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Abstract: Cryptocurrencies are highly volatile investment assets and are difficult to predict. In this
study, various cryptocurrency data are used as features to predict the log-return price of major
cryptocurrencies. The original contribution of this study is the selection of the most influential major
features for each cryptocurrency using the volatility features of cryptocurrency, derived from the
autoregressive conditional heteroskedasticity (ARCH) and generalized autoregressive conditional
heteroskedasticity (GARCH) models, along with the closing price of the cryptocurrency. In addition,
we sought to predict the log-return price of cryptocurrencies by implementing various types of
time-series model. Based on the selected major features, the log-return price of cryptocurrency was
predicted through the autoregressive integrated moving average (ARIMA) time-series prediction
model and the artificial neural network-based time-series prediction model. As a result of log-return
price prediction, the neural-network-based time-series prediction models showed superior predictive
power compared to the traditional time-series prediction model.

Keywords: time-series; deep learning; forecasting; cryptocurrency

1. Introduction

Recently, many people have begun paying attention to the potential for growth of the
cryptocurrency market [1]. Cryptocurrency has emerged as a new financial product and is
traded by numerous investors [2]. In 2021, the market capitalization of the cryptocurrency
market exceeded USD 3 trillion, and the transaction volume has continuously increased.
Tthe cryptocurrency market is now an important research topic in the field of digital
finance. Cryptocurrency was introduced along with blockchain, a decentralized data
storage technology [3]. Blockchain is a technology that stores data in blocks and manages
datasets connected in a chain form in a distributed manner [4]. Each data block used in the
blockchain has a certain capacity and size, and, whenever a new transaction occurs, the
transaction is recorded in the data block. The recorded data is connected in a chain and
replicated at various data nodes [4]. Because data blocks are stored and managed in each
data node, even if a specific data block is tampered with, the authenticity of the data can be
verified by referring to the data blocks of other data nodes [5]. To tamper with data stored
in the block chain, it is necessary to access numerous connected data nodes and change the
contents of all data blocks within a short time, so data forgery is very difficult. Therefore,
blockchain is attracting attention as a next-generation data storage technology in which
all participants store and share common information. Cryptocurrency can be said to be
a kind of reward that appears in the process of recording and verifying data blocks on
the blockchain. Encryption and decryption are required to verify and record data blocks
within the blockchain, which requires a great deal of computing resources. Therefore,
users who verify and record data blocks must provide their own computing resources, and
cryptocurrency is paid as a reward for providing computing resources [3]. As the monetary
value of cryptocurrency increases, the number of users who provide computing resources
increases, making the blockchain ecosystem more robust [6].
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As the expectations for blockchain technology increase, the cryptocurrency market
is growing together with it, and many related studies are being conducted. For example,
many studies are being conducted to predict the price of Bitcoin, one of the representative
cryptocurrencies [7–9]. However, since the cryptocurrency market is a high-risk investment
market with considerable volatility, it is difficult to implement an accurate forecasting
model [10]. Therefore, the purpose of this study was to predict the log-return price of
cryptocurrency using volatility features of cryptocurrency. In the study, data for the top
eleven cryptocurrencies that are frequently traded were used to predict the log-return price
of cryptocurrencies. Among the collected cryptocurrency data, we predict the log returns
of the three major cryptocurrencies, such as Bitcoin, Ethereum, and Binance Coin, with
high market capitalization.

There are various mathematical models that can help predict cryptocurrency perfor-
mance [11]. Examples include simple exponential smoothing (SES) and various linear
models for simple trend analysis [12,13]. In addition, several studies on price prediction
for artificial neural network-based cryptocurrencies and related derivatives are being con-
ducted [14,15]. However, in this study, mathematical models were selected to extend
cryptocurrency log-return price prediction research described in previous studies [11]. This
study expanded the scope of research by adding volatility characteristics to log-return price
prediction studies undertaken [16]. Volatility is a widely used variable when predicting
log-returns [17]. In this study, the volatility prediction models, autoregressive conditional
heteroskedasticity (ARCH) and generalized autoregressive conditional heteroskedasticity
(GARCH), were used to predict the volatility of cryptocurrency and this was used to predict
the log-return price [18]. To determine the importance of features related to the selected
cryptocurrency, and to predict the log-return price of the cryptocurrency, major features
were selected. To predict the log-return price, traditional time-series methodologies use
autoregressive integrated moving average (ARIMA) and artificial neural network based
recurrent neural networks (RNN), long short-term memory models (LSTM), and gated
recurrent units (GRU) [19–21]. By comparison of the performance of the prediction models
proposed in this study, we identify the most suitable methods for predicting the log-return
price. Unlike previous studies, here, a volatility feature is added to predict the log-return
price, and a more accurate log-return price prediction algorithm is proposed.

The paper is organized as follows: Section 2 describes the methods used in the study.
Section 3 describes the data collected and how it was processed. Section 4 describes the
experimental results. Section 5 describes the significance and limitations of the study.
Finally, Section 6 presents the conclusions.

2. Methods
2.1. Feature Selection
Gini Impurity

The Gini impurity approach is one of the methodologies used to calculate the impor-
tance of features [22,23]. To explain the importance of features, we introduce the concept of
impurity. When classifying values through specific features, the more heterogeneous the
classified values, the closer to zero the impurity is [24]. Conversely, the more homogeneous
the classified values, the closer the impurity is to one. The formula to calculate the Gini
impurity is shown in Equation (1) below.

G(S) = 1−
m

∑
k=1

p2
k (1)

In Equation (1), S is the total number of samples, and k is the number of classes. p
means the probability that data of a specific class is included among all the data.
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2.2. Traditional Time-Series Analysis Methods
2.2.1. ARCH

ARCH can be said to be a conditional heteroscedasticity model with a specific lag
within a time-series [25]. ARCH is suitable for analyzing data with high volatility, such
as financial time-series [26]. The volatility of general financial time-series data has the
characteristic that the variance is not uniform and the variance at a specific point in time is
large. This is difficult to solve with a general time-series methodology because it violates
the assumption that the variance of the error term will always be constant. Therefore, an
ARCH model can reflect the characteristics of financial time-series data which show such
heteroscedasticity. The ARCH model is mainly expressed as ARCH (q). The formula of the
ARCH (q) model is represented as Equation (2) below.

σ2
t = a0 +

q

∑
i=1

aiε
2
t−i (2)

Equation (2) estimates the variance of the error term and is dependent on the sum of
squares of errors up to time t− i. The ai value is a coefficient corresponding to each error;
when the q value of the ARCH model increases, the degree of the ai term also increases.

2.2.2. GARCH

The GARCH model is derived from the ARCH model [27]. In the ARCH model, as
the lag increases, it is difficult to express the structure, and a problem occurs in that the
significance of the estimate for the variance decreases. Therefore, the ARCH model was
supplemented by generalizing it in a form similar to that of the autoregressive moving
average (ARMA) model. When the GARCH model is used, it shows the same or better
explanatory power with far fewer parameters. For this reason, most studies use the GARCH
rather than the ARCH model [25]. The GARCH model is mainly expressed as GARCH (p, q).
The GARCH (p, q) model is represented by Equation (3).

σ2
t = a0 +

q

∑
i=1

aiε
2
t−i +

p

∑
j=1

β jσ
2
t−j (3)

Equation (3) includes Equation (2), and, in addition, is affected by conditional variance
up to time t− j. Therefore, the GARCH model is a more generalized model as it is affected
by the sum of squared errors and the conditional variance values at the previous time point.

2.2.3. ARIMA

The ARIMA model is a generalized ARMA model that is often used for time-series
analysis. It is a traditional time-series analysis model [28]. It is often used in time-series
analysis studies to predict future prices based on data up to the present time [28]. It is
mainly used for abnormal time-series data and is suitable for predicting future values [29].
ARIMA determines the d-order difference to convert a non-stationary time-series into a
stationary time-series and analyzes the difference data through an AR (p) model and an
MA (q) model. Therefore, ARIMA has three hyper parameters of p, d, q, and is mainly
expressed as ARIMA (p, d, q). The ARIMA (p, d, q) model is represented in Equation (4).

y′t = c0 +∅1y′t−1 + · · ·∅py′t−p + θ1εt−1 + · · ·+ θqεt−q + εt (4)

where y′t has the value after performing the difference on y, p is the order of the autoregres-
sive part, q is the order of the moving average part, and AR (p) and MA (q) are combined.
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2.3. Deep Neural Network
2.3.1. RNN

A recurrent neural network is a type of artificial neural network and is mainly used to
process time-series data [30]. It receives continuous data as input and can output data in
various forms depending on the purpose. In the case of existing artificial neural network
models, it is difficult to process data in sequence units, but a cyclic neural network can
process data of the corresponding type through the circulation unit. Therefore, it is used
for natural language processing, ordered data, and continuous time-series data [31,32].

RNN has a chain structure that repeatedly performs a single layer, as shown in Figure 1.
Weights are updated through real-time recurrent learning (RTRL) and back propagation
through time (BPTT). However, as the distance between nodes increases, there is a long-
term dependency in which learning is not performed well.
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Figure 1. Structure of RNN. RNN has a recurrent structure and consists of multiple recurrent nodes [25].

2.3.2. LSTM

In the case of RNNs, there is a problem that learning does not proceed further in
the process of processing long sequence data. This problem occurs when the gradient of
backpropagation is lost during the learning process and is termed the long-term depen-
dency [33]. When the gradient disappears in the learning process, the problem arises that
past information does not affect present information. Therefore, LSTM was introduced to
solve this long-term dependency problem [31].

As shown in Figure 2, LSTM stores state values in cells by adding input, forgetting,
and output gates for data calculation and cell states for long-term memory. Through
the values derived from cells and each gate, long-term memory and short-term memory
are distinguished and reflected in the model. This has greatly improved the long-term
dependency problem associated with RNNs.
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2.3.3. GRU

GRU is a time-series analysis algorithm introduced in 2014 [34]. Like LSTMs, it was
introduced to address the long-term dependency problem. It is structurally similar to
LSTM but has fewer parameters than LSTM. Unlike LSTM, GRU uses only a reset gate and
an update gate. In addition, the cell state and hidden state of the LSTM are combined to
form the hidden state of the GRU.

Figure 3 shows the GRU structure. Unlike LSTM, GRU has only one cell state, and the
number of gates is also small [34]. In terms of performance, there is not much difference
compared to that of LSTM, but there is an advantage in that there are fewer parameters
to be tuned. Recently, the model has been used together with LSTM in many time-series
analysis studies [35,36].
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less computation [34].

3. Data Analysis
3.1. Data Description
3.1.1. Data Collection

In the study, data were collected by selecting 11 cryptocurrencies with high market cap-
italization to predict the volatility of cryptocurrencies. Cryptocurrency data from Binance,
one of the cryptocurrency exchanges, were used. Data were collected using the API pro-
vided by Binance. Cryptocurrency data can be divided into minutes/hours/days/months
according to the collection interval, and the last transaction price at that time is called the
closing price. Analysis was conducted using the daily closing price data for cryptocurren-
cies provided by Binance [37].

Since the time of listing on the cryptocurrency exchange is different for each cryptocur-
rency, the data were collected based on the time when the complete data were collected.
In addition, data were collected over a long period to reflect the recent volatility in the
cryptocurrency market. Therefore, cryptocurrency data were collected from 31 May 2018
to 31 May 2022 (i.e., for about 4 years). The descriptive statistics for each data collection
cryptocurrency are shown in Table 1.

Table 1. Descriptive statistics for the 11 collected cryptocurrencies. The unit of cryptocurrency
transaction is USD. The mean, quartile, skewness, and kurtosis of each cryptocurrency are shown.

BTC ETH BNB XLM ADA XRP IOT QTU EOS LTC NEO

Count 1462 1462 1462 1462 1462 1462 1462 1462 1462 1462 1462
Mean 21,416.9 1148.6 147.1 0.2 0.5 0.5 0.6 5.2 4.0 98.1 22.7
Std. 18,576.8 1327.1 194.6 0.1 0.7 0.3 0.5 4.3 1.9 61.3 18.3
Min 3211.7 83.8 4.5 0.0 0.0 0.1 0.1 1.0 1.2 23.1 5.4
25% 7197.5 187.1 15.4 0.1 0.1 0.3 0.3 2.1 2.6 51.7 10.2
50% 10,253.8 347.6 25.3 0.1 0.1 0.4 0.4 3.2 3.5 75.8 16.8
75% 38,670.0 2159.4 321.9 0.3 1.1 0.6 0.9 7.0 4.9 133.8 28.8
Max 67,525.8 4808.0 676.2 0.7 3.0 1.8 2.5 27.4 14.7 387.8 122.8

Skewness. 0.82 1.07 1.07 1.16 1.38 1.38 1.27 1.61 1.96 1.31 2.17
Kurtosis. −0.87 −0.31 −0.41 1.13 0.88 1.42 0.88 2.53 5.69 1.69 6.15

In Table 1, the price difference between cryptocurrencies is very conspicuous. The
cryptocurrency with the highest average price is Bitcoin, which had an average price of
$21,416.9. On the other hand, Table 1 shows that the cryptocurrency with the lowest average
price was XLM, which traded at an average of $0.2. Therefore, in the case of the collected
cryptocurrency data, the unit of the transaction amount between cryptocurrencies differed
too much, so pre-processing was performed. As shown in Table 1, the major cryptocur-
rencies selected, such as Bitcoin, Ethereum, and Binance coin, had very large variance. A
graph of changes in the transaction amount of the selected major cryptocurrencies is shown
in Figure 4.



Axioms 2022, 11, 448 6 of 17

Axioms 2022, 11, x FOR PEER REVIEW 6 of 18 
 

50% 
10,253.

8 
347.6 25.3 0.1 0.1 0.4 0.4 3.2 3.5 75.8 16.8 

75% 
38,670.

0 
2159.4 321.9 0.3 1.1 0.6 0.9 7.0 4.9 133.8 28.8 

Max 
67,525.

8 
4808.0 676.2 0.7 3.0 1.8 2.5 27.4 14.7 387.8 122.8 

Skew-
ness. 

0.82 1.07 1.07 1.16 1.38 1.38 1.27 1.61 1.96 1.31 2.17 

Kurto-
sis. 

−0.87 −0.31 −0.41 1.13 0.88 1.42 0.88 2.53 5.69 1.69 6.15 

In Table 1, the price difference between cryptocurrencies is very conspicuous. The 
cryptocurrency with the highest average price is Bitcoin, which had an average price of 
$21,416.9. On the other hand, Table 1 shows that the cryptocurrency with the lowest av-
erage price was XLM, which traded at an average of $0.2. Therefore, in the case of the 
collected cryptocurrency data, the unit of the transaction amount between cryptocurren-
cies differed too much, so pre-processing was performed. As shown in Table 1, the major 
cryptocurrencies selected, such as Bitcoin, Ethereum, and Binance coin, had very large 
variance. A graph of changes in the transaction amount of the selected major cryptocur-
rencies is shown in Figure 4. 

The cryptocurrency data used consisted of data from 1 June 2018 to 31 May 2022, 
when preprocessing was performed, and had a total of 1462 time points. The data were 
divided into three and modeling was carried out. The first training data used were from 
1 June 2018 to 31 December 2021. After that, data from 1 January 2022 to 31 March 2022 
were used as verification data. Finally, data from 1 April 2022 to 31 May 2022 constituted 
test data. The test data had a total of 61 time points.  

 
Figure 4. Graph of change in transaction amount of selected major cryptocurrencies (Bitcoin, 
Ethereum, Binance Coin). From 31 May 2018 to 31 May 2022, there are 1462 timepoints. 
Figure 4. Graph of change in transaction amount of selected major cryptocurrencies (Bitcoin,
Ethereum, Binance Coin). From 31 May 2018 to 31 May 2022, there are 1462 timepoints.

The cryptocurrency data used consisted of data from 1 June 2018 to 31 May 2022, when
preprocessing was performed, and had a total of 1462 time points. The data were divided
into three and modeling was carried out. The first training data used were from 1 June 2018
to 31 December 2021. After that, data from 1 January 2022 to 31 March 2022 were used as
verification data. Finally, data from 1 April 2022 to 31 May 2022 constituted test data. The
test data had a total of 61 time points.

3.1.2. Preprocessing

Log transformation was performed to calculate the volatility of the daily cryptocur-
rency closing price data. With log transformation, it is possible to calculate the return and
to easily understand the volatility. The log transformation applied is shown in Equation (5).

Log return = log
(

pt

pt−1

)
∗ 100 (5)

Log transformation calculates the difference after taking the logarithm of the current
cryptocurrency price and the immediately preceding cryptocurrency price. pt is the price
of the cryptocurrency at the present time, and pt−1 indicates the price of the cryptocurrency
at the previous time.

There is a large difference in the unit of volatility as well as the transaction amount
for each cryptocurrency. To solve this problem, min-max normalization was applied
prior to analysis. Min-max normalization is a normalization technique that converts the
largest value to 1 and the smallest value to 0. Min-max normalization was applied to
normalize the largest value for all cryptocurrency volatility to 1 and the smallest value to 0.
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) TEST was performed to check the stationarity
of the preprocessed time series data. The results performed are shown in Table A1 of
Appendix A. A volatility graph of the major cryptocurrencies preprocessed is shown
in Figure 5.
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In the study, ARCH and GARCH, which are representative models, were used to pre-
dict volatility. For each cryptocurrency, the analysis was conducted through the ARCH (1)
model and the GARCH (1, 1) model. Table 2 shows the results of checking the ARCH (1)
model and the GARCH (1, 1) model used for the cryptocurrencies selected. As shown in
Table 2, most of the coefficients of variability in each model were significant.

Table 2. Cryptocurrency volatility prediction results by ARCH (1) and GARCH (1, 1). Statistics on
the ARCH (1) and GARCH (1) coefficients of each cryptocurrency are shown.

Models
Mu Omega Alpha Beta

Coef. p Coef. p Coef. p Coef. p

XLM
ARCH (1) 0.45 0.000 *** 0.00 0.000 *** 0.30 0.000 *** - -

GARCH (1, 1) 0.45 0.000 *** 0.00 0.000 *** 0.24 0.000 *** 0.63 0.000 ***

ADA
ARCH (1) 0.65 0.000 *** 0.00 0.000 *** 0.12 0.000 *** - -

GARCH (1, 1) 0.65 0.000 *** 0.00 0.000 *** 0.11 0.000 *** 0.80 0.000 ***

XRP
ARCH (1) 0.54 0.000 *** 0.00 0.000 *** 0.70 0.000 *** - -

GARCH (1, 1) 0.54 0.000 *** 0.00 0.04 0.27 0.000 *** 0.64 0.000 ***

BNB
ARCH (1) 0.52 0.000 *** 0.00 0.000 *** 0.20 0.000 *** - -

GARCH (1, 1) 0.52 0.000 *** 0.00 0.000 *** 0.15 0.000 *** 0.82 0.000 ***

IOT
ARCH (1) 0.65 0.000 *** 0.00 0.000 *** 0.09 0.124 - -

GARCH (1, 1) 0.65 0.000 *** 0.00 0.103 0.11 0.001 ** 0.86 0.000 ***

QTU
ARCH (1) 0.61 0.000 *** 0.00 0.000 *** 0.19 0.02 - -

GARCH (1, 1) 0.61 0.000 *** 0.00 0.311 0.09 0.179 0.85 0.000 ***

EOS
ARCH (1) 0.55 0.000 *** 0.00 0.000 *** 0.16 0.02 - -

GARCH (1, 1) 0.55 0.000 *** 0.00 0.000 *** 0.07 0.000 *** 0.88 0.000 ***

LTC
ARCH (1) 0.65 0.000*** 0.00 0.000 *** 0.10 0.07 - -

GARCH (1, 1) 0.65 0.000 *** 0.00 0.000 *** 0.07 0.001 ** 0.87 0.000 ***
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Table 2. Cont.

Models
Mu Omega Alpha Beta

Coef. p Coef. p Coef. p Coef. p

ETH
ARCH (1) 0.72 0.000 *** 0.00 0.000 *** 0.04 0.000 *** - -

GARCH (1, 1) 0.72 0.000 *** 0.00 0.000 *** 0.08 0.04 0.86 0.000 ***

NEO
ARCH (1) 0.66 0.000 *** 0.00 0.000 *** 0.13 0.000 *** - -

GARCH (1, 1) 0.66 0.000 *** 0.554 00.21 0.11 0.03 0.80 0.000 ***

BTC
ARCH (1) 0.74 0.000 *** 0.00 0.000 *** 0.03 0.198 - -

GARCH (1, 1) 0.74 0.000 *** 0.00 0.000 *** 0.07 0.07 0.85 0.000 ***

A new dataset was created by adding the features extracted through the ARCH (1)
and GARCH (1, 1) models to the existing dataset. Therefore, the final data consisted of 11
cryptocurrency closing price features, 11 cryptocurrency-specific features derived through
the ARCH (1) model, and 11 cryptocurrency-specific features derived through the GARCH
(1, 1) model. Therefore, it consisted of a total of 33 features. The log-return price prediction
was performed by extracting major features from among the newly defined 33 features.
The 33 features utilized for analysis are detailed in Table 3.

Table 3. Description of features. Describes the features used in the analysis and indicates whether
they are independent or dependent.

Features Description Dependent Features

Daily closing prices of
cryptocurrencies converted to

log-returns

These are the features that
convert the daily closing price
of the cryptocurrency used in
this analysis into log-return

price. It consists of a total of 11
and is named ‘cryptocurrency

Close’. Among them, 3 features
are used as dependent features,

and the rest are used as
independent features.

BTC_Close
ETH_Close
BNB_Close

Daily volatility of
cryptocurrencies derived with

ARCH (1)

Features converted from ARCH
(1) volatility analysis for

cryptocurrency used in this
analysis. It consists of a total of
11 and is named ‘cryptocurrency
ARCH’. All features are used as

independent features.

-

Daily volatility of
cryptocurrencies derived with

GARCH (1, 1)

Features converted from
GARCH (1, 1) volatility analysis
for cryptocurrency used in this
analysis. It consists of a total of
11 and is named ‘cryptocurrency
GARCH’. All features are used

as independent features.

-

3.2. Feature Selection

The importance of each independent feature on the dependent feature was calculated
using the Gini impurity-based feature selection method. The dependent feature was the
closing price of the selected major cryptocurrency. Analysis was performed by selecting
important features that greatly affected the closing price of each cryptocurrency. Important
features that affected the closing price of each cryptocurrency are shown in Figure 6 below.
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Figure 6 shows the results of measuring the feature importance of selected major
cryptocurrencies based on the Gini impurity. Figure 6a shows the importance of features
related to Bitcoin. As a result of measuring the importance of features, three features were
found to have the greatest influence. The features that had the most influence on the closing
price of Bitcoin were BTC-ARCH, which is the result obtained by applying the ARCH (1)
model to Bitcoin, ETH-Close, which is a log-return price feature based on the closing price
of Ethereum, and LTC- Close, which is a log-return price feature based on the closing price
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of Litecoin. These three features were found to be much more important than the other
features. The log-return of the Bitcoin closing price in the future was predicted using the
selected important features and the log-return closing price feature.

Figure 6b shows the importance of features related to Ethereum. As a result of
measuring important features related to Ethereum, three features were found to have the
greatest influence. The features that had the most influence on the closing price of Ethereum
were ETH-ARCH, which is the result value derived by applying the ARCH (1) model to
Ethereum, LTC-Close, which is a log-return price feature based on the closing price of
Litecoin, and Neo-Close, which is a log-return price feature based on the closing price of
Neocoin. Using the three selected characteristics and the log-return price of Ethereum, we
predicted the future log-return price of Ethereum.

Figure 6c shows the importance of features related to Binance Coin. As a result of
measuring the main features related to Binance Coin, one feature with relatively large
influence and three features with relatively small influence were identified. The BNB-
ARCH feature, which is the result obtained by applying the ARCH (1) model to Binance
Coin, was of highest importance, and the closing price-based log-return price features of
Ethereum, Neocoin, and Adacoin were found to be influential. We predicted the future
log-return price of the Binance Coin using the three most influential features and the
log-return price.

4. Results

The MAE, MSE, and RMSE values were used to evaluate the performance of the
log-return price prediction model. MAE is the average value obtained by converting the
difference between the actual value and the predicted value into an absolute value. Since
MAE takes an absolute value for the error, the magnitude of the error is reflected as it is.
MSE is the average of the squared difference between the actual value and the predicted
value. The MSE increases exponentially as the error increases. Therefore, it is an evaluation
index that can respond sensitively to outliers. RMSE is a performance evaluation index
using the root for MSE; it is easy to interpret because it is converted back into a unit similar
to the actual value.

The log-return price of each cryptocurrency was predicted using ARIMA, a traditional
time-series prediction technique, and deep learning techniques. Since Bitcoin, Ethereum,
and Binance Coin, which were the analysis targets of this paper, do not satisfy the station-
arity requirement, a difference is required to apply ARIMA. So, we applied the hyperpa-
rameter d = 1 for the difference. Next, we adjusted the hyperparameter coefficients via the
auto-correlative function (ACF). Figure 7 shows the ACF for the cryptocurrencies.
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Figure 7. ACF for cryptocurrencies. All three figures appear similar. In this study, 2-time leg units
are considered as the main factor.

Considering AFC, 2-time legs were judged to be suitable, and this was applied to the
ARIMA model. Therefore, the hyperparameter for p was set to 2, and the ARIMA model
of this study was set to p = 2, d = 1, q = 0. As a result of constructing the ARIMA model
for three cryptocurrencies, all coefficient values were significant (p < 0.001). Therefore, we
applied the ARIMA model with the same hyperparameters to the three cryptocurrencies.
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For the artificial neural network-based time-series method, various types of architec-
tures were built based on previous studies [35]. There were a total of six built architectures.
The built models are shown in Table 4 below.

Table 4. Detailed architecture for each model. It consists of a time-series neural network layer and a
dense layer.

Model Composition of Layers

Architecture 1 RNN (32)/LSTM (32)/GRU (32) + dense (64-32-16-8-1)
Architecture 2 RNN (32)/LSTM (32)/GRU (32) + dense (32-16-8-1)
Architecture 3 RNN (32)/LSTM (32)/GRU (32) + dense (16-8-4-1)
Architecture 4 RNN (32)/LSTM (32)/GRU (32) + dense (16-8-1)
Architecture 5 RNN (32)/LSTM (32)/GRU (32) + dense (64-1)
Architecture 6 RNN (32)/LSTM (32)/GRU (32) + dense (16-1)

Activation Linear
Loss Mean squared error

Optimizer Adam

The dense layer was adjusted based on a time-series neural network layer (RNN,
LSTM, GRU) consisting of 32 nodes, and the results were compared. Table 4 presents the
architecture of these models. Architecture 1 is the most complex architecture in this study.
This architecture derives results through dense multiple layers after the time-series neural
network layer and involves the largest amount of computation. Architecture 6 is a model
that uses a time-series neural network layer and a simple dense layer and has the lowest
computational load. All given architectures were set under the same conditions. Each
neural network layer was activated as ‘Linear’. We also computed the loss function using
the Adam optimizer. The calculated loss function is the mean squared error [38]. We used
the Python language and KERAS library to build an artificial neural network model.

The model uses the data seven days before the prediction time to predict one day at the
prediction time. In many previous studies related to cryptocurrency prediction, one week is
set as a term for short-term prediction [39,40]. In addition, since it can reflect the flow of the
past week, we set the time interval for forecasting to seven days. To predict the value of the
next time point, the model learns by reflecting the value predicted up to the current time point.
In other words, the model iteratively utilizes the values predicted up to the current point
in time to create a new learning model for predicting the next point in time. The activation
function of the training model commonly uses a linear function. The batch size was set to 1
and the epoch was set to 100. Tables 5–7 shows the results of predicting the log-return price of
cryptocurrencies in the validation dataset based on the selected main features.

Table 5. Log-return price prediction result of Bitcoin validation data by ARIMA and artificial neural
network-based model.

Methods MAE MSE RMSE

ARIMA (2, 1, 0) 0.0422 0.0028 0.0532

Architecture 1
RNN 0.0377 0.0024 0.0492
LSTM 0.0383 0.0025 0.0502
GRU 0.0378 0.0025 0.0504

Architecture 2
RNN 0.0376 0.0024 0.0491
LSTM 0.0381 0.0024 0.0497
GRU 0.0391 0.0026 0.0509

Architecture 3
RNN 0.0382 0.0025 0.0497
LSTM 0.0383 0.0025 0.0501
GRU 0.0382 0.0025 0.0500

Architecture 4
RNN 0.0376 0.0024 0.0491
LSTM 0.0382 0.0025 0.0496
GRU 0.0377 0.0025 0.0497

Architecture 5
RNN 0.0374 0.0024 0.0491
LSTM 0.0381 0.0024 0.0494
GRU 0.0381 0.0025 0.0496

Architecture 6
RNN 0.0377 0.0025 0.0495
LSTM 0.0379 0.0025 0.0498
GRU 0.0384 0.0024 0.0492
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Table 6. Log-return price prediction result of Ethereum validation data by ARIMA and artificial
neural network-based model.

Methods MAE MSE RMSE

ARIMA (2, 1, 0) 0.0442 0.0033 0.0575

Architecture 1
RNN 0.0400 0.0024 0.0486
LSTM 0.0400 0.0024 0.0488
GRU 0.0399 0.0024 0.0488

Architecture 2
RNN 0.0402 0.0024 0.0490
LSTM 0.0420 0.0027 0.0521
GRU 0.0400 0.0033 0.0575

Architecture 3
RNN 0.0401 0.0024 0.0489
LSTM 0.0415 0.0026 0.0506
GRU 0.0418 0.0026 0.0506

Architecture 4
RNN 0.0397 0.0024 0.0486
LSTM 0.0417 0.0025 0.0497
GRU 0.0411 0.0025 0.0497

Architecture 5
RNN 0.0396 0.0024 0.0487
LSTM 0.0396 0.0024 0.0485
GRU 0.0407 0.0025 0.0495

Architecture 6
RNN 0.0400 0.0024 0.0490
LSTM 0.0413 0.0025 0.0500
GRU 0.0393 0.0026 0.0486

Table 7. Log-return price prediction result of Binance Coin validation data by ARIMA and artificial
neural network-based model.

Methods MAE MSE RMSE

ARIMA (2, 1, 0) 0.0293 0.0016 0.0395

Architecture 1
RNN 0.0252 0.0013 0.0357
LSTM 0.0262 0.0014 0.0369
GRU 0.0264 0.0013 0.0365

Architecture 2
RNN 0.0252 0.0013 0.0353
LSTM 0.0259 0.0012 0.0352
GRU 0.0254 0.0012 0.0352

Architecture 3
RNN 0.0251 0.0012 0.0353
LSTM 0.0261 0.0013 0.0363
GRU 0.0252 0.0013 0.0354

Architecture 4
RNN 0.0254 0.0013 0.0354
LSTM 0.0266 0.0013 0.0361
GRU 0.0257 0.0013 0.0363

Architecture 5
RNN 0.0251 0.0013 0.0355
LSTM 0.0261 0.0013 0.0361
GRU 0.0257 0.0013 0.0357

Architecture 6
RNN 0.0251 0.0013 0.0355
LSTM 0.0261 0.0013 0.0362
GRU 0.0257 0.0013 0.0357

Table 5 shows the model’s prediction of the log-return price of Bitcoin. The RNN with
Architecture 5 showed the smallest error between the actual value and the predicted value.
The ARIMA (2, 1, 0) model, which is a traditional time-series prediction method, showed
an error of 0.0422 based on MAE. This represents a relatively large error when compared to
the artificial neural network. Therefore, as a model for predicting the log-return price of
Bitcoin, the artificial neural network model is more suitable than the ARIMA model.

When comparing the artificial neural network techniques, RNN and GRU were more
predictive than LSTM. LSTM tended to produce a large error compared to other artificial
neural network methods. On the other hand, GRU had the smallest error among all the
models, and it was confirmed through RMSE that the error for outliers was also low. The
error rates of the configured architectures were mostly similar. However, Architecture 6 was
the most efficient because the number of parameters used in the analysis was significantly
smaller. Therefore, we utilized Architecture 6 to predict the Bitcoin log-return price for our
test data.



Axioms 2022, 11, 448 13 of 17

Table 6 shows the prediction results of the log-return price of Ethereum. As a result
of Ethereum’s log-return price prediction, the GRU of Architecture 6 showed the smallest
error between the actual value and the predicted value. The ARIMA (2, 1, 0) model, which
is a traditional time-series prediction method, produced an error of 0.0442 based on MAE,
a relatively large error compared to the artificial neural network. Therefore, as a model for
predicting the log-return price of Ethereum, the artificial neural network model is more
suitable than the traditional time-series prediction model. Furthermore, MSE and RMSE
were larger than for the artificial neural network techniques.

When comparing the results for the artificial neural network techniques, the perfor-
mance of some architectures was higher in LSTM; however, in general, RNN showed higher
predictive power than GRU and LSTM. As with the Bitcoin log-return prediction model,
LSTMs generally perform poorly. Among the various performance indicators presented in
Table 6, there was an outlier effect when predicting the Ethereum log-return price through
the RMSE value. Therefore, RNNs that suppress the influence of outliers showed good re-
sults. Similar to the Bitcoin log-return prediction results, all artificial neural network-based
log-return prediction models presented in Table 6 showed lower error rates compared to
ARIMA. In addition, Architecture 6 showed good performance. Therefore, we selected
Architecture 6 as the best way to predict the log-return price of Ethereum.

Table 7 shows the log-return price predictions for Binance Coin for the model. The
Binance Coin model prediction results were superior to those of Bitcoin and Ethereum. The
ARIMA (2, 1, 0) model produced an error of 0.0293 based on the MAE, and as for the other
experimental results, the error was relatively large compared to the artificial neural network.
Therefore, as a model for predicting the log-return price of Binance Coin, the artificial neural
network model is more suitable than ARIMA. In addition, when comparing the artificial
neural network techniques, RNN produced less error than LSTM and GRU. This is the
same result as for the Ethereum log-return price prediction model. When comparing the
performance between architectures, there was no significant difference. This was a similar
result to that obtained when predicting the log-return price of Bitcoin, and Architecture 6
was selected based on its efficiency.

The model-specific prediction results for the test data are shown in Table 8. The
test data were used to directly compare the Architecture 6 structure and ARIMA, which
is the architecture selected based on the experimental results of the validation dataset.
Architecture 6 consists of a combination of a time-series neural network layer and a simply
structured dense layer. Structurally, this architecture entails a small amount of computation
and exhibits a relatively low error rate. As a result of using the ARIMA and the Architecture
6 structure, the artificial neural network performed well in all evaluations. There were no
significant differences from the results of the validation dataset shown in Tables 5–7. This
also avoids overfitting the model. Therefore, the artificial neural network model provides
excellent predictions of the log-return price of cryptocurrencies.

Table 8. Log-return price prediction result of selected cryptocurrency test data by ARIMA and artificial
neural network-based model. The artificial neural network takes the structure of Architecture 6.

Cryptocurrency/Methods MAE MSE RMSE

Bitcoin

ARIMA 0.0422 0.0028 0.0532
RNN 0.0378 0.0026 0.0506
LSTM 0.0385 0.0026 0.0512
GRU 0.0379 0.0026 0.0507

Ethereum

ARIMA 0.0464 0.0034 0.0586
RNN 0.0423 0.0027 0.0524
LSTM 0.0421 0.0028 0.0527
GRU 0.0417 0.0026 0.0510

Binance coin

ARIMA 0.0340 0.0020 0.0450
RNN 0.0289 0.0016 0.0401
LSTM 0.0290 0.0016 0.0406
GRU 0.0297 0.0016 0.0406
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5. Discussion

The cryptocurrency market is growing very rapidly with expectations for high returns.
However, since it is a highly volatile market, risk management is essential. Therefore, it
is necessary to predict the volatility of the cryptocurrency market, which is associated
with a high investment risk, to help investors manage their portfolios or to better prepare
for future risks. Therefore, in this study, a more accurate log-return price prediction was
attempted by adding a volatility feature to the existing log-return price prediction model.
These suggestions may be helpful to some investors.

In the study, we analyzed data for the top 11 cryptocurrencies that are traded a great
deal to predict the log-return price of cryptocurrencies. It is very important to analyze
the transaction amount of each cryptocurrency because it is not independently derived
but is influenced by the transaction quantity of other cryptocurrencies. For example,
when the price of Bitcoin falls sharply, the price of other cryptocurrencies also falls. An
attempt was made to increase the predictive power of the model by extending the existing
research and using the results of the ARCH and GARCH models for variability prediction
as additional features [16]. Using these methods, a total of 33 features were constructed.
Based on the newly constructed 33 features, important features affecting the log-return
price of each cryptocurrency were selected using the Gini impurity technique. Feature
selection is very important because it can greatly reduce the complexity of the model in
the process of deriving the model’s predicted values. Therefore, unlike previous studies, a
predictive model was constructed by selecting major features that have a large impact on
each cryptocurrency without using all the features. As a result of verifying the error rate
using several artificial neural network-based models, the artificial neural network-based
time-series prediction model was found to be superior to the ARIMA model. The log-return
price of the three major cryptocurrencies showed that the error rate of the artificial neural
network method was consistently lower than that of the ARIMA method.

Hundreds of cryptocurrencies are traded on Binance, the world’s largest cryptocur-
rency exchange. Therefore, the interrelationships between cryptocurrencies are becoming
more complex every day. However, only 11 cryptocurrencies with high trading volume
were selected and analyzed. Therefore, a limitation of the study is that it did not reflect
all the interrelationships between cryptocurrencies. In addition, since the volatility of
cryptocurrency is very great, there is a limit to the ability to accurately select functions
related to cryptocurrencies. The investment value of cryptocurrencies is determined by
many investors, and cryptocurrencies are affected by the stock market, bonds, and ex-
change rates; however, in this study, these features were not reflected in the prediction
model. In future research, it will be important to use a sufficient quantity of cryptocurrency
data to enable generalization of the correlations between cryptocurrencies and to present
a log-return price prediction model that more accurately reflects volatility by also using
macroeconomic features.

6. Conclusions

A traditional time-series prediction method and artificial neural network-based time-
series prediction methods were presented using various cryptocurrency data, and the
volatility of major cryptocurrencies were predicted using the models. The log-return price
of cryptocurrency and ARCH- and GARCH-based volatility data were combined and
processed into new data for future log-return prediction. In addition, by using the Gini
impurity, major features affecting the log-return price of representative cryptocurrencies
(i.e., Bitcoin, Ethereum, Binance Coin) were selected. As a result of the selection process,
three important features were selected for each cryptocurrency. Using this feature selection
method, the amount of calculation required can be greatly reduced, and, because only
the main features are used for prediction, the proposed method represents a significant
contribution to the prediction of the log-return price of cryptocurrencies.

The analysis was conducted using three important features and the log-return price
data of cryptocurrencies. Based on the selected features, a traditional time-series prediction
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ARIMA model and artificial-neural-network-based RNN, LSTM, and GRU models were
constructed. Since the prediction result of the artificial neural network-based model varies
depending on the layer configuration and hyperparameter setting, various architectures
were constructed by reference to previous studies [38]. When comparing various types
of artificial neural network architectures, it was confirmed that a relatively simple model
architecture was suitable. Although different cryptocurrencies have different architectures
for optimal performance, the results confirmed that performance is degraded when the
neural network goes too deep.

The error rate of almost all the artificial neural network architectures presented was
lower than that of the existing time-series model. As a result of predicting the log-return
price of each cryptocurrency using an artificial neural network model built in various
architectural forms, the prediction result of the artificial neural network-based time-series
prediction model showed less error than the ARIMA model.

It is widely accepted that cryptocurrencies are affected by other macroeconomic
features. Therefore, it is anticipated that volatility can be predicted more accurately if
research is conducted that includes features of the stock market, bonds, and exchange
rates. If additional cryptocurrency data and volatility features are utilized, it will be
possible to present a more accurate and generalized prediction model. In addition, many
time-series prediction methodologies, other than the analysis methodologies used in this
study, are being investigated. In future research, we will develop the approach using new
macroeconomic features and various cryptocurrency features.
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Appendix A

We discuss the normality test value of the log-return price of the selected cryptocur-
rency. For sanity testing, KPSS was used. The null hypothesis of KPSS is that the time-series
is stable, and the alternative hypothesis is that the time-series is not stable.

Table A1. Result of KPSS Test.

Cryptocurrency Test Statistic p Value

Bitcoin 0.145652 0.1000
Ethereum 0.37252 0.0890

Binance coin 0.193457 0.0100

We discuss the normality test value of the log-return price of the selected cryptocur-
rency. For sanity testing, KPSS was used. The null hypothesis of KPSS is that the time-series
is stable, and the alternative hypothesis is that the time-series is not stable. As a result of
running the tests, we cannot reject the null hypothesis with all p-values > 0.05. That is, all
the time-series data are stable.

https://sites.google.com/donga.ac.kr/ssh/
https://sites.google.com/donga.ac.kr/ssh/
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