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Abstract: Recently, the fixed-circle problems have been studied with different approaches as an
interesting and geometric generalization. In this paper, we present some solutions to an open
problem CC: what is (are) the condition(s) to make any circle Cv0,σ as the common fixed circle for two
(or more than two) self-mappings? To do this, we modify some known contractions which are used
in fixed-point theorems such as the Hardy–Rogers-type contraction, Kannan-type contraction, etc.
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1. Introduction

In the recent past, the fixed-circle problem has been introduced as a new geometric
generalization of fixed-point theory. After that, some solutions to this problem have been
investigated using various techniques (for example, see [1–8], and the references therein).
In addition, in [1], the following open problem was given:

Let (X,D) be a metric space and Cv0,σ = {v ∈ X : D(v, v0) = σ} be any circle on X.
Open Problem CC: What is (are) the condition(s) to make any circle Cv0,σ as the

common fixed circle for two (or more than two) self-mappings?
Let ξ and g be two self-mappings on a set X. If ξv = gv = v for all v ∈ Cv0,σ, then

Cv0,σ is called a common fixed circle of the pair (ξ, g) (see [9] for more details).
Some solutions were given for this open problem (for example, see [8,9]). To obtain

new solutions, in this paper, we define new contractions for the pair (ξ, g) and prove new
common fixed-circle results on metric spaces. Before moving on to the main results, we
recall the following.

Throughout this article, we denote by R the set of all real numbers and by R+ the set
of all positive real numbers.

Let ξ and g be self-mappings on a set X. If ξv = gv = w for some v in X, then v is
called a coincidence point of ξ and g, w is called a point of coincidence of ξ and g.

Let C(ξ, g) = {v ∈ X : ξv = gv = v} denote the set of all common fixed-points of
self-mappings ξ and g.

In [10], Wardowski introduced the following family of functions to obtain a new type
of contraction called F -contraction.

Let F be the family of all mappings F : R+ → R that satisfy the following conditions:

(F1)F is strictly increasing, that is, for all a, b ∈ R+ such that a < b implies that F (a) <
F (b);

(F2)For every sequence {an}n∈N of positive real numbers, limn→∞ an = 0 and
limn→∞ F (an) = −∞ are equivalent;
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(F3)There exists k ∈ (0, 1) such that lima→0+ akF (a) = 0.

Some examples of functions that confirm the conditions (F1), (F2), and (F3) are
as follows:

• F (a) = ln(a);
• F (a) = ln(a) + a;
• F (a) = ln

(
a2 + a

)
;

• F (a) = − 1√
a (see [10] for more details).

Definition 1. [10] Let (X,D) be a metric space, F ∈ F and ξ : X → X. The mapping ξ is called
an F -contraction if there exists τ > 0 such that

τ +F (D(ξv, ξv)) ≤ F (D(v, v))

for all v, v ∈ X satisfying D(Tv, Tv) > 0.

2. Main Results

In this section, we prove new common fixed-circle theorems on metric spaces. For
this purpose, we modify some well-known contractions such as the Wardowski-type
contraction [10], Nemytskii–Edelstein-type contraction [11,12], Banach-type contraction
[13], Hardy–Rogers-type contraction [14], Reich-type contraction [15], Chatterjea-type
contraction [16], and Kannan-type contraction [17].

At first, we introduce the following new contraction type for two mappings to obtain
some common fixed-circle results on metric spaces.

Definition 2. Let (X,D) be a metric space and ξ, g be two self-mappings on X. If there exist
τ > 0,F ∈ F and v0 ∈ X such that

τ +F (D(v, ξv) +D(v, gv)) ≤ F (D(v0, v))

for all v ∈ X satisfying min{D(v, ξv),D(v, gv)} > 0, then the pair (ξ, g) is called a
Wardowski-type Fξg-contraction.

Notice that the point v0 mentioned in Definition 2 must be a common fixed-point of
the mappings ξ and g. In fact, if v0 is not a common fixed-point of ξ and g, then we have
D(v0, ξv0) > 0 and D(v0, gv0) > 0. Hence, we obtain

min{D(v0, ξv0),D(v0, gv0)} > 0 =⇒ τ +F (D(v0, ξv0) +D(v0, gv0)) ≤ F (D(v0, v0)).

This gives a contradiction since the domain of F is (0, ∞). As a result, we receive the
following proposition as a consequence of Definition 2.

Proposition 1. Let (X,D) be a metric space. If the pair (ξ, g) is a Wardowski-typeFξg-contraction
with v0 ∈ X, then we have ξv0 = gv0 = v0.

Using this new type contraction, we give the following fixed-circle theorem.

Theorem 1. Let (X,D) be a metric space and the pair (ξ, g) be a Wardowski-type Fξg-contraction
with v0 ∈ X. Define the number σ by

σ = inf{D(v, ξv) +D(v, gv) : v 6= ξv, v 6= gv, v ∈ X}. (1)

Then, Cv0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle Cv0,r
where r < σ.

Proof. We distinguish two cases.
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Case 1: Let σ = 0. Clearly, Cv0,σ = {v0} and by Proposition 1, we see that Cv0,σ is a
common fixed circle of the pair (ξ, g).

Case 2: Let σ > 0 and v ∈ Cv0,σ. If ξv 6= v and gv 6= v, then by (1), we have
D(v, ξv) +D(v, gv) ≥ σ. Hence, using the Wardowski-type Fξg-contraction property
and the fact that F is increasing, we obtain

F (σ) ≤ F (D(v, ξv) +D(v, gv))

≤ F (D(v0, v))− τ

< F (D(v0, v))

= F (σ)

This gives a contradiction. Therefore, we have D(v, ξv) +D(v, gv) = 0, that is,
v = ξv and v = gv. As a consequence, Cv0,σ is a common fixed circle of the pair (ξ, g).

Now, we show that ξ and g also fix any circle Cv0,r with r < σ. Let v ∈ Cv0,r
and suppose that D(v, ξv) +D(v, gv) > 0. With the Wardowski-type Fξg-contraction
property, we have

F (D(v, ξv) +D(v, gv)) ≤ F (D(v0, v))− τ

< F (D(v0, v))

= F (r).

Since F is increasing, then we find

D(v, ξv) +D(v, gv) < D(v0, v) < r < σ.

However, σ = inf{D(v, ξv) +D(v, gv) : v 6= ξv, v 6= gv, v ∈ X}, so this gives a
contradiction. Thus, D(v, ξv) +D(v, gv) = 0 and v = ξv = gv. Hence, Cv0,r is a
common fixed circle of the pair (ξ, g).

Example 1. Let X =
{

0, 1,−e, e, e− 1, e + 1,−e2, e2, e2 − 1, e2 + 1, e2 − e, e2 + e
}

with usual
metric. Define ξ, g : X → X by

ξv =

{
1, v = 0
v, otherwise

and

gv =

{
e− 1, v = 0

v, otherwise
.

Take F (a) = ln(a) + a, a > 0, τ = e and v0 = e2. Thus, the pair (ξ, g) is a Wardowski-type
Fξg-contraction. For v = 0, we have

min{D(v, ξv),D(v, gv)} = min{D(0, 1),D(0, e− 1)}
= min{1, e− 1}
= 1 > 0

In addition, we can easily see that the following inequality is satisfied:

τ +F (D(v, ξv) +D(v, gv)) ≤ F (D(v0, v))

e +F (1 + e− 1) ≤ F
(

e2
)

e + ln e + e ≤ ln e2 + e2

2e + 1 ≤ 2 + e2
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With Theorem (1), we obtain

σ = inf{D(v, ξv) +D(v, gv) : v 6= ξv, v 6= gv, v ∈ X} = inf{1 + e− 1} = e

and ξ, g fix the circle Ce2,e =
{

e2 − e, e2 + e
}

. Notice that ξ and g fix also the circle Ce2,1 ={
e2 − 1, e2 + 1

}
.

The converse of Theorem 1 fails. The following example confirms this statement.

Example 2. Let (X,D) be a metric space with any point v0 ∈ X. Define the self-mappings ξ and
g as follows:

ξv =

{
v, D(v, v0) ≤ µ
v0, D(v, v0) > µ

and

gv =

{
v, D(v, v0) ≤ µ
v0, D(v, v0) > µ

,

for all v ∈ X with any µ > 0. Then, it can be easily checked that the pair (ξ, g) is not a Wardowski-
type Fξg-contraction for the point v0 but ξ and g fix every circle Cv0,r where r ≤ µ.

Example 3. Let C be the set of complex numbers, (C,D) be the usual metric space, and define the
self-mappings ξ, g : C→ C as follows:

ξv =

{
v, |v− 2| < e

v + 1
2 , |v− 2| ≥ e

and

gv =

{
v, |v− 2| < e

v− 1
2 , |v− 2| ≥ e

,

for all v ∈ C. We have σ = inf{D(v, ξv) +D(v, gv) : v 6= ξv, v 6= gv, v ∈ C}. Thus, the
pair (ξ, g) is a Wardowski-type Fξg-contraction with F = ln(a), τ = ln e and v0 = 2 ∈ C.
Obviously, the number of common fixed circles of ξ and g is infinite.

Definition 3. If there exist τ > 0, F ∈ F and v0 ∈ X such that for all v ∈ X the following holds:

τ +F (D(ξv, v) +D(gv, v)) < F (D(v, v0))

with min{D(ξv, v),D(gv, v)} > 0, then the pair (ξ, g) is called a Nemytskii–Edelstein-type
Fξg-contraction.

Proposition 2. Let (X,D) be a metric space. If the pair (ξ, g) is a Nemytskii-Edelstein-type
Fξg-contraction with v0 ∈ X, then we have ξv0 = gv0 = v0.

Proof. It can be easily proved from the similar arguments used in Proposition 1.

Theorem 2. Let the pair (ξ, g) be a Nemytskii–Edelstein-type Fξg-contraction with v0 ∈ X and
σ be defined as in (1). Then, Cv0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix
every circle Cv0,r where r < σ.

Proof. It can be easily seen from the proof of Theorem 1.

In addition, we inspire the classical Banach contraction principle to give the following
definition:
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Definition 4. If there exist τ > 0, F ∈ F and v0 ∈ X such that for all v ∈ X, the follow-
ing holds:

τ +F (D(ξv, v) +D(gv, v)) ≤ F (ηD(v, v0))

with min{D(ξv, v),D(gv, v)} > 0 where η ∈ [0, 1), then the pair (ξ, g) is called a Banach-type
Fξg-contraction.

Proposition 3. Let (X,D) be a metric space. If the pair (ξ, g) is a Banach-type Fξg-contraction
with v0 ∈ X, then we have ξv0 = gv0 = v0.

Proof. It can be easily proved from the similar arguments used in Proposition 1.

Theorem 3. Let the pair (ξ, g) be a Banach-type Fξg-contraction with v0 ∈ X and σ be defined
as in (1). Then Cv0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle
Cv0,r where r < σ.

Proof. It can be easily seen from the proof of Theorem 1.

If we consider Example 1, then the pair (ξ, g) is both a Nemytskii–Edelstein-type
Fξg-contraction and a Banach-type Fξg-contraction with F (a) = ln(a) + a, a > 0, τ = e,
v0 = e2 and so ξ, g have two common fixed circles Ce2,e and Ce2,1.

We introduce the notion of Hardy–Rogers-type Fξg-contraction.

Definition 5. Let (X,D) be a metric space and ξ, g be two self-mappings on X. The pair (ξ, g) is
called a Hardy–Rogers-type Fξg-contraction if there exist τ > 0 and F ∈ F such that

τ +F (D(v, ξv) +D(v, gv)) ≤ F
(

αD(v, v0) + βD(v, ξv)
+γD(v, gv) + δD(v0, ξv0) + ηD(v0, gv0)

)
(2)

holds for any v, v0 ∈ X with min{D(v, ξv),D(v, gv)} > 0, where α, β, γ, δ, η are nonnegative
numbers, α 6= 0 and α + β + γ + δ + η ≤ 1.

Proposition 4. If the pair (ξ, g) is a Hardy–Rogers-type Fξg-contraction with v0 ∈ X, then we
have ξv0 = gv0 = v0.

Proof. Suppose that ξv0 6= v0 and gv0 6= v0. From the definition of the Hardy–Rogers-
type Fξg-contraction with min{D(v0, ξv0),D(v0, gv0)} > 0, we obtain

τ +F (D(v0, ξv0) +D(v0, gv0)) ≤ F
(

αD(v0, v0) + βD(v0, ξv0)
+γD(v0, gv0) + δD(v0, ξv0) + ηD(v0, gv0)

)
= F ((β + δ)D(v0, ξv0) + (γ + η)D(v0, gv0))

< F (D(v0, ξv0) +D(v0, gv0))

a contradiction because of τ > 0. Thus, we have ξv0 = gv0 = v0.

Using Proposition 4, we rewrite the condition (2) as follows:

τ +F (D(v, ξv),D(v, gv)) ≤ F (αD(v, v0) + βD(v, ξv) + γD(v, gv))

with min{D(v, ξv),D(v, gv)} > 0 where α, β, γ are nonnegative numbers, α 6= 0 and
α + β + γ ≤ 1.

Using this inequality, we present the following fixed-circle result.

Theorem 4. Let the pair (ξ, g) be a Hardy–Rogers-type Fξg-contraction with v0 ∈ X and σ be
defined as in (1). If β = γ, then Cv0,σ is a common fixed circle of the pair (ξ, g). In addition, ξ and
g fix every circle Cv0,r with r < σ.
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Proof. We distinguish two cases.
Case 1: Let σ = 0. Clearly, Cv0,σ = {v0} and by Proposition 4, we see that Cv0,σ is a

common fixed circle of the pair (ξ, g).
Case 2: Let σ > 0 and v ∈ Cv0,σ. Using the Hardy–Rogers-type Fξg-contractive

property and the fact that F is increasing, we have

F (σ) ≤ F (D(v, ξv) +D(v, gv))

≤ F (αD(v, v0) + βD(v, ξv) + γD(v, gv))− τ

< F (ασ + β(D(v, ξv) +D(v, gv)))

< F ((α + β)(D(v, ξv) +D(v, gv)))

< F (D(v, ξv) +D(v, gv)).

This gives a contradiction. Therefore, D(v, ξv) +D(v, gv) = 0 and so ξv = v = gv. As
a result, Cv0,σ is a common fixed circle of the pair (ξ, g).

Now, we show that ξ and g also fix any circle Cv0,r with r < σ. Let v ∈ Cv0,r
and suppose that D(v, ξv) +D(v, gv) > 0. By the Hardy–Rogers-type Fξg-contraction,
we have

F (D(v, ξv) +D(v, gv)) ≤ F (αD(v, v0) + βD(v, ξv) + γD(v, gv))− τ

< F (αD(v, v0) + βD(v, ξv) + γD(v, gv))

< F (D(v, ξv) +D(v, gv))

a contradiction. So, we obtain D(v, ξv) +D(v, gv) = 0 and ξv = v = gv. Thus, Cv0,r is
a common fixed circle of the pair (ξ, g).

Remark 1. If we take α = 1 and β = γ = δ = η = 0 in Definition 5, then we obtain the concept
of a Wardowski-type Fξg-contractive mapping.

Now, we give the concept of a Reich-type Fξg-contraction as follows.

Definition 6. If there exist τ > 0, F ∈ F and v0 ∈ X such that for all v ∈ X, the follow-
ing holds:

τ +F (D(ξv, v) +D(gv, v)) ≤ F
(

αD(v, v0) + β[D(v, ξv) +D(v, gv)]
+γ[D(v0, ξv0) +D(v0, gv0)]

)
(3)

with min{D(ξv, v),D(gv, v)} > 0, where α + β + γ < 1, α 6= 0 and α, β, γ ∈ [0, ∞). Then,
the pair (ξ, g) is called a Reich-type Fξg-contraction on X.

Proposition 5. If the pair (ξ, g) is a Reich-type Fξg-contraction with v0 ∈ X, then we have
ξv0 = v0 = gv0.

Proof. Assume that ξv0 6= v0 and gv0 6= v0. From the definition of the Reich-type
Fξg-contraction with min{D(v0, ξv0),D(v0, gv0)} > 0, we get

τ +F (D(v0, ξv0) +D(v0, gv0)) ≤ F
(

αD(v0, v0) + β[D(v0, ξv0) +D(v0, gv0)]
+γ[D(v0, ξv0) +D(v0, gv0)]

)
= F ((β + γ)[D(v0, ξv0) +D(v0, gv0)])

< F (D(v0, ξv0) +D(v0, gv0))

a contradiction because of τ > 0. Then, we have ξv0 = v0 = gv0.

Using Proposition 5, we rewrite the condition (3) as follows:

τ +F (D(ξv, v) +D(gv, v)) ≤ F (αD(v, v0) + β[D(v, ξv) +D(v, gv)])
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with min{D(ξv, v),D(gv, v)} > 0 where α + β < 1, α 6= 0 and α, β ∈ [0, ∞).

Using this inequality, we obtain the following common fixed-circle result.

Theorem 5. Let the pair (ξ, g) be a Reich-type Fξg-contraction with v0 ∈ X and σ be defined as
in (1). Then, Cv0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle
Cv0,ρ with ρ < σ.

Proof. We distinguish two cases.
Case 1: Let σ = 0. Clearly, Cv0,σ = {v0} and by Proposition 5, we see that Cv0,σ is a

common fixed circle of the pair (ξ, g).
Case 2: Let σ > 0 and v ∈ Cv0,σ. This case can be easily seen since

F (σ) ≤ F (D(ξv, v) +D(gv, v))

≤ F ((α + β)[D(ξv, v) +D(gv, v)])

< F (D(ξv, v) +D(gv, v)).

Consequently, Cv0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix
every circle Cv0,ρ with ρ < σ.

To obtain, some new common fixed-circle results, we define the following contractions.

Definition 7. If there exist τ > 0, F ∈ F and v0 ∈ X such that for all v ∈ X, the follow-
ing holds:

τ +F (D(ξv, v) +D(gv, v)) ≤ F (η[D(ξv, v0) +D(gv, v0)])

with min{D(ξv, v),D(gv, v)} > 0 where η ∈
(

0, 1
3

)
, then the pair (ξ, g) is called a Chatterjea-

type Fξg-contraction.

Proposition 6. If the pair (ξ, g) is a Chattereja-type Fξg-contraction with v0 ∈ X, then we have
ξv0 = v0 = gv0.

Proof. From the similar arguments used in Proposition 4, it can be easily proved.

Theorem 6. Let the pair (ξ, g) be a Chatterjea-type Fξg-contraction with v0 ∈ X and σ be defined
as in (1). Then, Cv0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle
Cv0,ρ with ρ < σ.

Proof. We distinguish two cases.
Case 1: Let σ = 0. Clearly, Cv0,σ = {v0} and by Proposition 6, we see that Cv0,σ is a

common fixed circle of the pair (ξ, g).
Case 2: Let σ > 0 and v ∈ Cv0,σ. Using the Chatterjea-type Fξg-contractive property,

the fact that F is increasing, and the triangle inequality property of metric function d, we
have

F (σ) ≤ F (D(ξv, v) +D(gv, v))

≤ F (η[D(ξv, v0) +D(gv, v0)])− τ

≤ F (η[D(ξv, v) +D(v, v0) +D(gv, v) +D(v, v0)])

= F (η[2D(v, v0) + [D(ξv, v) +D(gv, v)]])

= F (3η[D(ξv, v) +D(gv, v)])

< F (D(ξv, v) +D(gv, v)).
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This gives a contradiction. Thus, D(ξv, v) +D(gv, v) = 0, that is, ξv = v = gv.
As a result, Cv0,σ is a common fixed circle of the pair (ξ, g). By the similar arguments used
in the proof of Theorem 1, ξ and g also fix any circle Cv0,ρ with ρ < σ.

Definition 8. If there exist τ > 0, F ∈ F and v0 ∈ X such that for all v ∈ X the following holds:

τ +F (D(ξv, v) +D(gv, v)) ≤ F (η[D(v, ξv0) +D(v, gv0)]) (4)

with min{D(ξv, v),D(gv, v)} > 0 where η ∈
(

0, 1
2

)
, then the pair (ξ, g) is called a Kannan-

type Fξg-contraction.

Proposition 7. If the pair (ξ, g) is a Kannan-type Fξg-contraction with v0 ∈ X, then we have
ξv0 = v0 = gv0.

Proof. From the similar arguments used in Proposition 4, it can be easily obtained.

Theorem 7. Let the pair (ξ, g) be a Kannan-type Fξg-contraction with v0 ∈ X and σ be defined
as in (1). Then, Cv0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle
Cv0,ρ with ρ < σ.

Proof. We distinguish two cases.
Case 1: Let σ = 0. Clearly, Cv0,σ = {v0} and by Proposition 7, we see that Cv0,σ is a

common fixed circle of the pair (ξ, g).
Case 2: Let σ > 0 and v ∈ Cv0,σ. Using the Kannan-type Fξg-contractive property, the

fact that F is increasing, and the triangle inequality property of metric function d, we have

F (σ) ≤ F (D(ξv, v) +D(gv, v))

≤ F (η[D(v, ξv0) +D(v, gv0)])− τ

≤ F (η[D(v, v0) +D(v, v0)])

≤ F (2ησ)

< F (D(ξv, v) +D(gv, v)).

This gives a contradiction. Thus, D(ξv, v) +D(gv, v) = 0, that is, ξv = v = gv. As a
result, Cv0,σ is a common fixed circle of the pair (ξ, g). By similar arguments used in the
proof of Theorem 1, ξ and g also fix any circle Cv0,ρ with ρ < σ.

Now, we present an illustrative example of our obtained results.

Example 4. Let X =
{

1, 2, e2, e2 − 1, e2 + 1
}

be the metric space with the usual metric. Let us
define the self-mappings ξ, g : X −→ X as

ξv =

{
2, v = 1
v, otherwise

and

gv =

{
2, v = 1
v, otherwise

,

for all v ∈ X.

The pair (ξ, g) is a Hardy–Rogers-type Fξg-contraction with F = lna + a, τ = 0.01,
α = β = γ = 1

4 and v0 = e2. Indeed, we get

min{D(v, ξv),D(v, gv)} = min{D(1, 2),D(1, 2)} = 1 > 0
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for v = 1 and we get

αD(v, v0) + βD(v, ξv) + γD(v, gv) =
1
4

[
D
(

1, e2
)
+D(1, 2) +D(1, 2)

]
=

1
4

[
e2 − 1 + 1 + 1

]
=

e2 + 1
4

.

Then, we have

τ +F (D(v, ξv) +D(v, gv)) = 0.01 + ln 2 + 2

≤ F
(

e2 + 1
4

)
= ln

(
e2 + 1

)
− ln 4 +

e2 + 1
4

.

The pair (ξ, g) is a Reich-type Fξg-contraction with F = ln a, τ = ln
(
e2 + 1

)
− ln 6,

α = β = 1
3 and v0 = e2. Indeed, we get

min{D(v, ξv),D(v, gv)} = min{D(1, 2),D(1, 2)} = 1 > 0

for v = 1 and we have

αD(v, v0) + β[D(v, ξv) +D(v, gv)] =
1
3
D
(

1, e2
)
+

1
3
[D(1, 2) +D(1, 2)]

=
e2 + 1

3
.

Then, we obtain

τ +F (D(v, ξv) +D(v, gv)) = ln
(

e2 + 1
)
− ln 6 + ln 2

≤ F
(

e2 + 1
3

)
= ln(e2 + 1)− ln 3.

The pair (ξ, g) is both a Chatterjea-type Fξg-contractions and a Kannan-type Fξg-
contraction with F = lna, τ = ln

(
e2 − 2

)
− ln 4, η = 1

4 and v0 = e2. Indeed, for Chatterjea-
type Fξg-contractions, we get

min{D(v, ξv),D(v, gv)} = min{D(1, 2),D(1, 2)} = 1 > 0

for v = 1 and we have

η[D(v0, ξv) +D(v0, gv)] =
1
4

[
D
(

e2, 2
)
+D

(
e2, 2

)]
≤ 1

4

[
2(e2 − 2)

]
=

e2 − 2
2

.
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Then, we obtain

τ +F (D(v, ξv) +D(v, gv)) = ln
(

e2 − 2
)
− ln 4 + ln 2

≤ F
(

e2 − 2
2

)
= ln

(
e2 − 2

)
− ln 2.

For Kannan-type Fξg-contractions, we have

min{D(v, ξv),D(v, gv)} = min{D(1, 2),D(1, 2)} = 1 > 0

for v = 1 and we have

η[D(v, ξv0) +D(v, g0)] =
1
4

[
D
(

1, e2
)
+D

(
1, e2

)]
≤ 1

4

[
2(e2 − 1)

]
=

e2 − 1
2

.

Then, we obtain

τ +F (D(v, ξv) +D(v, gv)) = ln
(

e2 − 2
)
− ln 4 + ln 2

≤ F
(

e2 − 1
2

)
= ln

(
e2 − 1

)
− ln 2.

Consequently, ξ and g fix the circle Ce2,1 = {e2 − 1, e2 + 1}.
If we combine the notions of Banach-type Fξg-contractions, Chatterjea-type Fξg-

contractions, and Kannan-type Fξg-contractions, then we get the following corollary. This
corollary can be considered as Zamfirescu-type common fixed-circle result [18].

Corollary 1. Let (X,D) be a metric space, ξ, g : X −→ X be two self-mappings and σ be defined
as in (1). If there exist τ > 0, F ∈ F and v0 ∈ X such that for all v ∈ X, at least one of the
followings holds:

(1) τ +F (D(ξv, v) +D(gv, v)) ≤ F (αD(v, v0)),
(2) τ +F (D(ξv, v) +D(gv, v)) ≤ F (β[D(ξv, v0) +D(gv, v0)]),
(3) τ +F (D(ξv, v) +D(gv, v)) ≤ F (γ[D(v, ξv0) +D(v, gv0)]),

with min{D(ξv, v),D(gv, v)} > 0 where 0 ≤ α < 1, 0 ≤ β, γ < 1
2 , then Cv0,σ is a common

fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle Cv0,ρ with ρ < σ.

Proof. It is obvious.
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