks that locally learn with
extreme accuracy the temporal evolution of the discrete states associated with the links of
the network of political relations.

Thus, aimed at achieving a complete understanding of the relevant mechanism that
drives the dynamics of international signed relations, this set of deep learning machines can
be embedded in a message-passing probabilistic model that uses BeliefPropagation [54] to
reconstruct the time-dependent information of the entire network of international relations in
order to improve predictions of dynamical processes at regional and global levels. Precisely,
the temporal structure of the problem may be exploited to generate a factor-graph [55] without
cycles to ensure convergence of BeliefPropagation [56]. Afterward, the initial estimation of
marginal probabilities can be achieved using the knowledge acquired by the set of deep
learning machines. It is important to remember that the output of deep neural networks can
be considered probabilities if the error function used for the learning phase of these models is
the sum-of-squares error or the cross-entropy error function [45]. Furthermore, as opposed to
a model that uses regional and/or global patterns to train deep learning machines, a model
of this kind would not increase excessively complexity as the deep learning machines would
be used in recall mode.

Having said this, it is also important to remember that the second point of the theoret-
ical foundation of the approach was grounded on the idea that the features of the phase
space of the dynamical system under study are shared and embedded within the individual
time series associated with the political network links. In other words, the information and
influences of the rest of the countries comprising the signed network are implicitly em-
bedded in the particular evolution of the time series associated with a link (i.e., a pairwise
relationship), and such information could be extracted given that the observation window
of the strange attractor is big enough (remember that the public correlates of war datasets
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contains almost two centuries of state-wise geopolitical information). Rephrasing this
hypothesis in complementary terms is equivalent to stating that if countries are considered
pairwise, much information is lost as the relationship between countries depends on their
relationships with other countries, something unlikely according to the results obtained,
that is, probabilities of error close to zero in the predictions.

However, to shed more light on this issue, the following experiment was conducted:
Using the discrete time-series associated with the links France–Spain, England–France, and
England–USA three additional datasets were generated following the procedure explained
in Section 4.2 but instead of using the lag λ associated to each of the aforementioned links
those set were constructed using the lag obtained for the time series corresponding to the
link England–Spain, that is, λ = 14,219.

Afterwards, a statistical cross-validation procedure was used to determine the aver-
age classification error for the three categories (Alliance, Neutral, Conflict) using exactly the
same seed for the random number generator and the same Deep Network architecture
292× 239× 150× 53× 19× 3 to obtain identical results to those reported in Table 2 for this
link. Specifically, at each fold of the aforementioned procedure, the test set corresponding to
the series England–Spain is passed to the deep network to check the generalization performance
but also the three additional datasets generated from the time series associated to the links:
France–Spain, England–France, and England–USA as described before.

Figure 4 represents the generalization performance obtained and its standard deviation
(the error bars) resulting from the experiment described before for the categories Alliance
and Neutral. Similarly, Figure 5 shows the generalization performance achieved for the
under-represented category Conflict. The reason for separating the three categories into
two graphs is to clarify the discrepancies in the results obtained for the under-represented
category. For the link England–Spain, the generalization performance obtained and its
standard deviation are exactly the same as those shown in Table 2. For the rest of the links
studied, it can be deduced that the knowledge extracted from the time-series associated
with the link England–Spain permits to reach values of the generalization performance
practically above 98%, thereby appearing to confirm the likelihood of the hypothesis. Of
particular interest is the fact that the worst generalization performance compared to the
rest of the links together with the largest standard deviation (i.e., a value of 87% with a
standard deviation around this value equal to 5.47) is obtained for the category Neutral,
and the link England–France that is, precisely the link leading to the lowest value of the
Fisher criterion FCUK–FR = 0.2087 but also the category with the lowest a priori probability
(approximately 15%) compared to the values for this category in the rest of links (values
above 40%).

In contrast, the prediction results obtained for the category Conflict shown in Figure 5
appear to suggest (excepting, of course, for the link England–Spain) that the knowledge
learned by the deep network for this under-represented category was not good enough to
generalize for the rest of links used in the experiment. More specifically, a generalization
values for the links France–Spain, England–France, and England–USA were, respectively,
35% (σ = 19), 1.4% (σ = 4.19), and 0.71% (σ = 1.53). In other words, the results are poor
compared to those obtained for the rest of the categories.

Summarizing, with the proposed methodology, the fact of considering pairwise re-
lations between countries does not affect the accuracy of the predictions of the model at
the local level with regards to the patterns of international signed relations allowing, at
the same time, the possibility to use this model as the basis of a more general modeling
strategy without increasing complexity excessively. Furthermore, the predictive capacities
of the model are beyond strictly local predictions as the model can also provide accurate
predictions at the regional or global level of the patterns belonging to the well-represented
categories of international signed relations. However, conflictual patterns are only pre-
dicted with accuracy (probability of error close to zero) at the local level. In other words,
the information extracted by deep learning machines from the pairwise relations between
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countries is not good enough to predict conflictual events in other links of the political
network.

Figure 4. Generalization performance and its standard deviation (the error bars) for the categories
Alliance, and Neutral obtained using a ten-fold cross-validation procedure for the time series associated
to the link England–Spain. The goal was to check whether the knowledge learned by the predictive
model for this link (the deep network with architecture 292× 239× 150× 53× 19× 3) might be used
to generalize the predictions of the categories associated with the links France–Spain, England–France,
and England–USA.

Figure 5. Generalization performance and its standard deviation (the error bars) for the category
Conflict (the under-represented category). As before, the goal was to check whether the knowledge
learned by the predictive model for this link (the deep network with architecture 292× 239× 150×
53× 19× 3) might be used to generalize predictions in other links of the signed network.

5.3. Influence of Historical Events

The temporality of links in the network of international relations encodes the ordering
and causality of interactions between countries, and it was shown in previous sections that
they have a profound effect on network dynamics and function. Time delayed mutual infor-
mation was used in Section 3.3 to calculate the optimal number of regressors for predicting
the discrete time series associated with the subset of links studied. The whole thing is that the
set of delays obtained can be interpreted as the memory of the underlying stochastic process
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driving link dynamics, and the values obtained are huge, for instance, λ=45 years for the
link France–Spain, or λ=39 years for the link Spain–England. In other words, current political
relationships between countries are influenced to a great extent by past historical events.

Moreover, taking these considerations into account together with the fact that mu-
tual information permits the detection of non-linear correlations between the variables
involved it is plausible to assume that its temporal evolution (see Figures 1 and 2) is clearly
evidencing the existence of historical events that directly or indirectly affected the political
relationships between those countries. For example, the graph of the time delayed mutual
information for the links France–Spain, and England–Spain (see Figure 1) is correlated for
λ ∈ [16,000, 22,600] corresponding (approximately) to the period ranging from 1860 up
to 1878. Indeed, during this period, there was a reaction of these three European powers
to the policy of president Juárez in Mexico, who suspended the payment of interest on
foreign debt leading to the tripartite treaty of London in 1861. With regards to this graph,
it is important to note the differences in the correlations of the countries involved sug-
gesting differences in the closeness of the alliances between England–France compared to
France–Spain or England–Spain.

Similarly, the saddle point of the graph of the time delayed mutual information
for the link England–USA (see Figure 2) situated in a value of the time delay equal to
10,000 corresponds approximately to the year 1843, that is, a year of particular diplomatic
tension between England and the United States due to the Oregon boundaries conflict.
This conflict was partially resolved with the Oregon treaty signed in 1846, that is, an
agreement between England and the United States that formalized the border between the
USA and British North America west of the rocky mountain. Thus, the most important
conclusion that can be extracted from a careful interpretation of these graphs is not only
that past historical events of this kind can affect the political relationships that are observed
nowadays between those countries, but especially that those graphs have the potential to
provide a better comprehension of international signed relations [25,28,57–59] (e.g., the
closeness of alliances and their actions between those countries, the existence of prominence
in systems, coalitions forming to oppose the rise of dominant states, the choice of role
partners in a multipolar system and the role of structural balance, just to mention a few).

In summary, the perspective offered by the time delayed mutual information on the
study and analysis of the dynamics of the links of the network of international relations at
regional and/or global levels of the network provides substantial information not only with
regards to the influence of certain historical events but especially in a better comprehension
of international signed relations (e.g., to better understand the role and actions of the
actors involved).

6. Conclusions

From the data produced by the Correlates of War project in this paper, the possibility
of modeling the evolution of political signed networks has been investigated using deep
learning machines. The analysis of the discrete time series associated with the evolution
of the state of network links, using a combination of geometric and information-theoretic
measures, permitted us to characterize the complexity of the stochastic processes driving
link dynamics and to design the deep network structure. The result of this analysis
suggested the following conclusions:

• The dispersion values obtained between the categories representing the states of
the links have shown that the mechanisms (or strategies) employed by countries
to generate alliances are, in general, more complex compared to those leading to a
conflict. The overlapping rate of the categories of the international signed relations
measured by the Fisher criterion, together with their prior probabilities, were good
indicators of the expected generalization performance of the models.

• The interpretation of the time delayed mutual information permitted to show that
the political relationships between countries are influenced to a great extent by past
historical events, that is, the dependence on the past (the memory) of the stochastic
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processes driving link dynamics goes beyond to the previous state (Markov property).
Furthermore, its correlations for a certain range of values of the delay across multiple
links of the network evidenced the existence of historical events that directly or
indirectly affected the political relationships between those countries, thus, potentially
helping the interpretation of the strategies and actions of the actors involved.

• Deep learning machines can capture with enough accuracy (probability of error close
to zero) the regularities of international signed relations, including the prediction of
conflictual events at the local level, specifically, the prediction of those big events
in two centuries of state-wise geopolitical information when the typical relationship
between countries changed to a war or a conflict.

• The predictive capacities of the model are beyond strictly local predictions as the
model can also provide accurate predictions at the regional or global levels of patterns
belonging to the well-represented categories of the international signed relations.

Perhaps, the most important implication is the possibility of using the proposed
methodology as the basis of a more general modeling strategy without excessively in-
creasing the complexity of the resulting predictive model aimed at achieving a com-
plete understanding of the relevant mechanism that drives the dynamics of international
signed relations.
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