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Abstract: Successful privatization in other sectors leads to a restructuring in the power sector. The
same practice has been adopted in the electrical industry with a deregulated electricity market (EM).
This enables competition among generating companies (Genco’s) for maximizing their profit and it
plays a central role. With this aim, each Genco gives a higher bid that may result in a risk of losing the
opportunity to get selected at auction. The big challenge in front of a Genco is to acquire an optimal
bid and this process is known as the Optimal Bidding Strategy (OBS) of a Genco. In this manuscript,
a new variant of whale optimization (WOA) termed the Amended Whale Optimization Algorithm
(AWOA) is proposed, to attain the OBS of thermal Genco in an EM. Once the effectiveness of new
AWOA is proved on 23 benchmark functions, it is applied to five Genco strategic bidding problems
in a spot market with uniform price. The results obtained from the proposed AWOA are compared
with other competitive algorithms. The results reflect that AWOA outperforms in terms of the profit
and convergence rate. Simulations also indicate that the proposed AWOA can successfully be used
for an OBS in the EM.

Keywords: bidding strategies; electricity market (EM); market clearing price (MCP); whale optimization
algorithm (WOA); Cauchy mutation (CM)

MSC: 68T01; 68T30; 65K10; 62J10

1. Introduction

After achieving successful results of privatization in several sectors, i.e., telecommuni-
cation, toll plaza, airlines, and many more, the reformation of the power industry was also
started. The reformation of the power industry is termed the restructuring or deregulation
of the electricity market (EM). The reason for deregulation in the EM is to restrict the
monopolies of government or government authorities and provide a competitive platform
for suppliers and buyers [1]. A competitive platform in the EM forces the generators to
evaluate the cost in such a manner that they are in a risk-free zone. To reduce the risk of
loosening the game with uncertainties of monopolistic market structure leads the EM to
innovate a new structure of market termed oligopolistic market structure [2].

Due to certain limitations, i.e., large investment size, transmission constraints, trans-
mission losses, etc., there are a limited number of buyers and sellers in an oligopolistic
market. The aim of both buyer and seller in an oligopolistic market is to maximize their
profit. All applicants submit their bids (for quantity (MW) and price ($/MW)) in a sealed
envelope to the system operator (SO). The SO will finalize the market clearing price (MCP)
after receiving the bids from all applicants (supplier and consumer). MCP is the effective
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price of the market that is found by the crossing point of the supply and load curve. In pay
as bid market, market price is set through uniform price clearing mechanism; greater is
the bid revenue greater the profit. Thus, every generating company (Genco) bids higher to
attain higher profit but they jeopardy of losing the competition with this higher bid. Thus,
for a Genco to catch an optimal bid in an oligopolistic market is a complex problem and
is known as the strategic bidding problem of a Genco. Many researchers were published
their work on strategic bidding problems due to their stochastic rather than deterministic
nature. In these research articles, stochastic optimization approaches were used to solve
this stochastic problem.

The three ways as given in the literature to solve strategic bidding problems in the EM
are the game theory-based, dynamic based approaches and stochastic based approaches.
Game theory approaches assumes that rival GENCO’s cost functions and complete bid
information are public. This is practically not true. Additionally, multiple Nash equi-
libriums required for large number of players. Dynamic optimization techniques such
as Lagrange Relaxation, Dynamic Programming, etc. These techniques fail for realistic
non-differentiable, multi constraint and multi-objective problems and require nonlinear sim-
plification, if adopted. Stochastic based approach gives accurate results, fast convergence,
global optimum solution and reliable solution tools in an EM [3–22].

In [3], the authors consider a methodology called the fuzzy adaptive particle swarm
optimization for a thermal generator in a uniform price spot market, taking into account
a precise model of nonlinear operating cost function and unit commitment minimum
up/down limitations. The normal PDF is used to model the bidding behavior of other
competing Genco’s. In [4], researchers offer particle swarm optimization (PSO) algo-
rithms for determining market price and volumes in a competitive power market in this
work. To locate solutions, the first approach combines a traditional PSO algorithm. The
second approach combines the PSO strategy with a decomposition technique. This new
decomposition-based PSO outperforms the traditional PSO significantly. In this research [5],
a new agent-based simulation model based on the Ant Colony Optimization (ACO) al-
gorithm is developed to compare three different wholesale electricity markets clearing
strategies, namely uniform, pay-as-bid, and extended Vickery rules. In this study [6], a
unique computational intelligence technique for solving the Nash optimization issue is pre-
sented. This novel process is based on the PSO algorithm, which employs the SA method
to prevent particles from becoming caught in local minima or maxima and improve particle
velocity functions. Other computer intelligence techniques such as PSO, Genetic Algorithm
(GA), and a mathematical method (GAMS/DICOPT) are compared to the results of this
operation. The IEEE 39-bus test system is used to demonstrate and validate the suggested
technique’s outcomes.

In order to optimize its own profit as a market participant, the article [7] provides
a new approach for bidding strategy in a day-ahead market from the perspective of a
generating business (GENCO). The fuzzy adaptive gravitational search algorithm (FAGSA)
is used in a unique stochastic optimization approach to tackle the optimal bidding strategy
problem in a pool based power market [8]. In this research [9], a unique algorithm based
on the Shuffled Frog Leaping Algorithm is used to address the optimal bidding strategy
problem (SFLA). It is a memetic meta-heuristic that does a heuristic search to find a global
optimal solution. It combines the advantages of the Memetic Algorithm (MA) based on
genetics with the Particle Swarm Optimization (PSO) based on social behavior. As a result,
it has a more precise search, which prevents premature convergence and operator selection.
As a result, the suggested method overcomes the limitations of the Genetic Algorithm
(GA) and the PSO method in terms of operator selection and premature convergence. In
this study [10], a new strategy for developing optimal double-sided bidding strategies in
security-constrained power sector is described, with pollution emission as a secondary
goal. Both Generation Companies (Gencos) and Distribution Companies (DisCos) in the
suggested algorithm seek to maximize their profit by implementing optimal strategies,
despite the fact that they have imperfect knowledge about the rivals and the market
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mechanism of payment is locational marginal pricing. The optimal bidding strategy is
developed using a hybrid technique based on information gap decision theory (IGDT) and
modified particle swarm optimization (MPSO) in this work [11].

In order to handle the profit maximizing process in a continuously changing market,
a novel form of Grey Wolf Optimizer (GWO) called the Intelligent Grey Wolf Optimizer
(IGWO) is developed by the authors [12]. The Krill Herd algorithm (KHA) is used to
develop an optimal bidding strategy in this article [13]. Supplier and buyer bidding
coefficients are carefully chosen. The proposed KHA’s code was written in MATLAB. It was
put through its paces on an IEEE 30 bus power system. The Invasive Weed Optimization
technique was used to solve the Optimal Bidding Strategy problem in this paper [14]. The
utilities compete in order to maximize their profits. The proposed technique was written
in MATLAB and tested using the IEEE 30 bus standard. Authors [15] present an alternate
methodology for determining revenue-maximizing strategic bids when the opponents’
bidding strategy is uncertain. To achieve an optimal bidding strategy in the electricity
market, a hybrid architecture combining metaheuristic and supervised learning is proposed
in this study [16]. The Salp Swarm Algorithm (SSA) is combined with a neural network in
the suggested architecture (NN). The suggested architecture is compared to the results of
SSA and Opposition-based SSA on the IEEE-14 bus system, IEEE-30 bus system, and 75-bus
Indian Practical System (OSSA). To ensure increased effectiveness, a selected learning
approach for strategic bidding is presented in the paper [17]. The suggested system uses an
ensemble technique, in which many machine learning algorithms are used to predict the
price and give a bidding recommendation. The most appropriate ones will be chosen to
dominate the bidding approach as the clearing iteration advances.

In this work [18], author presents a model of neural network using Harris Hawk
optimizer (HHO) to solve the problem of optimal bidding in the EM. The issue that arises
when a group of small prosumers participate in the energy market is discussed in this
study [19]. The aggregator takes advantage of the appliances’ flexibility to lower market
net costs. There are two optimization techniques suggested. In order to reduce the cost
of acquiring energy, how can a time-shiftable load, which may itself be made up of a
number of smaller time-shiftable subloads, submit its demand bids to the day-ahead and
real-time markets? This is the topic that this study [20] aims to address. In this study [21],
authors tackle the issue of competitive bidding for a big price-maker regulatory resource
in performance-based regulation markets. In order to assist an aggregator of prosumers
in defining bids for the day-ahead energy and secondary reserve markets, this study [22]
offers a two-stage stochastic optimization model.

In this research work, a new variant of Whale Optimization Algorithm (WOA) [18],
named AWOA, is proposed for solving the optimal bidding problem in a day-ahead EM.
WOA is a recently developed meta-heuristic algorithm [23] and as seen from the past
research papers that, WOA performs very well on real life applications [24–28]. The WOA
is a revolutionary nature-inspired meta-heuristic optimization algorithm that replicates
the social behavior of humpback whales. The bubble-net hunting methodology motivated
the algorithm. Twenty-nine mathematical optimization problems and six structural design
challenges are used to evaluate WOA in [23]. To estimate short-term wind power, a hybrid
forecasting model based on Complementary Ensemble Empirical Mode Decomposition
(CEEMD) and Whale Optimization Algorithm (WOA)-Kernel Extreme Learning Machine
(KELM) is designed to deal with the intermittent and fluctuating characteristics of wind
power time series signals [24]. CEEMD first reduced the non-stationary wind power time
series into a number of generally stationary components. In this study [25], authors suggest
a hybrid model that is an evolution of the hGADE algorithm for addressing the Unit Com-
mitment Scheduling Problem, a mixed-integer optimization problem. For the computation
of the overall operation cost of power system operation, the Whale Optimization Algorithm
was used. In [26], simulations are run on a test smart grid with loads varying in two service
zones, one for residential consumers and the other for commercial users. By comparing the
findings with spider monkey optimization and biogeography-based optimization, WOA
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demonstrates its usefulness. Simulation results show that the proposed demand side
management solutions save money while lowering the smart grid’s peak load demand.
The electric power system is examined in two phases in this paper [27]: decentralized and
centralized ways to reduce operational costs. The Tuned Whale Optimization Algorithm
(TWOA), a new artificial intelligence technique, is used to solve these phases. The IEEE
48-bus power system is used to accomplish these concepts. The IEEE 48-bus system is
made up of two zones connected by transmission lines. Variations in TWOA’s regulating
factors are also discussed.

The whale optimization technique for loss minimization employing FACTS devices
in the transmission system is reported in this article [28]. This investigation will use a
thyristor controlled series compensator (TCSC). In this research, WOA is used to determine
the appropriate FACTS device size for power system loss minimization. To verify the
effectiveness of the suggested technique, an IEEE 30-bus RTS was employed as the test
system. Opposition-based leaning [29–32] and CM operator [33–36] are fused with WOA
and experimented with over 23 benchmark functions (unimodal, mutimodal, and fixed-
dimension multimodal).

The benefits of OEL and Cauchy mutation that are listed below have encouraged
authors to use these in WOA in light of this research review. These qualities are listed below:

• The curse of dimensionality problem can be solved with the help of the OEL paradigm.
Due to the issue of formulating strategic bidding, the huge search space and stochastic
nature of the variables make the curse of dimensionality inevitable (rival bids). The
job of locating a global optimum in dynamic simulations might thus be challenging. A
unique solution to this issue is provided by OEL, which also offers a way out of the
neighborhood minima trap. By generating opposing points in the search space, OEL
improve any algorithm’s exploration capabilities;

• The characteristics of probable candidates that can address the strategic bidding
dilemma should assist them in avoiding premature convergence. Due to the inclusion
of stochastic variables throughout the simulation process, the issue of premature
convergence in the strategic biding problem is significant. The introduction of OEL
improves convergence speed while also guarding against premature convergence of
the solver;

• By boosting the exploratory power of whales with Cauchy distribution, Cauchy
operator aids in preventing the stagnation in local optimums. Thus, the greedy
selection maintains a healthy balance between the current and prior placements of
whales while the Cauchy operator aids in enhancing the capacity of whales in terms
of exploration and exploitation.

The WOA modified version of WOA is then applied for the bidding problem in
dynamic EM. To solve this problem there are two critical parameters such as convergence of
the algorithm and clarification superiority. Convergence problems are intently related to the
fitness value and computation time which may be stimulating revenue and workout market
circumstances. To train the rival’s performance four probability distributions are used
namely: Normal, Lognormal, Gamma, and Weibull PDF [37] that is built from past market
data analysis. Framing a bidding method with incomplete information about rival behavior
is a huge assignment for the design engineer. Monte Carlo (MC) simulations [38] are
considered powerful gear as they can be hired as sampling, optimization, and assessment
gear. For the optimization of strategic bidding trouble, those MC simulations are employed
wherein the goal feature is deterministic and randomness is brought artificially to greater
emerald search [39]. The above-discussed application and unique feature of MC simulations
inspire authors to employ MC simulations in strategic bidding problems. Slow convergence
and being stuck in local optima are issues with WOA. The amended WOA method is a
novel, nature-inspired heuristic technique that is proposed in this research as a means of
overcoming these shortcomings when solving the strategic bidding dilemma. This strategy
serves as an alternative to other current, recent algorithms. After having a bird’s eye view of
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the literature about the strategic bidding problem following research objectives are outlined
for this manuscript:

(a) To test the Amended Whale Optimization Algorithm (AWOA) on benchmark func-
tions and resolve issue of bidding in the EM by confirming enhanced exploration
and an optimum exploitation of search space through Oppositional Enabled Learning
(OEL) and Cauchy Mutation (CM) Operator;

(b) To search the performance of this novel variant i.e., AWOA with parent WOA (Whale
Optimization Algorithm) and some recently developed algorithms are applied on
benchmark functions;

(c) To achieve different statistical assessments with Wilcoxon rank sum, box plot analysis
and convergence investigation for the testing the effectiveness of the developed model;

(d) To construct rival bidding prices using (normal, lognormal, gamma and Weibull)
PDF, interpret them using the MC approach, and design a bidding strategy for the
day-ahead market by entrancingly taking into account all inter-temporal limits;

(e) To represent a fair evaluation between the outcomes acquired through optimization
procedure based on profit, MCP (Market Clearing Price) calculation and solution quality.

The rest of the article is prepared as shown in Figure 1.
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2. Problem Statement

To decipher the issue of strategic bidding in this article, we assumed m+1 Generating
Companies (Genco’s). Genco-k is the generator whose profit has to be maximized by
finding the optimal bids with m competitors in the energy market. In the EM, all the
m+1 Genco’s and consumers submit their bids in a sealed envelope (contains quantity
(MW) and price ($\MW)) to the system operator (SO). After the last date of submission of
bids from supplier and consumer, the SO arranges the supplier’s bids in increasing order,
and consumer’s bids in decreasing order where X-axis represents quantity (MW) and Y-axis
shows the price($\MW). The point where both curves intersect each other is the called the
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equilibrium point and after drawing a horizontal line from that point to Y-axis, market
clearing price (MCP) is received.

A Genco can bid for multiple (maximum l) blocks. It is preferable to bid on multiple
blocks rather than just one at a time to ensure financial security. The rival’s bidding block
size is supposed to be acknowledged from the past data and their bidding prices are
deliberate by Probability Distribution Factor (PDF) through probability statistical analysis
of historical bidding data. In this paper, we generate the input data using four different
types of PDFs [32]. Thus, we create four cases to solve the problem.

Case I. The Normal distribution;
Case II. The Lognormal distribution;
Case III. The Gamma distribution;
Case IV. The Weibull distribution.

Before a unit is committed/not-committed, there is already a least-defined time subse-
quent of which it can be not-committed/committed again. Inter-temporal operating limits
of Genco-K, such as minimum/up and minimum/downtimes have been regarded in the
effort. Considering non-differentiable, non-convex cost function, nonlinear (exponential)
start/up cost function, and constant shut/down cost, the operating cost function for the lth
block of Genco-K is expressed as:

cl(t) = cpr
l(t) + csu

l

{
ul(t)(1− ul(t−1))

}
+ csd

l

{
(1− ul(t))ul(t−1)

}
(1)

where
cpr

l(t) = c0(Ql(t))
2 + c1(Ql(t)) + c2 +

∣∣∣c4 sin(c4Qmin −Ql(t)))
∣∣∣ (2)

csu
l = hsu

c + csd
c

(
1− exp

(
−Toff

T

))
(3)

Due to the consecutive opening of a large number of valves to obtain ever-increasing
output of the unit, input-output characteristics for large thermal generators are not always
smooth [40]. A rippling effect on the unit curve is common as each steam admission
valve in a turbine begins to open. [41] Approximated the rippling effect of valve point
loading as a periodic rectified sinusoidal function. [42] Established the effect of valve
point loading on economic dispatched output of units, confirming the need of applying a
precise production cost function in strategic bidding. Equation (2) signifies this sinusoidal
nonlinear characteristic, in which c0, c1, and c2 are cost coefficients and c3 and c4 are the
coefficients of the valve point loading impact. An exponential characteristic is considered
in Equation (3), to signify the association between the start-up value and the shut-down
time. Although, any present start/up cost characteristic can be used. The value received
in begin-up and begin/down is united inside the running cost characteristic so that the
actual advantage is taken into consideration and the Genco’s are committed/not-committed
accordingly. The OBS for Genco-k can be achieved with profit maximization in the terms
of output power dispatched (Ql(t)) and MCP (MCP(t)). The product of Ql(t) and MCP(t) is
defined as revenue acquired. The increasing profit of lth blocks of the Genco-k overtime
period “T” is uttered as:

maxPL(t)
f (MCP(t), Ql(t)) =

T

∑
t=1

L

∑
l=1

(MCP(t) ∗Ql(t) − cl(t)) (4)

Subject to constraints

1. Generation limits

Qminul(t) ≤ Ql(t) ≤ Qmaxul(t), ∀t ∈ T. (5)

2. Minimum uptime
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(1− ul(t+1))M
ut
l ≤ Hon

l(t), if ul(t) = 1. (6)

3. Minimum downtime

ul(t+1)M
dt
l ≤ Hoff

l(t), if ul(t) = 0. (7)

4. Limitations on the bid price

cl(t) ≤ pl(t) ≤ p, ∀t ∈ T. (8)

The optimization limits described in (4)–(8) may be explained to acquire the finest
block bid price of the lth block of Genco-K at hour t, signified as pl(t). In (4), pl(t) and Pm

l do
now not clearly emerge but those are indirectly involved within the procedure of decisive
MCP. Equations (5)–(7) are the operating constraints, while (8) looks like it represents the bid
price limit, i.e., p. With the usage of the PDF’s defined above competitor’s bidding prices
may be received from past bidding records. Formation of the Optimal Bidding Strategy
(OBS) for Genco-k, with objective function (4) and constraints (5)–(8), be remodeled a
stochastic optimization concern, to be resolved by MC founded WOA. The data taken in
Table 1 is used to generate the competitor’s bidding data for all the cases explained above.
We generate 1000 competitor’s bidding samples in 3 blocks as shown in Figure 2.

Table 1. Data of Competitor’s Bidding Parameters.

BLOCK 1 BLOCK 3 BLOCK 3

QI µi
n σi

n QI µi
n σi

n QI µi
n σi

n

RIVAL 1 200 10 2.5 300 20 3 400 30 3
RIVAL 2 300 15 3 400 30 2 500 50 4
RIVAL 3 250 10 2 300 15 2.5 300 20 2.5
RIVAL 4 300 20 4 350 25 5 450 40 5
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3. Research Methodology

The formulated problem in Section 2 has been solved with the Monte Carlo (MC)
approach; which is a method to attain a probabilistic estimate of a mathematical hassle
through the usage of statistical samples. This approach runs stochastic simulation with
random numbers and accordingly computes the equation to determine the result. This
MC simulation is integrated with, a modified version of the WOA, to attain the OBS for
a Genco.

3.1. Monte Carlo (MC) Approach

MC methodology proceeds as follows:

• For all the competitors participating in the EM, create a huge number of random
test trials of block bid values considering the probability distribution equation and
constraints of the PDFs;

• With those illustrations of block bid expenses of all of the competitors, decide the huge
variety of trial outcomes;

• The average of all of the trial results gives the anticipated cost.

Details of the procedure:

1. Stipulate the number of M simulations allowed, M;
2. Set simulation counter m = 0;
3. Create random values of bid prices for each lth block of m rivals using Normal,

Gamma, Weibull and Lognormal distribution function;
4. Formulate WOA to pursue the finest bid price for every lth block of Genco-k and

record the optimal value;
5. Keep posted m = m + 1;
6. If m < M then is present at (step 3), else go to see (step 7);
7. Determine the predictive assessment of optimum bid price i.e., the average of (m = 1,

2 . . . M). This final price is known as the finest bidding price (pl(t)) for the lth block of
Genco-k at hour t.

3.2. Whale Optimization Algorithm (WOA)

WOA is a novel metaheuristic algorithm developed by Mirjalili and Lewis in the
year 2016. The inspiration of WOA is the unique hunting performance of humpback
whales. Whales are taken as smart mammals with emotion. Humpback whales are known
for hunting zooplankton or small fish that live close to the sea’s surface. The bubbles
net feeding methodology of hunting employed by such humpbacks. Whales do this by
swimming around the target and blowing bubbles in a circular or a nine-shaped pattern, as
depicted in Figure 3.
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3.2.1. Enclosing Prey

Humpback whale searches the residence of the target and encircles them. WOA adopts
that the present top applicant result is the goal target or is near to the best. The other pursuit
representatives attempt to appraise their locations to the best exploration applicant. The
performance modeled is as:

→
D =

→
C.
→
X∗(t)−

→
X(t) (9)

→
X(t + 1) =

→
X∗(t)−

→
A.
→
D (10)

where current iteration is i, coefficient vectors are
→
A and

→
C , position vector of the optimal

result obtained is
→
X∗(i) and position vector is

→
X(i). || is the absolute value and . is the

element by element growth.
It is worth noting here that, if there is a better solution, X* should be modified in each

iteration.
→
A and

→
C vectors are designed as follows:

→
A = 2

→
a .
→
r −→a (11)

→
C = 2

→
r (12)

where in both exploration and exploitation stages
→
a is linearly reduced from 2 to 0 over the

sequence of iterations and r is a random vector in [0, 1].

3.2.2. Bubble-Net Hunting Routine (Exploitation Phase)

In the bubble net hunting routine two attitudes are cast-off:

a. Shrinking encircling prey is attained by declining the value of
→
a Equation (8) thus the

range
→
A is also reduced.

→
A is a random value with the interval of [−α, α] where the

value of α declined from 2 to 0 over the time of iterations. Setting random values for
→
A in [−1, 1], the updated position of the search agent is well-defined wherever amid
the novel and present best agent;

b. The spiral position update methodology initially calculates the distance between
the whale and the target location and then created a spiral equation to mimic the
helix-shaped drive of humpbacks.

→
X(t + 1) =

→
D′.ebt. cos(2πl) +

→
X∗(t) (13)

→
D =

∣∣∣∣ →X∗(t)−→X(t)
∣∣∣∣ (14)

where b is constant and l is a random number in [−1, 1].
The mathematical model is as follows:

→
X(t + 1) =

→
Xrand −

→
A.
→
D i f P < 0.5 (15)

→
X(t + 1) =

→
D′.ebt. cos(2πl) +

→
X∗(t) i f P ≥ 0.5 (16)

where P is the random number of [0, 1].
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3.2.3. Prey’s Searching (Exploration Phase)

Humpback whale arbitrarily searches according to the location of each other. Therefore,

we use the random values between−1 to 1. This mechanism
∣∣∣∣→A∣∣∣∣ > 1 highlights exploration

and allows the WOA to achieve a global search. The calculated model is as trails:

→
D =

∣∣∣∣→C.
→
Xrand −

→
X
∣∣∣∣ (17)

→
X(t + 1) =

→
Xrand −

→
A.
→
D (18)

Here,
→
Xrand is a random position vector selected from the existing population.

From the set of random solutions, the WOA was modified. During iteration, the
search agents evaluate their position using the modeling described above. The WOA is
a universal optimizer. WOA can easily switch between exploration and exploitation due
to the adaptive asymmetry of the searching vector. Furthermore, the WOA only has two
parameters that can be changed. WOA’s high exploration ability is due to the whales’
position update system Equation (18). The use of Equations (16) and (17) emphasizes high
exploitation and convergence Equation (13). The WOA algorithm is capable of delivering
high local optima evasion and convergence speed throughout the iteration sequence, as
exposed by the following equations.

3.2.4. Flow Chart of WOA

The flowchart of mother WOA is shown in Figure 4.
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3.3. Opposition Enabled Learning (OEL)

Hamid R. Tizoosh 2005 introduced the OEL approach [31]. Rahnamayan et al. in-
troduced the concept of opposition-based learning with the metaheuristic approaches to
solving the optimization problems [32,34]. This concept is further explored by Wang et al.
in [33]. Many research works are conducted using OEL.

According to OBL, assume that Z is the solution for a given problem; then, the opposite
of Z will be the other candidate solution. In this case, the chances to obtain the optimal
solution will be increased.

Opposite number: let Z Є (x, y) be a real number; then, the opposite of x is given by:

Z′ = x + y− Z (19)

In Equation (19), Z′ denotes the opposite solution, X denotes the current finest solution,
and ‘x’ and ‘y’ are two constants. Consider Z = (Z1, Z2, . . . . Zd) is a point in the d-
dimensional space, where (Z1, Z2, . . . . Zd) ∈ R and Zd ∈ (xd, yd), d = (1, 2, 3, . . . . D). The
opposite number can be described as Z′ = Z1′ , Z2′ , . . . . Zd

′. In the d-dimension search
space, the above equation can be rewritten as:

Zd
′ = xd + yd − Zd (20)

The OEL can be defined as: Assume Z = (Z1, Z2, . . . . Zd) is a point in the d-dimensional
space (i.e., a candidate solution) and f (Z) is a fitness function that is used to evaluate the
fitness of candidate solutions. According to the above definitions Z′ = Z1′ , Z2′ , . . . . Zd

′ is
the opposite of Z = (Z1, Z2, . . . . Zd). If f (Z) is better, then update Z; otherwise, Z′. It is also
mentioned that both the Z and Z′ are simultaneously computed and keep the best one. The
variables xd and yd denote the minimum and maximum values of the dth dimension.

3.4. Cauchy Mutation (CM) Ooperator in WOA

The CM operator is used to prevent the WOA algorithm from falling into the local
optima, especially in the exploration phase. Many researchers have introduced the con-
cept of CM and effectively merged it with metaheuristic algorithms such as PSO [34,35],
differential evolutionary (DE) [36,37], and KHA [38]. The idea behind the inclusion of a
CM operator with heuristic approaches is to prevent the local optima and to maximize the
population diversity. To achieve the same, the best position of the whale is mutated. The
Cauchy 1-D density function is expressed by:

f(x) =
1
π

τ

τ2 + x2 ,−∞ < x < ∞ (21)

where τ > 0 is a scale parameter [32]. The Cauchy distribution function is:

Fτ(x) =
1
2
+

1
π

arctan
( x

τ

)
(22)

The operator of CM is cast-off in AWOA is explained as follows:

W(d) =

(
tpop

∑
g=1

V[g][d]

)
/tpop (23)

where V[g][d] signifies the velocity vector of the gth cat in the dth dimension, d = 1, 2,
. . . tpop, and W(d) is a weight vector in the range of [−Wmax, Wmax], and Wmax is set to
1 in this.

gbest(d) = gbest(d) + W(d) ∗C(Xmin − Xmax) (24)
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where C is the Cauchy distribution function and the scale parameter for it is t = 1, and
C(Xmin − Xmax) is a random number within [Xmin − Xmax], that is a defined domain of a
test function.

3.5. Amended Whale Optimization Algorithm (AWOA)

This section states the structure of our offered algorithm. To make the WOA algo-
rithm more effective and efficient for strategic bidding problems, a few modifications are
inculcated into the conventional WOA algorithm. The opposition enabled a method of
learning to encourage whales to migrate towards the finest solutions, while the operator
of the CM is capable of introducing population diversity. An efficient balance between
exploration and exploitation is also given by this operator. A detailed description of these
modifications is described below.

The Opposition Enabled WOA

The OEL concept is integrated with the classical WOA in the opposition-enabled WOA
to enhance its search ability. The crucial steps are given below for the OWOA methods.

(Step 1) Firstly, by using random distribution, the initial half population is produced.
The other half population (opop) is primed as per the initial half population (pop) in terms
of OEL as given in Section 3.3;

(Step 2) In the next step, after initialization, the position of the whale is updated for
the initial half of the population (pop), as shown in Section 3.1. As expressed in Section 3.3,
according to the initial half of the population (pop), the position of the whale is updated
for the remaining half of the population (opop);

(Step 3) Afterward the apprising of the solutions in the population, the 2 sub-populations
are collected in one population. This procedure should take the population size unaffected
in all of the optimization methods. Moreover, in terms of fitness size, we can sort the
population and discover the best one. The technique is then iterated.

The foremost steps of the AWOA procedure are as follows:

Step 1: Initialization

Random distribution is used to produce the initial half of the population (pop), which
includes tpop/2 individuals. In terms of OWOA, the remaining tpop/2 individuals (opop)
are initiated as the initial half population (pop) as illustrated in Section 3.3. In this study,
maximum population size is an even number.

Step 2: Assessment

Every single individual in the population is ranked as per their location.

Step 3: The WOA procedure

The three movements in the WOA approach, as labeled in Section 3.2, modify the
positions of the tpop/2 individuals in pop. The following is a description of the key phase
in the WOA process:

For d = 1: tpop (all whales in pop) do
Perform the following search scheming.
1. Prey’s encircling
2. Bubble net hunting technique
3. Prey’s searching
After 3, modify the whale’s position in the search space.

Step 4: The OWOA procedure

The position of single in the associated tpop, for the last
tpop/2 person in opop, is changed by the OEL rules as indicated in Section 3.3. The

following is a description of the primary phase in the OEL process.
For i = tpop/2 + 1: tpop (all krill in opop) do
Compute Z∗tpop+d as per Zd Equation (20)
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If f (Z∗tpop+d) > f (Zd)

Update Ztpop/2+d by using, Z∗tpop+d
End if
End for d

Step 5: Amalgamation

After that, all of the entities’ populations (pop and opop) are adjusted, and the pop
and opop are merged into a single population.

Step 6: The CM operator

For all the entities in the population (pop and opop), the CM operator is performed as
exposed in Section 3.4.

Step 7: Searching the finest solution

Find out the finest solution ever found and assess the average concert of the Population.

Step 8: Halt or not

If the discontinuing criteria (finding the optimal result) are fulfilled, the OWOA
algorithm halts and the outcome is the finest solution, otherwise, return to step 2.

The flowchart of the AWOA procedure is shown in Figure 5.
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4. Benchmarking of AWOA on Standard Benchmark Functions

To prove the efficacy of developed AWOA, benchmarking of AWOA is described in
this section.
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The suggested method is benchmarked on 23 common benchmark functions in order to
first and foremost demonstrate the superiority of the proposed variation. Figure 6 displays
these benchmark functions. These benchmark function’s global optima and solution search
boundaries were already defined. By comparing the proposed variant statistically to the
parent algorithm, it is possible to assess the exploration and exploitation phenomenon of
the AWOA.
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Tables 2–4 include a list of these benchmark functions. The suggested variant is
implemented using MATLAB 2017 [32], which runs at 2.00 GHz on an i5 processor with
8 GB of RAM. The number of iterations and population size are kept constant for all
metaheuristic algorithms to allow for a fair comparison of the suggested variant (i.e., a
maximum of 500 iterations and 50 search agents). The three groups into which these
common benchmark functions are divided are as follows:

(a) Unimodal functions (G1-G7) (Table 2):-A function g(x) is a unimodal function if for
some value m, it is monotonically increasing for x ≤ m and monotonically decreasing
for x ≥ m. In that case, the maximum value of g(x) is f(m) and there are no other
local maxima;

(b) Multimodal functions (G8-G13) (Table 3):-A function is said to be multimodal function
if it has two or more than two local minima or maxima;

(c) Fixed dimensions multimodal functions (G14-G23) (Table 4):-A function is said to be
multimodal function if it has two or more than two local minima or maxima with
fixed dimension.

On each benchmark function, the suggested variation is simulated 30 times. Tables 5–7
present the statistical findings (mean and standard deviation). The AWOA algorithm and
WOA are compared to validate the results.
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Table 2. Unimodal Benchmark Functions.

Function Dim Range Min. Value

G1(x) =
n
∑

i=1
x2

i
30 [−100, 100] 0

G2(x) =
n
∑

i=1
|xi |+ ∏n

i=1|xi | 30 [−10, 10] 0

G3(x) =
n
∑

i=1
(

i
∑

j−1
xj)

2
30 [−100, 100] 0

G4(x) = mAxi{|xi |, 1 ≤ i ≤ n} 30 [−100, 100] 0

G5(x) =
n−1
∑

i=1
[100(xi+1 − x2

i )
2
+ (xi − 1)2] 30 [−30, 30] 0

G6(x) =
n−1
∑

i=1
(xi + 0.5)2 30 [−100, 100] 0

G7(x) =
n−1
∑

i=1
ix4

i + random[0, 1] 30 [−1.28, 1.28] 0

Table 3. Multimodal Benchmark Functions.

Function Dim Range Min. Value

G8(x) = ∑n
i=1 −xi sin(

√
|xi |) 30 [−500, 500] −418.9829 × 5

G9(x) = ∑n
i=1 [x

2
i − 10cos(2πxi + 10)] 30 [−5.12, 5.12] 0

G10(x) = −20exp(−0.2

√
1
n

n
∑

i=1
x2

i )− exp( 1
n ∑n

i=1 cos(2πxi)) + 20 + e 30 [−32, 32] 0

G11(x) = 1
4000

n
∑

i=1
x2

i −∏n
i=1 cos( xi√

i
) + 1 30 [−600, 600] 0

G12(x) = π
n

{
10 sin(πyi) +

n−1
∑

i=1
(yi − 1)2[1 + 10sin2(πyi+1) + (yn − 1)2]

}
+

n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 +
xi+1

4

u(Xi , A, k, m) =

 k(Xi − A)m x > a
0 −a < xi < a

k(−xi − a)m xi − a


30 [−50, 50] 0

G13(x) = 0.1
{

sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]

}
+

n
∑

i=1
u(xi , 5, 100, 4) 30 [−50, 50] 0

Table 4. Fixed-Dimension Multimodal Benchmark Functions.

Function Dim Range Min. Value

G14(x) = −
n
∑

i=1
sin(xi).(sin(

ix2
i

π ))
2m

, m = 10 2 [−65, 65] 1

G15(x) = [e
−

n
∑

i=1
(

xi
β
)
2m

− 2e
−

n
∑

i=1
x2

i
].

n
∏
i=1

cos2 xi , m = 5 4 [−5, 5] 0.00030

G16(x) =
{
[

n
∑

i=1
sin2(xi)]− exp(

n
∑

i=1
x2

i )

}
.exp[−

n
∑

i=1
sin2

√
|xi |] 2 [−5, 5] −1.0316

G17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π )cosx1 + 10 2 [−5, 5] 0.398

G18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2 ]∗
[30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]
2 [−2, 2] 3

G19(x) = −
4
∑

i=1
ci exp(−

3
∑

j=1
aij(xj − pij)

2) 3 [1, 3] −3.86

G20(x) = −
4
∑

i=1
ci exp(−

6
∑

j=1
aij(xj − pij)

2) 6 [0, 1] −3.32

G21(x) = −
5
∑

i=1
[(X− Ai)(X− Ai)

T + ci ]
−1 4 [0, 10] −10.1532

G22(x) = −
7
∑

i=1
[(X− Ai)(X− Ai)

T + ci ]
−1 4 [0, 10] −10.4028

G23(x) = −
10
∑

i=1
[(X− Ai)(X− Ai)

T + ci ]
−1 4 [0, 10] −10.5363
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Table 5. Average, Standard Deviation, and p-Value of AWOA and other comparable algorithms for Uni-modal Functions.

Functions Statistical
Parameters

Algorithms

AWOA WOA SCA GWO ALO MFO GSA

G1

Mean 1.91 × 10−103 2.35 × 10−72 1.29 × 10−12 3.82 × 10−33 2.09 × 10−03 2.92 × 10−03 3.96 × 10−17

St.dev 3.53 × 10−104 4.46 × 10−73 6.55 × 10−12 8.63 × 10−33 1.90 × 10−03 3.63 × 10−13 1.33 × 10−17

p-value NA 3.02 × 10−11 7.22 × 10−01 6.20 × 10−01 8.97 × 10−01 1.88 × 10−03 1.48 × 10−07

G2

Mean 2.45 × 10−66 6.89 × 10−50 1.16 × 10−09 6.30 × 10−20 6.17 × 10+01 1.67 3.22 × 10−08

St.dev 4.47 × 10−67 1.26 × 10−50 2.94 × 10−09 4.51 × 10−20 5.11 × 10+01 4.61 6.53 × 10−09

p-value NA 3.02 × 10−11 7.99 × 10−01 6.50 × 10−01 2.36 × 10−01 7.89 × 10−02 6.75 × 10−01

G3

Mean 9.16 × 10+04 5.82 × 10+04 4.17 × 10−04 2.60 × 10−08 5.02 × 10+03 1.67 6.00 × 10+02

St.dev 1.47 × 10+04 1.06 × 10+04 1.72 × 10−03 7.06 × 10−08 1.49 × 10+03 1.73 × 10+03 1.80 × 10+02

p-value NA 2.44 × 10−09 6.64 × 10−02 7.64 × 10−02 7.84 × 10−01 1.23 × 10−02 6.80 × 10−08

G4

Mean 8.83 × 10+01 9.30 × 10+01 2.72 × 10−04 2.07 × 10−08 2.02 × 10+01 3.65 3.25

St.dev 2.90 × 10+01 2.84 × 10+01 8.69 × 10−04 1.78 × 10−08 4.42 5.96 1.38

p-value 8.42 × 10−01 NA 4.69 × 10−02 4.09 × 10−01 3.69 × 10−02 4.78 × 10−01 6.80 × 10−08

G5

Mean 2.87 × 10+01 2.88 × 10+01 3.13 × 10+01 2.65 × 10+01 2.07 × 10+02 3.27 × 10+03 3.51 × 10+01

St.dev 4.98 5.01 × 10−01 5.51 × 10−01 5.35 × 10−01 2.31 × 10+02 1.64 × 10+04 2.26 × 10+01

p-value NA 5.57 × 10−10 3.60 × 10−02 1.20 × 10−06 4.60 × 10−02 6.90 × 10−02 1.80 × 10−06

G6

Mean 2.78 × 10−01 8.11 × 10−01 3.85 × 10−01 5.12 × 10−01 1.13 × 10−03 1.19 × 10−13 2.33 × 10−01

St.dev 7.02 × 10−02 2.33 × 10−01 1.14 × 10−01 3.26 × 10−01 5.35 × 10−04 1.60 × 10−13 4.30 × 10−01

p-value NA 3.19 × 10−09 7.56 × 10−03 1.64 × 10−01 1.26 × 10−01 7.90 × 10−02 6.80 × 10−08

G7

Mean 1.08 × 10−04 1.47 × 10−02 1.59 × 10−03 1.34 × 10−03 2.93 × 10−01 7.58 × 10−03 2.67 × 10−02

St.dev 1.13 × 10−03 3.19 × 10−03 1.39 × 10−03 8.20 × 10−03 1.43 × 10−01 4.66 × 10−03 1.26 × 10−02

p-value NA 1.15 × 10−07 4.48 × 10−02 3.23 × 10−01 1.63 × 10−03 1.70 × 10−02 6.66 × 10−08
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Table 6. Average, Standard Deviation, and p-Value of AWOA and other comparable algorithms for Multimodal Functions.

Functions Statistical
Parameters

Algorithms

AWOA WOA SCA GWO ALO MFO GSA

G8

Mean −9.89 × 10+03 −6.57 × 10+03 −2.18 × 10+03 −6.03 × 10+03 −5.49 × 10+03 −3.31 × 10+03 −2.83 × 10+03

St.dev 6.01 × 10+02 1.83 × 10+03 1.44 × 10+02 7.40 × 10+02 8.41 × 10+01 3.59 × 10+02 3.24 × 10+02

p-value NA 3.02 × 10−11 1.79 × 10−03 3.37 × 10−01 1.48 × 10−03 8.96 × 10−02 3.79 × 10−01

G9

Mean 0.00 0.00 7.41 × 10−01 2.00 7.29 × 10+01 2.31 × 10+01 1.81 × 10+01

St.dev 0.00 0.00 3.74 3.03 1.75 × 10+01 1.21 × 10+01 3.71

p-value 1.62 × 10−01 NA 2.40 × 10−03 1.35 × 10−05 4.57 × 10−01 1.24 × 10−02 8.29 × 10−08

G10

Mean 7.99 × 10−15 7.99 × 10−15 6.44 × 10−04 4.39 × 10−14 4.38 6.71 × 10−02 4.66 × 10−09

St.dev 2.03 × 10−15 2.09 × 10−15 3.53 × 10−03 4.70 × 10−15 3.21 3.68 × 10−01 6.96 × 10−10

p-value 7.85 × 10−01 NA 6.80 × 10−02 7.35 × 10−01 4.79 × 10−02 7.80 × 10−02 6.80 × 10−08

G11

Mean 2.14 × 10−01 2.76 × 10−01 3.18 × 10−01 5.42 × 10−01 6.05 × 10−02 2.58 × 10−01 1.74 × 10+01

St.dev 3.01 × 10−02 4.12 × 10−02 1.92 × 10−01 3.95 × 10−02 3.28 × 10−02 3.25 × 10−02 3.50

p-value 4.55 × 10−01 NA 1.60 × 10−04 5.40 × 10−01 1.46 × 10−01 1.25 × 10−02 1.60 × 10−05

G12

Mean 1.94 × 10−02 6.65 × 10−02 8.71 × 10−02 2.73 × 10−02 1.92 × 10+01 1.87 × 10−01 6.04 × 10−01

St.dev 3.73 × 10−03 1.46 × 10−02 4.64 × 10−02 1.01 × 10−02 1.01 × 10+01 4.59 × 10−01 5.79 × 10−01

p-value NA 4.31 × 10−08 1.12 × 10−03 1.20 × 10−03 1.48 × 10−02 7.89 × 10−03 1.16 × 10−04

G13

Mean 4.45 × 10−02 1.42 2.73 × 10−01 3.82 × 10−01 2.39 × 10+01 5.14 × 10−02 1.98

St.dev 1.04 × 10−01 3.59 × 10−01 1.57 × 10−01 1.69 × 10−01 1.32 × 10+01 1.64 × 10−01 2.21

p-value NA 3.02 × 10−11 8.97 × 10−03 2.40 × 10−02 3.65 × 10−01 1.46 × 10−01 1.56 × 10−04
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Table 7. Average, Standard Deviation, and p-Value of AWOA and other comparable algorithms for Multi-Modal Functions with Fixed Dimension.

Functions Statistical
Parameters

Algorithms

AWOA WOA SCA GWO ALO MFO GSA

G14

Mean 1.08 × 10+01 5.93 1.46 2.76 1.40 2.31 5.33

St.dev 2.03 1.20 8.53 × 10−01 3.29 6.94 × 10−01 2.01 3.94

p-value 1.00 1.10 3.58 × 10−01 4.80 × 10−03 N/A 1.24 × 10−01 0.425

G15

Mean 2.25 × 10−04 8.27 × 10−03 1.02 × 10−03 3.02 × 10−03 2.79 × 10−03 9.78 × 10−04 3.75 × 10−03

St.dev 2.57 × 10−04 1.46 × 10−03 3.73 × 10−04 6.92 × 10−03 2.89 × 10−03 3.48 × 10−04 2.05 × 10−03

p-value 6.86 × 10−01 6.76 × 10−01 1.80 × 10−03 6.80 × 10−03 1.65 × 10−03 N/A 2.62 × 10−01

G16

Mean −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03

St.dev 1.94 × 10−08 7.62 × 10−10 2.64 × 10−05 9.00 × 10−09 2.79 × 10−12 6.78 × 10−16 5.22 × 10−16

p-value 6.67 × 10−01 NA 4.88 × 10−03 6.71 × 10−02 9.65 × 10−03 1.80 × 10−02 1.35 × 10−03

G17

Mean 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01

St.dev 2.41 × 10−06 3.01 × 10−04 1.63 × 10−03 1.50 × 10−06 1.34 × 10−13 0.00 0.00

p-value NA 7.00 × 10−01 1.97 × 10−02 3.94 × 10−02 1.48 × 10−03 3.21 × 10−02 1.23 × 10−07

G18

Mean 3.00 3.00 3.00 3.00 3.00 3.00 3.00

St.dev 7.74 × 10−05 9.55 × 10−05 3.28 × 10−05 1.38 × 10−05 6.86 × 10−13 2.54 × 10−15 1.25 × 10−02

p-value NA 9.37 × 10−01 5.70 × 10−02 6.80 × 10−04 1.47 × 10−02 4.14 × 10−02 1.79 × 10−04

G19

Mean −3.66 −3.69 −3.86 −3.86 −3.86 −3.86 −3.86

St.dev 3.73 × 10−02 3.88 × 10−02 2.81 × 10−03 1.74 × 10−03 1.78 × 10−13 2.71 × 10−15 3.86 × 10−02

p-value 7.00 × 10−01 NA 3.59 × 10−01 4.68 × 10−05 4.19 × 10−01 7.96 × 10−02 8.59 × 10−02

G20

Mean −2.71 −2.84 −2.91 −3.32 −3.27 −3.22 −3.32

St.dev 1.08 × 10−02 1.17 × 10−01 3.07 × 10−01 1.19 × 10−01 6.16 × 10−02 9.65 × 10−02 1.19 × 10−01

p-value 9.37 × 10−01 7.37 × 10−01 1.46 × 10−01 7.90 × 10−05 N/A 4.57 × 10−02 7.56 × 10−01

G21

Mean −8.94 −2.63 −3.25 −6.34 −6.37 −6.13 −6.34

St.dev 2.21 × 10−01 2.52 1.75 3.66 2.72 3.26 3.66

p-value NA 2.86 × 10−02 2.37 × 10−02 1.77 × 10−06 2.31 × 10−01 1.80 × 10−02 9.03 × 10−01

G22

Mean 4.25 × 10−01 −3.84 −3.70 −9.97 −5.10 −7.42 −9.97

St.dev 1.21 3.20 1.80 1.67 3.01 1.21 × 10+01 1.67

p-value NA 2.86 × 10−02 7.42 × 10−02 1.92 × 10−05 7.90 × 10−01 2.39 × 10−01 3.94 × 10−01
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4.1. Decisive Evaluation of AWOA on Unimodal Test Functions (G1 to G7)

The benchmarking of the created variant’s exploitation potential is appropriate for uni-
modal functions. The first seven functions, denoted by G1 through G7, are unimodal func-
tions. The simulation results shown in Table 5 indicate that AWOA can deliver outcomes
that are extremely competitive. The study of the findings led to the following conclusions.

The results of the suggested variation on the unimodal benchmark functions are
shown in Table 5. Two statistical parameters (mean and standard deviation) from the
30 independent runs were calculated as the basis for the analysis. It can be seen from
the results of Table 5 that the mean values for functions G1, G2, G5 and G7 are the best.
Therefore, it can be said that OEL has significantly improved the exploitation virtue of the
WOA. Additionally, the created variant’s standard deviation values are competitive.

A pairwise non parametric Wilcoxon rank sum test [34] with a 5% threshold of signif-
icance was performed to guarantee the results’ statistical significance. It has been noted
that the resulting p values for all other opponents are less than 0.05 for functions G1, G2,
G5, and G7. This shows that the proposed variant performs well and is statistically distinct
from others [35].

4.2. Decisive Evaluation of AWOA on Multi-Modal Test Functions (Exploration Behavior of
Functions G8 to G13)

Table 6 shows the result of the multimodal test functions. Multimodal features are
taken into consideration to assess the investigation functionality of the systems as these
features have numerous local optima’s, the wide variety of which will increase as the scale
of trouble will increases. These issues are remarkable to discover the exploration behavior
of the algorithm.

The CM operator is employed in AWOA to improve the original WOA’s exploration
behavior. It can be seen that the proposed method is capable of improving the original
WOA’s exploratory behavior. After that, the proposed AWOA’s convergence is accelerated
by the OEL search agent. Exploration and exploitation are effectively blended when these
two tactics are combined. The average and standard deviation in the Tables shows that
this strategy improves the exploration behavior of the original WOA, as the results for
functions G8, G12, and G13 show significant improvement, except for function G11, which
shows no improvement, and the results for functions G9 and G10 being the same as the
original WOA. The Wilcoxon rank sum test’s p-values signify the validity of innovative
AWOA the algorithm is shown in Table 6.

It can be found that the offered algorithm is successful in improving the explorative
behavior of the authentic WOA. After that, the opposition-based search agent boosts up
the convergence of the offered AWOA. The blend of these techniques offers an influen-
tial amalgamation of exploration and exploitation. The average and standard deviation
exposed within the Tables, in reality, depict that this strategy is refining the exploration
behavior of the novel WOA as the results for functions G8, G12 and G13 signify momentous
development compared with function G11 that shows no progress, while the results of
features G9 and G10 are equal to those of authentic WOA. The p-values of the Wilcoxon
rank sum test in Table 3 show the significance of the proposed AWOA set of rules.

4.3. Decisive Evaluation of AWOA on Fixed Modal Test Functions (Exploration Behavior of
Functions G14 to G23)

Table 7 displays the findings of 500 iterations of fixed dimension test functions. These
functions are also multimodal, but their dimensions are fixed, whereas the dimensions
of multimodal functions can vary depending on the designer’s needs. As a result, their
exploration behavior differs from the fixed dimension multimodal capabilities G14 to G23
in some ways. For both AWOA and standard WOA, the outcomes of function G16 are the
same. The investigation of function G14 is unchanged, but the remainder of the AWOA
functions performs better than the standard WOA. The Wilcoxon rank sum test p-values in
Table 7 also show that the suggested AWOA method outperforms the original.
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4.4. Evaluation of Algorithm

Three forms of evaluation are performed to verify the efficiency of the algorithm:

1. Convergence Evaluation
2. Statistical Evaluation
3. Data Distribution Evaluation

4.4.1. Convergence Evaluation

To evaluate the convergence efficiency of the proposed variant, some functions have
been elected from unimodal, multimodal, and fixed dimensions. The convergence graph
in Figure 7 shows that proposed AWOA converges at an expressively improved rate than
the conventional WOA algorithm. This evaluation illustrates that the AWOA algorithm is
capable of achieving global optima.
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These conclusions are drawn from this analysis:

• From the convergence curves it is observed that the proposed OEL and CM mechanism
helps WOA to escape from local minima trap. The outcome of this mechanism emerges
as high profit for all the cases;

• It is observed from the figure that WOA has poor convergence properties for this
particular problem as the profit yield by the algorithm is minimal as compared with
other algorithms.
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4.4.2. Statistical Evaluation with Wilcoxon Rank Sum Test

Wilcoxon rank sum test is used to examine the null hypothesis in WOA and AWOA.
In this test, we assume two independent samples of optimization run and compare the
distinctness of those samples with the proposed AWOA. Based on the p-values achieved,
we define the statistical difference (95% confidence interval) as:

(a) Not significant when p-value > 0.10;
(b) Slightly significant when p-value ≤ 0.10;
(c) Null when p-value = 0.05;
(d) Notable when p-value ≤ 0.05;
(e) Highly notable when p-value ≤ 0.01.
The results of this test have already been depicted in Tables 5–7. These results indicate

that the proposed AWOA outperforms the majority of the functions and if this test is
repeated, then also the proposed AWOA will show the same competitive performance as
suggested by Wilcoxon rank sum p-values. Hence, with the results it can be concluded
that modification proposed in the algorithm are meaningful and yields statistically diverse
results when these tests will be performed again.

4.4.3. Data Distribution Evaluation with Boxplot

Boxplot is a tool that focuses on visualization used for the persistence of relating the
distribution for each independent run of an objective function value data taken from the
conventional WOA and the proposed AWOA.

These conclusions are drawn from this analysis:

• In Figure 8, four box plots are drawn for functions G3, G8, G13, and G22. This analysis
validates the fitness value distribution for unimodal, multimodal, and fixed multi-
modal dimensions functions. When opposed to ordinary WOA, the proposed AWOA’s
interquartile range and median are lower overall specified benchmark functions;

• This implies that the output of AWOA fall in a comparatively narrow range as the con-
ventional WOA. The significant enhancement attained by AWOA is due to opposition-
based theory and the search capability of dynamic CM operators.
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5. Application of AWOA on Strategic Bidding Problem

The inclusion of OEL has significantly improved the exploration and exploitation
capabilities of WOA, as is clear from the findings presented in the preceding section. This
section now explores how the developed variant can be used to the strategic bidding
challenge. We used the proposed version on a case study involving power systems to
demonstrate the effectiveness of the proposed variant. This test case simulates a strategic
bidding situation where Generating company-k (Genco-k) competes in an auction with
four competitor for the IEEE-14 bus test system.

To test the efficacy of the proposed AWOA, a numerical example is presented based
on the problem formulation in Section 2. In rapidly evolving environments, this problem
is formulated and bidding strategies for a day-ahead market are built for multi-hourly
trading. Figure 9 displays a daily load curve for 24 h.
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The parameters of all three blocks of Genco-k are given in Table 8 [3].

Table 8. Data Of Genco-K Power Blocks.

C0
(MW2h)

C1
($/MWh) C2 ($/h) C3 ($/h) C4

(rad./MW)
Qmax
(MW)

Qmin
(MW)

MUT
(h)

MDT
(h) h ($) δ ($) τ (h) cd

i
($)

Block1 0.00482 7.97 78 150 0.063 200 50 1 1 1000 1500 1 100

Block2 0.00194 15.85 310 200 0.042 400 100 1 1 1500 2500 1 200

Block3 0.001562 32.92 561 300 0.0315 600 100 1 1 2000 4000 8 400

Case I: Normal PDF

The bidding performance of competitors is represented in this test case as illustrated
in Figure 2. The opponent bid limit size, mean and standard deviations for all blocks
for a normal distribution are provided in [40]. In this case, we used a normal probability
distribution. The problem of attaining OBS is solved by AWOA, WOA, GWO, SCA, MFO,
GSA and ALO. After successful testing, the results are shown in Figure 10, in this we
observed that the outcomes of AWOA are competing and yield more profit for the Genco-k
for a multi exchanging hour in a day-ahead market. Optimal block bid price and MCP of
Genco-k using a normal distribution with AWOA algorithm shown in Figure 11. In this
figure bidding prices of Genco-k in 3 blocks are given with MCP.
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Figure 11. AWOA (Normal Distribution) Block Bid Price and MCP.

The profit curve and MCP obtained by AWOA is shown in Figure 11. From the figure,
it is concluded that AWOA outpaces over the competitors as the profit computed by this
algorithm is suggestively greater. A steep surge in the profit is perceived in the 10th hour
and 12th hour as the profit of the Genco-k becomes $15,478 and $18,667 respectively. Fall
in MCP results in fall in profit this phenomenon can be observed in the results of block
2, where the profit reduces drastically at 13th hour. This fall in MCP is observed from
(36.87 $/MWh) to (25 $/MWh). At 14th hour again the profit goes more due to the high
MCP $32.13. Cumulative profit calculated through AWOA is $180,616.

Table 9 shows the LD calculated using the WOA method for each generator taking
part in an auction with a standard MCP. The N-D status in the table denotes units that were
not deployed because of a high bid offer. Table 9 also displays the conducted results for the
Genco-k from algorithm AWOA using standard PDF.
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Table 9. Dispatch Obtained by Different Algorithms Using Normal Distribution for Genco-k.

LOAD DISPATCH OF NORMAL DISTRIBUTION OF 5 GENCO AN-D 3 BLOCK

HOUR LOAD

Rival 1 Rival 2 Rival 3 Rival 4 GENCO-R

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

200 300 400 300 400 500 250 300 300 300 350 450 200 400 600

1 1500 200 N-D N-D 300 N-D N-D 250 N-D N-D 150 N-D N-D 200 400 N-D

2 1500 200 N-D N-D 150 N-D N-D 250 300 N-D N-D N-D N-D 200 400 N-D

3 1500 200 N-D N-D 300 N-D N-D 250 N-D N-D 150 N-D N-D 200 400 N-D

4 1500 200 150 N-D 300 N-D N-D 250 N-D N-D N-D N-D N-D 200 400 N-D

5 2000 200 50 N-D 300 N-D N-D 250 300 300 N-D N-D N-D 200 400 N-D

6 2000 200 300 N-D 300 N-D N-D 250 N-D 300 300 N-D N-D 200 400 N-D

7 2000 200 N-D N-D 300 N-D N-D 250 300 300 50 N-D N-D 200 400 N-D

8 2500 200 300 N-D 300 N-D N-D 250 300 250 300 N-D N-D 200 400 N-D

9 3000 200 300 N-D 300 400 N-D 250 300 N-D 300 350 N-D 200 400 N-D

10 3500 200 300 400 300 400 N-D 250 300 300 300 N-D N-D 200 400 150

11 3500 200 300 200 300 400 N-D 250 300 300 300 350 N-D 200 400 N-D

12 3500 200 300 N-D 300 400 N-D 250 300 300 300 350 N-D 200 400 200

13 2500 200 300 N-D 300 N-D N-D 250 300 N-D 300 350 N-D 200 400 400

14 3000 200 300 400 300 N-D N-D 250 300 N-D 300 350 N-D 200 400 N-D

15 3500 200 300 400 300 N-D N-D 250 300 300 300 350 N-D 200 400 200

16 3500 200 300 350 300 250 N-D 250 300 300 300 350 N-D 200 400 N-D

17 3500 200 300 400 300 200 N-D 250 300 300 300 350 N-D 200 400 N-D

18 3000 200 300 N-D 300 100 N-D 250 300 300 300 350 N-D 200 400 N-D

19 3000 200 300 N-D 300 400 N-D 250 300 300 300 N-D N-D 200 400 50

20 2500 200 300 N-D 300 N-D N-D 250 300 300 250 N-D N-D 200 400 N-D

21 2000 200 N-D N-D N-D N-D N-D 250 300 N-D 300 350 N-D 200 400 N-D

22 2000 200 N-D N-D 300 N-D N-D 250 300 N-D N-D 350 N-D 200 400 N-D

23 1500 200 N-D N-D 300 N-D N-D 250 N-D N-D 300 N-D N-D 200 250 N-D

24 1500 200 N-D N-D 300 N-D N-D 250 250 N-D N-D N-D N-D 200 300 N-D

i. The third block of Genco-k is not dispatched during the hours with a negative benefit
(from 1 to 8 h) due to its high production cost and low system demand;

ii. Due to the third block’s prolonged shutdown, cold startup costs are included in its
production costs when it is committed at nine hours (8 h);

iii. At the end of 12th h, 3rd block is again non-dispatched due to low system demand,
and minimum down time constraint is active (4 h);

iv. Third block is again dispatched at 15th h, and hot start-up cost is accounted in the
making cost, because it has been shut-down for a short time (2 h);

v. Third block is again non-dispatched from 20 to 24 h due to low system demand;
vi. Optimal bid price of 3rd Block is shown zero during 1–8 h, 13–14 h, 18 h and 20–24 h,

when it is non-dispatched.
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Case II: Lognormal PDF

In this case study, we used a lognormal probability distribution. After successful
testing, the results are shown in Figure 12. The optimal block bid price and MCP of Genco-k
using a lognormal distribution with AWOA algorithm are shown in Figure 13.
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Figure 13. AWOA (Lognormal Distribution) Block Bid Price and MCP.

The profit curve derived by AWOA is shown in Figure 12. This number makes it
obvious that AWOA outperforms the rest of the opposition since the profit determined by
this algorithm is much higher. The profit of the Genco-k rises dramatically in the 10th and
15th hours, reaching $13,489 and $13,515, respectively. For block 2, the profit decreases
sharply in the 13th hour. The total profit as determined by AWOA is $185,362.5.

Table 10 presents the LD obtained from AWOA for all the Genco’s competing in a
market under a uniform MCP. In Table 10 N-D signifies the non-dispatched units due to
offering of high bids by the Genco. The amount of unit dispatched attained from AWOA
using lognormal PDF for the Genco-k are also shown in Table 10.
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Table 10. Dispatch Obtained by Different Algorithms by using Lognormal PDF for Genco-K.

LOAD DISPATCH OF LOGNORMAL DISTRIBUTION OF 5 GENCO AN-D 3 BLOCK

HOUR LOAD

Rival 1 Rival 2 Rival 3 Rival 4 GENCO-R

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

200 300 400 300 400 500 250 300 300 300 350 450 200 400 600

1 1500 200 100 N-D 300 N-D N-D N-D 300 N-D N-D N-D N-D 200 400 N-D

2 1500 200 N-D N-D 300 N-D N-D 100 300 N-D N-D N-D N-D 200 400 N-D

3 1500 200 100 N-D 300 N-D N-D N-D 300 N-D N-D N-D N-D 200 400 N-D

4 1500 200 N-D N-D 300 N-D N-D N-D 300 N-D 100 N-D N-D 200 400 N-D

5 2000 200 300 N-D 300 N-D N-D 250 300 N-D N-D 50 N-D 200 400 N-D

6 2000 200 N-D N-D 300 N-D N-D 250 300 N-D 300 50 N-D 200 400 N-D

7 2000 200 N-D N-D 300 N-D N-D 250 300 N-D N-D 350 N-D 200 400 N-D

8 2500 200 300 N-D 300 N-D N-D 250 300 N-D 300 250 N-D 200 400 N-D

9 3000 200 300 400 300 50 N-D 250 300 300 300 N-D N-D 200 400 N-D

10 3500 200 300 200 300 400 N-D 250 300 300 300 350 N-D 200 400 N-D

11 3500 200 300 400 300 400 N-D 250 300 300 300 N-D N-D 200 400 150

12 3500 200 300 400 300 N-D N-D 250 300 300 300 350 N-D 200 400 200

13 2500 200 300 N-D 300 N-D N-D 250 300 N-D 300 250 N-D 200 400 N-D

14 3000 200 300 400 300 N-D N-D 250 300 300 300 50 N-D 200 400 N-D

15 3500 200 300 400 300 N-D N-D 250 300 300 300 350 N-D 200 400 200

16 3500 200 300 400 300 200 N-D 250 300 300 300 350 N-D 200 400 N-D

17 3500 200 300 200 300 400 N-D 250 300 300 300 350 N-D 200 400 N-D

18 3000 200 300 400 300 N-D N-D 250 300 N-D 300 350 N-D 200 400 N-D

19 3000 200 300 400 300 N-D N-D 250 300 N-D 300 350 N-D 200 400 N-D

20 2500 200 300 N-D N-D N-D N-D 250 300 300 300 250 N-D 200 400 N-D

21 2000 200 50 N-D 300 N-D N-D 250 300 N-D 300 N-D N-D 200 400 N-D

22 2000 200 N-D N-D 300 N-D N-D 250 300 300 50 N-D N-D 200 400 N-D

23 1500 200 N-D N-D 300 N-D N-D 100 300 N-D N-D N-D N-D 200 400 N-D

24 1500 200 N-D N-D 300 N-D N-D 100 300 N-D N-D N-D N-D 200 400 N-D

i. The third block of Genco-k is non-dispatched in the hours of negative profit (from 1 to
7 h) because of its great production cost and small system load;

ii. Because the third block has been shut-down for a while, the cost of a cold start-up is
included in its production costs when it is dispatched at 8 h (7 h);

iii. The third Block is once more not dispatched at the end of 12th hours due to low
system demand, and the minimum downtime constraint kicks in at 13th hours;

iv. Due to a short period of shutdown, the third block’s hot start-up cost is included in
this hour’s output costs when it is dispatched at 14th h (1h);

v. The third block is again non-dispatched from 20th h to 24th h due to decrement in the
system load;

vi. Optimal bid price of the third Block is shown as zero during 1–10 h, 13–14 h, 16–24 h,
when it is non-dispatched.

Case III: Gamma PDF

In this case study, we used a gamma probability distribution for constructing the rival
behavior. After successful testing, the results are shown in Figure 14. Optimal block bid
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price and MCP of Genco-k using gamma distribution with AWOA algorithm are shown in
Figure 15.
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The profit curve obtained by AWOA is shown in Figure 15. This number makes it
obvious that AWOA outperforms the rest of the opposition since the profit determined
by this algorithm is much higher. The profit of the Genco-k rises sharply to $15,478 in the
tenth h and $18,667 in the 12th h, respectively. For block 2, the profit decreases significantly
at the 13th hour as a result of the MCP dropping from 28.51 to 24.03 dollars per megawatt
hour. Due to the high MCP $29.39, the profit increases once more at the 14th hour. The total
profit as determined by AWOA is $180,616.

Table 11 displays the LD determined by the WOA algorithm for each generator taking
part in an auction with a standardized MCP. The N-D status in Table 11 denotes units that
were not dispatched because of a high bid offer. Table 11 also displays the transmitted
results for the Genco-k from algorithm AWOA utilizing gamma PDF.
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Table 11. Dispatch Obtained by Different Algorithms by using Gamma PDF for Genco-K.

LOAD DISPATCH OF GAMMA DISTRIBUTION OF 5 GENCO AN-D 3 BLOCK

HOUR LOAD
Rival 1 Rival 2 Rival 3 Rival 4 GENCO-R

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

200 300 400 300 400 500 250 300 300 300 350 450 200 400 600

1 1500 200 N-D N-D 150 N-D N-D 250 300 N-D N-D N-D N-D 200 400 N-D

2 1500 200 N-D N-D N-D N-D N-D 250 300 N-D 150 N-D N-D 200 400 N-D

3 1500 200 N-D N-D 300 N-D N-D 250 300 N-D N-D N-D N-D 200 250 N-D

4 1500 200 N-D N-D 300 N-D N-D 250 300 N-D N-D N-D N-D 200 250 N-D

5 2000 200 300 N-D 300 N-D N-D 250 300 50 N-D N-D N-D 200 400 N-D

6 2000 200 N-D N-D 300 N-D N-D 250 300 50 300 N-D N-D 200 400 N-D

7 2000 200 300 N-D 300 N-D N-D 250 300 N-D 50 N-D N-D 200 400 N-D

8 2500 200 150 N-D 300 N-D N-D 250 300 300 300 100 N-D 200 400 N-D

9 3000 200 300 100 300 N-D N-D 250 300 300 300 350 N-D 200 400 N-D

10 3500 200 300 400 300 200 N-D 250 300 300 300 350 N-D 200 400 N-D

11 3500 200 300 400 300 200 N-D 250 300 300 300 350 N-D 200 400 N-D

12 3500 200 300 400 300 200 N-D 250 300 300 300 350 N-D 200 400 N-D

13 2500 200 300 N-D 300 N-D N-D 250 300 250 300 N-D N-D 200 400 N-D

14 3000 200 300 N-D 300 100 N-D 250 300 300 300 350 N-D 200 400 N-D

15 3500 200 300 200 300 400 N-D 250 300 300 300 350 N-D 200 400 N-D

16 3500 200 300 400 300 200 N-D 250 300 300 300 350 N-D 200 400 N-D

17 3500 200 300 400 300 200 N-D 250 300 300 300 350 N-D 200 400 N-D

18 3000 200 300 N-D 300 100 N-D 250 300 300 300 350 N-D 200 400 N-D

19 3000 200 300 100 300 N-D N-D 250 300 300 300 350 N-D 200 400 N-D

20 2500 200 300 N-D 300 N-D N-D 250 300 300 300 N-D N-D 200 350 N-D

21 2000 200 50 N-D 300 N-D N-D 250 300 N-D 300 N-D N-D 200 400 N-D

22 2000 200 N-D N-D 300 N-D N-D 250 300 N-D N-D 350 N-D 200 400 N-D

23 1500 200 N-D N-D 300 N-D N-D 250 300 N-D N-D N-D N-D 200 250 N-D

24 1500 200 N-D N-D 300 N-D N-D 250 300 N-D N-D N-D N-D 200 250 N-D

i. The third block of Genco-k is non-dispatched in the hours of negative benefit (from 1
to 9 h) because of its great production cost and small system demand;

ii. When the third block is dispatched at 10th hours, the cost of a cold start-up is taken
into consideration because it has been idle for a while (9 h);

iii. Due to low system demand at the end of the 12th hour, the third block is once more
not dispatched, and the minimum downtime constraint is in effect (3 h);

iv. The third block is re-dispatched at the 13th hour, and as it was briefly shutdown; the
hot start-up cost is included in the production cost of this hour;

v. Due to less system load, the third block was once again not dispatched from 20 to 24 h;
vi. The optimal bid price of the third block is shown as zero during 1–9 h, 13–14 h and

18–24 h, when it is non-dispatched.
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Case IV: Weibull PDF

In this case study, we used the Weibull probability distribution. After successful
testing, the results are shown in Figure 16. The optimal block bid price and the MCP of
Genco-k using Weibull distribution with AWOA algorithm are shown in Figure 17.
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The profit curve obtained by AWOA is shown in Figure 17. This number makes it
obvious that AWOA outperforms the rest of the opposition since the profit determined by
this algorithm is much higher. The profit of the Genco-k rises sharply to $15,478 in the 10th
h and $18,667 in the twelfth hour, respectively. For block 2, the profit drops significantly at
the 13th h as a result of the MCP falling from 34 to 21.42 dollars per megawatt hour. Due to
the high MCP $31.43 at the fourteenth hour, the profit increases once more. The total profit
as determined by AWOA is $180,616.

Table 12 displays the LD determined by the WOA algorithm for each generator taking
part in an auction with a standardized MCP. The N-D status in Table 12 denotes units that
were not dispatched because of a high bid offer. Table 12 also displays the transmitted
results for the Genco-k from algorithm AWOA utilizing Weibull PDF.
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Table 12. Dispatch Obtained by Different Algorithms by using Weibull PDF for Genco-K.

LOAD DISPATCH OF WEIBULL DISTRIBUTION OF 5 GENCO AND 3 BLOCK

HOUR LOAD

Rival 1 Rival 2 Rival 3 Rival 4 GENCO-R

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

200 300 400 300 400 500 250 300 300 300 350 450 200 400 600

1 1500 200 ND ND 300 ND ND 250 300 ND ND ND ND 200 250 ND

2 1500 200 ND ND 300 ND ND 250 300 ND ND ND ND 200 250 ND

3 1500 200 ND ND 300 ND ND 250 300 ND ND ND ND 200 250 ND

4 1500 200 ND ND ND ND ND 250 300 300 ND ND ND 200 250 ND

5 2000 200 ND 300 300 ND ND 250 300 ND 50 ND ND 200 400 ND

6 2000 200 ND ND 300 ND ND 250 300 50 300 ND ND 200 400 ND

7 2000 200 300 ND 300 ND ND 250 300 50 ND ND ND 200 400 ND

8 2500 200 300 ND 300 ND ND 250 300 250 300 ND ND 200 400 ND

9 3000 200 300 400 300 ND ND 250 300 ND 300 350 ND 200 400 ND

10 3500 200 300 400 300 200 ND 250 300 300 300 350 ND 200 400 ND

11 3500 200 300 200 300 400 ND 250 300 300 300 350 ND 200 400 ND

12 3500 200 300 200 300 400 ND 250 300 300 300 350 ND 200 400 ND

13 2500 200 300 ND 300 ND ND 250 300 250 300 ND ND 200 400 ND

14 3000 200 300 100 300 ND ND 250 300 300 300 350 ND 200 400 ND

15 3500 200 300 400 300 200 ND 250 300 300 300 350 ND 200 400 ND

16 3500 200 300 ND 300 400 ND 250 300 300 300 350 ND 200 400 200

17 3500 200 300 200 300 400 ND 250 300 300 300 350 ND 200 400 ND

18 3000 200 300 ND 300 ND ND 250 300 300 300 350 ND 200 400 100

19 3000 200 300 100 300 ND ND 250 300 300 300 350 ND 200 400 ND

20 2500 200 300 ND 300 ND ND 250 300 250 300 ND ND 200 400 ND

21 2000 200 300 ND 300 ND ND 250 300 ND 300 ND ND 200 150 ND

22 2000 200 50 ND 300 ND ND 250 300 ND 300 ND ND 200 400 ND

23 1500 200 ND ND 300 ND ND 250 300 ND ND ND ND 200 250 ND

24 1500 200 ND ND 300 ND ND 250 300 ND ND ND ND 200 250 ND

i. Block 3 of Genco-k is not supplied during the hours of adverse benefit due to its high
manufacturing cost and less system needs (from 1 to 8 h);

ii. Because the block 3 has been shut-down for a while, the cost of a cold start-up is
included in its production costs when it is dispatched at nine hours (8 h);

iii. At the conclusion of 12th h, the third block is once more not delivered due to decrement
in system demand, and the minimal downtime constraint is in effect (4 h);

iv. The third block is re-dispatched at 15th h, and because it was shut-down for a brief
period of time, the hot start-up cost is included in the cost of production for this hr;

v. The third block is again non-dispatched from the 20th to 24th h due to less system load;
vi. Optimal bid price of the third block is exposed zero during 1–8 h, 13–14 h and 20–24 h

when it is non-dispatched.

The supremacy of the AWOA method is established through the evaluation of simula-
tion results with former methods. Results of Figure 18 evidence that the finest block bid
price resolute by the AWOA delivers high profits than that gained by the former methods
such as WOA, GWO, SCA, ALO, MFO and GSA using four different PDFs i.e., Lognor-
mal, Normal, Gamma, and Weibull. Thus, it approves that the AWOA is well skilled in
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describing the results near-global OBS. After analyzing the dispatched status of the units
as suggested by AWOA, it is observed that the AWOA is able to have more dispatched
units as compared to other optimization algorithms. Hence, the results of AWOA has
been showcased.
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6. Conclusions and Future Scope

The EM has been reformed with every passing year and, with the use of recent opti-
mization algorithms, many nonlinear optimization problems of EM have been addressed
very efficiently. These algorithms can discover the most efficient strategies for difficult
problems, particularly in the EM. In this work, the OBS problem for a Genco in a uniform
price spot market is considered. The problem of strategic bidding is solved with the help
of a stochastic optimization method by incorporating MC simulation. A new variant of
WOA, termed AWOA, has been proposed with the amalgamation of CM operator and
OEL techniques. The AWOA is initially benchmarked on standard mathematical functions
then it is implemented on OBS for the day-ahead EM by using four different cases. The
superiority of the algorithm is examined over recent metaheuristic optimizers such as WOA,
GWO, SCA, ALO, MFO and GSA algorithms. It has been revealed that the changes advised
in WOA make AWOA a more appropriate technique for all of the cases in a day-ahead
EM. Simulation values advise the sturdiness and practicality of the AWOA. The AWOA
can be also a good method for Genco in the open power market. The future focus of this
research lies in the implementation of the proposed AWOA for formulating an adaptive
system with various cases and comparison with the bi-level programming model.
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Nomenclature
The symbolizations used in this manuscript are specified under:
Qmax Capacity of the lth block of Genco-k [MW].
Qmin Least output of lth block of Genco-k [MW].
Mut

l Least uptime of lth block of Genco-k [hr].
Mdt

l Least downtime of lth block of Genco-k [hr].
hsu

c Cost for cold start/up [$], measured while the Genco has been shut down for a large time.
csu

c Cost for cold start/up [$], measured while the Genco has been shut down for a large time.
Tc Cooling time constant [hr].

HON
l(t)

The amount of hours the lth block of Genco-k has been unceasingly ON at the last of hour
t [hr].

HOFF
l(t)

The amount of hours the lth block of Genco-k has been unceasingly OFF at the last of hour
t [hr].

ul(t) Binary variable, that is 1, if the lth block is dispatched at hour t; otherwise, 0.

TOFF
su The amount of hours the Genco has been OFF, at the time of startup [hr].
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