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Abstract: This paper develops a fractional-order model of COVID-19 with vaccination. The model
is well designed by including both the efficacy and inefficacy of vaccinations in humans. Besides
calculating the reproduction number, equilibrium points and the feasibility region are also determined.
Stability analysis for the proposed model around equilibrium points is discussed. Fixed-point theory
is employed to identify the singularity of the solution. Adomian decomposition and Laplace integral
transformation are combined to obtain the solution. We present the solutions graphically to analyze
the contributions of the disease dynamics based on different values of the fractional order. This study
seeks an in-depth understanding of COVID-19 transmission to improve health outcomes.
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1. Introduction

The World Health Organization issued a public health emergency of international
concern on 30 January 2020 and a pandemic alert in March 2020 in response to the rapid
and extensive spread of Coronavirus Disease 2019. Initially, the disease turned out to be
an epidemic in mainland China first hitting Wuhan, in the province of Hubei [1]. India
had the second-highest confirmed cases in the world. The direct transmission of SARS-
CoV-2 was conclusively proven by clinical evidence in January 2020 [2]. Four consecutive
lockdowns came into effect in India as a preventive measure. In the absence of vaccines,
social distancing serves as the best control measure against COVID-19 [3].

As a part of the vaccination program, India has established a NEGVAC (National
Expert Group on Vaccine Administration for COVID-19) committee to develop guidelines
for the COVID-19 vaccine administration [4]. There have been vaccination campaigns
conducted around the world to combat COVID-19. Several types of vaccines are available
for COVID-19 [5]. Furthermore, India has exported 35,793,000 doses of vaccine internation-
ally (commercial exports). Innovative technologies are tested during the development of
vaccines to determine if they work. Vaccine development, which is dependent on public
approval, determines the effectiveness of the vaccination program based on perception
and beliefs surrounding the vaccine [6]. In addition, a significant portion of the popula-
tion remains uncertain about the vaccine. The perception of the vaccine among people
may change with the advent of awareness programs and the improvement of vaccine
outcomes [7].

Fractional-order differential equations are the most effective tool for studying bio-
logical and engineering systems. Several fractional-order derivatives comprise numerical
models of physical and biological systems [8,9]. There are numerous motivations to employ
fractional order, but the main focus is on dealing with the memory dynamics evident in
many biological systems. Differential equations derived using the fractional derivative
have several applications to analyze various infectious disease transmission dynamics such
as HIV/AIDS, TB, and others [10].
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The results in [11] indicate that even in the absence of social distancing, only vaccina-
tion to people can significantly reduce the overall infected population. Other approaches
related to vaccination strategies have been considered, for example, in [12]. Some fractional
models have been considered [13] to derive the optimal control of COVID-19 transmission.
In [14], the authors proposed the fraction model and dynamics of COVID-19 and numerical
simulations are performed using Laguerre collocation technique. In [15], a generalized
fractional-order SEIR model is proposed. Specifically, the paper shows that, according to
real data from the USA, the considered fractional model has a good prediction ability for
the epidemic trend in the next two weeks. In [16], numerical simulations of fractional-
order modeling of COVID-19 in the case of Wuhan (China) were carried out. In particular,
the Adams–Bashforth numerical scheme was used in simulations of the Caputo–Fabrizio
fractional-order derivative.

The aim of this paper is to develop the fractional-order model to describe the dynamics
of COVID-19 using the Caputo–Fabrizio fractional derivative. The main contribution of
this paper is to prove the existence and uniqueness of the solution using fixed-point theory.
In order to reduce infection in a community, this paper examines the dynamic behavior of
the system with vaccination. A summary of the paper’s content is as follows. We formulate
an SVEITR model for COVID-19 in Section 2. We calculate equilibrium points and the
reproduction number in Section 3. Section 4 discusses the existence and uniqueness of the
fractional system solution. The Adomian decomposition method with Laplace integral
transform is employed to obtain the analytical solution whose graphical results appear in
Sections 5 and 6.

2. Mathematical Model

Let us consider the mathematical model for understanding the dynamics of COVID-19
spread with vaccination. The model is formulated based on assumptions involving six
compartments: S(t) and V(t) represent the people who are likely to contract the infection
and are vaccinated, E(t) is the exposed population, I(t) is the infected population, T(t) is
individuals who are receiving treatment after infection, R(t) is the recovered population.
The total population is N(t) = S(t) + V(t) + E(t) + I(t) + T(t) + R(t). It is formulated as:

dS
dt

= α− β1SE− β2SI − (µ + ψ)S + ςT

dV
dt

= ψS− (ι + µ)V + vR

dE
dt

= β1SE + β2SI − (σ + µ)E (1)

dI
dt

= σE− (η + d + µ)I

dT
dt

= η I − (γ + µ + ς)T

dR
dt

= γT − (µ + v)R

where α: the recruitment rate of individuals susceptible to the disease, β1: the rate at which
infectious agents transfer from exposed individuals to susceptible humans,
β2: the rate at which infection is transferred from infected persons to susceptible persons
via objects or surfaces used by them,
µ: natural death rate,
ς: the removal rate of the treatment population to susceptible population,
σ: the rate of the exposed population getting infected,
η: the rate of individuals receiving treatment after knowing symptoms,
d: disease-induced mortality rate,
γ: recovery rate,
v: the removal rate of the treatment population to vaccinated population,
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ψ: vaccination rate,
ι: rate of vaccine inefficacy in people.

With S(0) = S0, V(0) = V0, E(0) = E0, I(0) = I0, T(0) = T0, R(0) = R0 as the
initial conditions.

In the model, we apply the definitions of fractional derivatives [17]. The fractional
derivatives and integrals are incorporated, and the time derivative takes the form of a
Caputo–Fabrizio (CF) fractional derivative [18]. For g ∈ H1(c, d) and d > c, the Ca-
puto–Fabrizio derivative of fractional order n ∈ (0, 1) for g is given by

CFDng(t) =
M(n)
(1− n)

∫ t

c
exp
(
−n

1− n
(t− v)

)
g′(v)dv

where t ≥ 0, M(n) is a normalization function that depends on n and M(0) = M(1) = 1.
Hence, we introduce an auxiliary parameter called λ for n ∈ (0, 1) [19–21]. The transmission
model is as follows:

1
λn−1

CFDn
t S(t) = α− β1S(t)E(t)− β2S(t)I(t)− (µ + ψ)S(t) + ςT(t)

1
λn−1

CFDn
t V(t) = ψS(t)− (ι + µ)V(t)−vR(t)

1
λn−1

CFDn
t E(t) = β1S(t)E(t) + β2S(t)I(t)− (σ + µ)E(t) (2)

1
λn−1

CFDn
t I(t) = σE(t)− (η + d + µ)I(t)

1
λn−1

CFDn
t T(t) = η I(t)− (γ + µ + ς)T(t)

1
λn−1

CFDn
t R(t) = γT(t)− (µ + v)R(t)

with the same initial conditions.

3. Model Analysis

Theorem 1. The closed set Ω is positively invariant under fractional system (2).

Proof. From (2), we obtain

1
λn−1

CDn
t N(t) = α− µN(t)

After some calculations, we have

N(t) ≤ α

µ
−
(

α− µN0

µ

)
e−µt

Thus, N(0) ≤ α
µ then t > 0, N(t) ≤ α

µ . Therefore, the closed set Ω is positively
invariant.

3.1. Equilibria Points

By equating each relationship in the fractional system with zero, this section deter-
mines the equilibrium points of the fractional system. The disease-free equilibrium exists
when there is no disease; it is denoted by E0, where E0 =

(
α

µ+ψ , αψ
µ(µ+ψ)

, 0, 0, 0, 0
)

.
The endemic equilibrium is denoted by E∗, E∗ = (S∗, V∗, E∗, I∗, T∗, R∗), where
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T∗ =
η I∗

γ + µ + ς

R∗ =
γη I∗

(µ + v)(γ + µ + ς)

E∗ =
(η + d + µ)I∗

σ

S∗ =
α

µ + ψ
+ AI∗

V∗ =
αψ(γ + µ + ς) + [ψA(µ + v)(γ + µ + ς) + vγη]I∗

(ι + µ)(µ + v)(γ + µ + ς)

I∗ =
(σ + µ)(η + d + µ)(µ + ψ)− β1α(η + d + µ)− β2ασ

β1 A(η + d + µ) + β2 Aσ

where A = ςησ−(σ+µ)(η+d+µ)(γ+µ+ς)
(γ+µ+ς)(µ+ψ)σ

.

3.2. Basic Reproduction Number

By considering the fractional system (2), the R0 results from the subsequent matrices.

F =
1

λn−1

 0 β1α
µ+ψ

β2α
µ+ψ

0 0 0
0 0 0



V =
1

λn−1

 σ + µ 0 0
−σ η + d + µ 0
0 −η γ + µ + ς


The reproduction number [22] for the system (2) is

R0 =
ασ[β1(γ + µ + ς) + β2η]

(µ + ψ)(σ + µ)(η + d + µ)(γ + µ + ς)
(3)

4. Stability of the System

This section examines the stability of the system.

Theorem 2. The equilibrium point E0 is locally asymptotically stable in the system (2).

Proof. The reduced matrix of the system (2) is

F =
1

λn−1



−µ− ψ 0 − β1α
µ+ψ − β2α

µ+ψ ς 0
ψ −ι− µ 0 0 0 v

0 0 β1α
µ+ψ − σ− µ

β2α
µ+ψ 0 0

0 0 σ −η − d− µ 0 0
0 0 0 η −γ− µ− ς 0
0 0 0 0 γ −µ−v


The eigenvalues of the above matrix are −(ι + µ),−(µ + v),−(µ + ψ),−(γ + µ + ς)

negative. The remaining eigenvalues of the matrix obtained by the equation c0λ2 + c1λ +
c2 = 0 where

c0 = 1,

c1 = σ + η + d + 2µ− β1α

µ + ψ

c2 = (1− R0)(σ + µ)(η + d + µ) +
β1α

µ + ψ
(σ− η − d− µ) +

β2ασ

µ + ψ

η − γ− µ− ς

γ + µ + ς
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Hence the model (2) is locally asymptotically stable if R0 < 1.

Theorem 3. The equilibrium point E0 is globally asymptotically stable in the system (2).

Proof. Consider the Lyapunov function,

L̄ = x1(S− S0) + x2(V −V0) + x3E + x4 I + x5T + x6R

dL̄
dt

= −[µ(S + V + E + I + T + R) + ιV + dI − α]

Therefore, dL̄
dt < 0. Hence proved.

5. A Fractional Approach

The unique solution of the fractional system (2) is investigated and becomes
1

λn−1
CFDn

t S(t) = G1(t, S(t)),

1
λn−1

CFDn
t V(t) = G2(t, V(t)),

1
λn−1

CFDn
t E(t) = G3(t, E(t)), (4)

1
λn−1

CFDn
t I(t) = G4(t, I(t)),

1
λn−1

CFDn
t T(t) = G5(t, T(t)),

1
λn−1

CFDn
t R(t) = G6(t, R(t)),

Using the fractional derivative theorem, we obtain

S(t)− S(0) =
1

λ1−nΓ(n)

∫ t

0
G1(τ, S)(t− τ)n−1dτ,

V(t)−V(0) =
1

λ1−nΓ(n)

∫ t

0
G2(τ, V)(t− τ)n−1dτ

E(t)− E(0) =
1

λ1−nΓ(n)

∫ t

0
G3(τ, E)(t− τ)n−1dτ (5)

I(t)− I(0) =
1

λ1−nΓ(n)

∫ t

0
G4(τ, I)(t− τ)n−1dτ

T(t)− T(0) =
1

λ1−nΓ(n)

∫ t

0
G5(τ, T)(t− τ)n−1dτ

R(t)− R(0) =
1

λ1−nΓ(n)

∫ t

0
G6(τ, R)(t− τ)n−1dτ

Theorem 4. The kernel G1 satisfies the Lipschitz condition and contraction if the 0 ≤ (β1h1 +
β2h2 + (µ + ψ)) < 1 holds.

Proof. Let us consider for S and S1,

||G1(t, S)− G1(t, S1)|| =|| − β1E(t)(S(t)− S1(t))− β2 I(t)(S(t)− S1(t))

− (µ + ψ)(S(t)− S1(t))||

≤ β1||E(t)||||S(t)− S1(t)||+ β2||I(t)||||S(t)− S1(t)||+ (µ + ψ)||S(t)− S1(t)||
≤ [β1k1 + β2k2 + µ + ψ]||S− S1||

Hence, b1 = β1k1 + β2k2 + µ + ψ, where ||E(t)|| = k1, ||I(t)|| = k2, is bounded
function. Hence,
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||G1(t, S)− G1(t, S1)|| ≤ b1||S(t)− S1(t)|| (6)

Therefore, if 0 ≤ β1h1 + β2h2 + µ + ψ < 1 the G1 is a contraction and the Lipschitz
condition is obtained. Similarly, we obtain the Lipschitz condition for all the relations.

||G2(t, V)− G2(t, V1)|| ≤ b2||V(t)−V1(t)||
||G3(t, E)− G3(t, E1)|| ≤ b3||E(t)− E1(t)||
||G4(t, I)− G4(t, I1)|| ≤ b4||I(t)− I1(t)||
||G5(t, T)− G5(t, T1)|| ≤ b5||T(t)− T1(t)||
||G6(t, R)− G6(t, R1)|| ≤ b6||R(t)− R1(t)||

where b2 = (ι + µ), b3 = (σ + µ), b4 = (η + d + µ), b5 = (γ + µ + ς), b6 = (µ + v) are all
bounded functions if 0 ≤ bi < 1, then Gi, i = 2, 3, 4, 5, 6 are contractions.

Consider the following recursive forms, according to the system (5),

H1r(t) = Sr(t)− Sr−1(t) =
1

λ1−nΓ(n)

∫ t

0
(G1(τ, Sr−1)− G1(τ, Sr−2))(t− τ)n−1dτ

H2r(t) = Vr(t)−Vr−1(t) =
1

λ1−nΓ(n)

∫ t

0
(G2(τ, Vr−1)− G2(τ, Vr−2))(t− τ)n−1dτ

H3r(t) = Er(t)− Er−1(t) =
1

λ1−nΓ(n)

∫ t

0
(G3(τ, Er−1)− G3(τ, Er−2))(t− τ)n−1dτ

H4r(t) = Ir(t)− Ir−1(t) =
1

λ1−nΓ(n)

∫ t

0
(G4(τ, Ir−1)− G4(τ, Ir−2))(t− τ)n−1dτ

H5r(t) = Tr(t)− Tr−1(t) =
1

λ1−nΓ(n)

∫ t

0
(G5(τ, Tr−1)− G5(τ, Tr−2))(t− τ)n−1dτ

H6r(t) = Rr(t)− Rr−1(t) =
1

λ1−nΓ(n)

∫ t

0
(G6(τ, Rr−1)− G6(τ, Rr−2))(t− τ)n−1dτ

with the initial conditions.
Consider the equation,

||H1r(t)|| =||Sr(t)− Sr−1(t)||

=|| 1
λ1−nΓ(n)

∫ t

0
(G1(τ, Sr−1)− G1(τ, Sr−2))(t− τ)n−1dτ||

≤ 1
λ1−nΓ(n)

∫ t

0
||G1(τ, Sr−1)− G1(τ, Sr−2))(t− τ)n−1||dτ

with the condition (6).

||H1r(t)|| ≤
1

λ1−nΓ(n)
b1

∫ t

0
||H1(r−1)(τ)||dτ (7)

Similarly, we obtain,

||H2r(t)|| ≤
1

λ1−nΓ(n)
b2

∫ t

0
||H2(r−1)(τ)||dτ

||H3r(t)|| ≤
1

λ1−nΓ(n)
b3

∫ t

0
||H3(r−1)(τ)||dτ

||H4r(t)|| ≤
1

λ1−nΓ(n)
b4

∫ t

0
||H4(r−1)(τ)||dτ (8)

||H5r(t)|| ≤
1

λ1−nΓ(n)
b5

∫ t

0
||H5(r−1)(τ)||dτ

||H6r(t)|| ≤
1

λ1−nΓ(n)
b6

∫ t

0
||H6(r−1)(τ)||dτ
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This can be written as

Sr(t) =
n

∑
j=1

H1j(t), Vr(t) =
n

∑
j=1

H2j(t), Er(t) =
n

∑
j=1

H3j(t)

Ir(t) =
n

∑
j=1

H4j(t), Tr(t) =
n

∑
j=1

H5j(t), Rr(t) =
n

∑
j=1

H6j(t)

Next, we must prove the existence of the solution.

Theorem 5. The fractional system (2) gives the system of solutions if there exist t1 such that
1

λ1−nΓ(n) t1bi < 1i.

Proof. Using a recursive technique, (7) and (8) can be written as

||H1r(t)|| ≤ ||Sr(0)||
[

1
λ1−nΓ(n)

b1t
]r

, ||H2r(t)|| ≤ ||Vr(0)||
[

1
λ1−nΓ(n)

b2t
]r

||H3r(t)|| ≤ ||Er(0)||
[

1
λ1−nΓ(n)

b3t
]r

, ||H4r(t)|| ≤ ||Ir(0)||
[

1
λ1−nΓ(n)

b4t
]r

||H5r(t)|| ≤ ||Tr(0)||
[

1
λ1−nΓ(n)

b5t
]r

, ||H6r(t)|| ≤ ||Rr(0)||
[

1
λ1−nΓ(n)

b6t
]r

We assume

S(t)− S(0) = Sr(t)− B1r(t), V(t)−V(0) = Vr(t)− B2r(t),

E(t)− E(0) = Er(t)− B3r(t), I(t)− I(0) = Ir(t)− B4r(t),

T(t)− T(0) = Tr(t)− B5r(t), R(t)− R(0) = Rr(t)− B6r(t),

where

||B1r(t)|| =||
1

λ1−nΓ(n)

∫ t

0
(G1(τ, S)− G1(τ, Sr−1))ddτ||

≤ 1
λ1−nΓ(n)

b1||S− Sr−1||t
(9)

||B1r(t)|| ≤
[

1
λ1−nΓ(n)

t
]n+1

bn+1
1 h

The above equation can be obtained by repeating the method.

||B1r(t)|| ≤
[

1
λ1−nΓ(n)

t1

]n+1
bn+1

1 h

We obtain ||B1r(t)|| → 0 as r tends to ∞. Hence, this can be obtained for all functions.
This completes the proof.

Assume the system (2) has another solution S1(t), V1(t), E1(t), I1(t), T1(t), R1(t).
We have

S(t)− S1(t) =
1

λ1−nΓ(n)

∫ t

0
(G1(τ, S)− G1(τ, S1))dτ

we have

||S(t)− S1(t)|| =
1

λ1−nΓ(n)

∫ t

0
||(G1(τ, S)− G1(τ, S1))||dτ
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||S(t)− S1(t)|| ≤
1

λ1−nΓ(n)
b1t||S(t)− S1(t)||

Therefore,

||S(t)− S1(t)||
(

1− 1
λ1−nΓ(n)b1t

)
≤ 0 (10)

Hence, ||S(t) − S1(t)|| = 0. Therefore, S(t) = S1(t). Similarly, we can obtain this
result for all the equations in the model.

6. Numerical Simulation

An approximate method for the solution of the nonlinear problem is called the Ado-
mian decomposition method [23] and provides solutions for both ordinary and fractional
differential equations [24]. To obtain results, Laplace Transform is used for model (2)

L[S(t)]− S(0) =
s + p(1− s)

s
L[α− β1SE− β2SI − (µ + ψ)S + ςT]

L[V(t)]−V(0) =
s + p(1− s)

s
L[ψS− (ι + µ)V + vR]

L[E(t)]− E(0) =
s + p(1− s)

s
L[β1SE + β2SI − (σ + µ)E] (11)

L[I(t)]− I(0) =
s + p(1− s)

s
L[σE− (η + d + µ)I]

L[T(t)]− T(0) =
s + p(1− s)

s
L[η I − (γ + µ + ς)T]

L[R(t)]− R(0) =
s + p(1− s)

s
L[γT − (µ + v)R]

The series of the solution is considered to be [25],

S(t) =
∞

∑
k=0

Sk(t), V(t) =
∞

∑
k=0

Vk(t), E(t) =
∞

∑
k=0

Ek(t)

I(t) =
∞

∑
k=0

Ik(t), T(t) =
∞

∑
k=0

Tk(t), R(t) =
∞

∑
k=0

Rk(t)

S(t)E(t) =
∞

∑
k=0

Ak(S, E), S(t)I(t) =
∞

∑
k=0

Bk(S, I)

where Ak(S, E), Bk(S, I) is used as Adomian polynomial. After some manipulation, the sys-
tem (11) becomes

L

[
∞

∑
k=0

Sk(t)

]
= S(0)+

s + p(1− s)
s

L

[
α− β1

∞

∑
k=0

Ak(S, E)− β2

∞

∑
k=0

Bk(S, I)

−(µ + ψ)
∞

∑
k=0

Sk(t) + ς
∞

∑
k=0

Tk(t)

]

L

[
∞

∑
k=0

Vk(t)

]
= V(0)+

s + p(1− s)
s

L

[
ψ

∞

∑
k=0

Sk(t)− (ι + µ)
∞

∑
k=0

Vk(t) + v
∞

∑
k=0

Rk(t)

]

L

[
∞

∑
k=0

Ek(t)

]
= E(0)+

s + p(1− s)
s

L

[
β1

∞

∑
k=0

Ak(S, E) + β2

∞

∑
k=0

Bk(S, I)

(σ + µ)
∞

∑
k=0

Ek(t)

]
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L

[
∞

∑
k=0

Ik(t)

]
= I(0)+

s + p(1− s)
s

L

[
σ

∞

∑
k=0

Ek(t)− (η + d + µ)
∞

∑
k=0

Ik(t)

]

L

[
∞

∑
k=0

Tk(t)

]
= T(0)+

s + p(1− s)
s

L

[
η

∞

∑
k=0

Ik(t)− (γ + µ + ς)
∞

∑
k=0

Tk(t)

]

L

[
∞

∑
k=0

Rk(t)

]
= R(0)+

s + p(1− s)
s

L

[
γ

∞

∑
k=0

Tk(t)− (µ + v)
∞

∑
k=0

Rk(t)

]

After some manipulation, we obtain

L[Sk+1(t)] =
s + p(1− s)

s
L[α− β1 Ak(S, E)− β2Bk(S, I)− (µ + ψ)Sk(t) + ςTk(t)]

L[Vk+1(t)] =
s + p(1− s)

s
L[ψSk(t)− (ι + µ)Vk(t) + vRk(t)]

L[Ek+1(t)] =
s + p(1− s)

s
L[β1 Ak(S, E) + β2Bk(S, I)− (σ + µ)Ek(t)] (12)

L[Ik+1(t)] =
s + p(1− s)

s
L[σEk(t)− (η + d + µ)Ik(t)]

L[Tk+1(t)] =
s + p(1− s)

s
L[η Ik(t)− (γ + µ + ς)Tk(t)]

L[Rk+1(t)] =
s + p(1− s)

s
L[γTk(t)− (µ + v)Rk(t)]

Exercising the transform on both sides in (12), we have

S0(t) = S0, V0(t) = V0, E0(t) = E0, I0(t) = I0, T0(t) = T0, R0(t) = R0

S1(t) = [α− β1S0(t)E0(t)− β2S0(t)I0(t)− (µ + ψ)S0(t) + ςT0(t)](1 + p(t− 1)),

V1(t) = [ψS0(t)− (ι + µ)V0(t) + vR0(t)](1 + p(t− 1)),

E1(t) = [β1S0(t)E0(t) + β2S0(t)I0(t)− (σ + µ)E0(t)](1 + p(t− 1)),

I1(t) = [σE0(t)− (η + d + µ)I0(t)](1 + p(t− 1)),

T1(t) = [η I0(t)− (γ + µ + ς)T0(t)](1 + p(t− 1)),

R1(t) = [γT0(t)− (µ + v)R0(t)](1 + p(t− 1))

S2(t) = [α− β1S1(t)E1(t)− β2S1(t)I1(t)− (µ + ψ)S1(t) + ςT1(t)](1 + p(t− 1)),

V2(t) = [ψS1(t)− (ι + µ)V1(t) + vR1(t)](1 + p(t− 1)),

E2(t) = [β1S1(t)E1(t) + β2S1(t)I1(t)− (σ + µ)E1(t)](1 + p(t− 1)),

I2(t) = [σE1(t)− (η + d + µ)I1(t)](1 + p(t− 1)),

T2(t) = [η I1(t)− (γ + µ + ς)T1(t)](1 + p(t− 1)),

R2(t) = [γT1(t)− (µ + v)R1(t)](1 + p(t− 1))

The solution can be expressed as

S(t) =
∞

∑
j=0

Sj(t), V(t) =
∞

∑
j=0

Vj(t), E(t) =
∞

∑
j=0

Ej(t)

I(t) =
∞

∑
j=0

Ij(t), T(t) =
∞

∑
j=0

Tj(t), R(t) =
∞

∑
j=0

Rj(t)

7. Graphical Discussion

The solution of the system (2) is calculated using the Table 1.
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Table 1. Values of the parameters for the fractional model (2).

Parameter Values Source

α 0.5 Assumed
β1 2.55 [26]
β2 2.28 Assumed
ς 0.86 [27]
ψ 0.036 [28]
ι 0.006 [29]

v 0.002 Assumed
σ 0.21 [30]
µ 0.53 [31]
η 0.07 [32]
γ 0.91 [33]
d 0.012 [34]

Figures 1–6 show the approximate solutions of various population compartments
corresponding to different fractional orders. The density of the susceptible population
is decreasing according to the corresponding fractional-order depicted in Figure 1. In
Figure 2, the number of the vaccinated population was rapidly increasing. According to
Figures 3 and 4, the infected population density increases following exposure to infection.
Figures 5 and 6 show that the total number of people in treatment is on the rise, as many
people have been cured of the disease through proper treatment, resulting in an increasing
number of people in recovery.
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Figure 1: Graphical reprsentation of susceptible population corresponding to differ-
ent fractional order
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Figure 2: Graphical reprsentation of vaccinated population corresponding to different
fractional order

8 Conclusion

This paper presents an SVEITR COVID-19 model with a fractional-order derivative
of Caputo-Fabrizio. We compute the reproduction number, equilibrium points, and
feasible region. Fixed point theory is applied to show that a unique solution exists
to the fractional system. Adomian method coupled with Laplace integral transform

18

Figure 1. Graphical representation of the susceptible population corresponding to different fractional
orders.
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8 Conclusion

This paper presents an SVEITR COVID-19 model with a fractional-order derivative
of Caputo-Fabrizio. We compute the reproduction number, equilibrium points, and
feasible region. Fixed point theory is applied to show that a unique solution exists
to the fractional system. Adomian method coupled with Laplace integral transform
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Figure 2. Graphical representation of the vaccinated population corresponding to different frac-
tional orders.
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Figure 3: Graphical reprsentation of exposed population corresponding to different
fractional order
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Figure 4: Graphical reprsentation of infected population corresponding to different
fractional order

yields the approximate solution of the proposed model. The graphical presentation
provides a better understanding of the dynamics, and the proposed technique com-
pares favorably with the other method in terms of its speed of convergence. Also, we
have compared our simulated results of vaccinated population with real data. At the
same time, COVID-19 is persistent and largely uncontrollable due to the continual
change in the spread of information, a factor which will be explored in more depth in

19

Figure 3. Graphical representation of the exposed population corresponding to different fractional
orders.
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yields the approximate solution of the proposed model. The graphical presentation
provides a better understanding of the dynamics, and the proposed technique com-
pares favorably with the other method in terms of its speed of convergence. Also, we
have compared our simulated results of vaccinated population with real data. At the
same time, COVID-19 is persistent and largely uncontrollable due to the continual
change in the spread of information, a factor which will be explored in more depth in

19

Figure 4. Graphical representation of the infected population corresponding to different fractional
orders.
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Figure 5: Graphical reprsentation of treatment population corresponding to different
fractional order
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Figure 6: Graphical reprsentation of recovered population corresponding to different
fractional order

the future by bifurcation analysis which combines fractional derivatives with optimal
control. In future work, this model may be modified by introducing control variables
in order to analyze optimal control strategies.

20

Figure 5. Graphical representation of the treatment population corresponding to different fractional
orders.
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fractional order

the future by bifurcation analysis which combines fractional derivatives with optimal
control. In future work, this model may be modified by introducing control variables
in order to analyze optimal control strategies.

20

Figure 6. Graphical representation of the recovered population corresponding to different fractional
orders.

8. Conclusions

This paper presents an SVEITR COVID-19 model with a fractional-order derivative
of Caputo–Fabrizio. We compute the reproduction number, equilibrium points, and fea-
sible region. Fixed-point theory is applied to show that a unique solution exists for the
fractional system. The Adomian method coupled with Laplace integral transform yields
the approximate solution of the proposed model. The graphical presentation provides a
better understanding of the dynamics, and the proposed technique compares favorably
with the other method in terms of its speed of convergence. At the same time, COVID-19 is
persistent and largely uncontrollable due to the continual change in the spread of informa-
tion, a factor which will be explored in more depth in the future by bifurcation analysis,
which combines fractional derivatives with optimal control. In future work, this model
may be modified by introducing control variables to analyze optimal control strategies.
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