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Abstract: The Traveling Salesman Problem (TSP) aims to find the shortest tour for a salesman who
starts and ends in the same city and visits the remaining n− 1 cities exactly once. There are a number
of common generalizations of the problem including the Multiple Traveling Salesman Problem
(MTSP), where instead of one salesman, there are k salesmen and the same amount of individual
tours are to be constructed. We consider the Euclidean version of the problem where the distances
between the cities are calculated in two-dimensional Euclidean space. Both general the TSP and its
Euclidean version are strongly NP-hard. Hence, approximation algorithms with a good practical
behavior are of primary interest. We describe a general method for the solution of the Euclidean
versions of the TSP (including MTSP) that yields approximation algorithms with a favorable practical
behavior for large real-life instances. Our method creates special types of convex hulls, which serve
as a basis for the constructions of our initial and intermediate partial solutions. Here, we overview
three algorithms; one of them is for the bounded version of the MTSP. The proposed novel algorithm
for the Euclidean TSP provides close-to-optimal solutions for some real-life instances.

Keywords: traveling salesman problem; heuristic algorithm; time complexity; convex hull; two-
dimensional Euclidean space; optimization

MSC: 11A05; 52B55

1. Introduction

The Traveling Salesman Problem (TSP) is an NP-hard problem, as proven by Karp
in 1972 [1]. It aims to construct a tour for a salesman who must visit n clients or cities,
each of them exactly once, except that the first visited city is repeatedly visited at the end
of the tour. The objective is to minimize the overall incurred distance. We shall rely on
the following graph-theoretical formulation of the problem. We are given an undirected
weighted complete graph G = (V, E), where the vertices from set V are identified as the
clients or cities and the edges from set E represent connections between these cities, so that
their weights represent the corresponding distances; i.e., for every (i, j) ∈ E, the weight
w(i, j) is the distance between cities i and j. We consider the Euclidean setting of the
problem, where the distances between the cities are calculated in a two-dimensional plane,
the cities being represented as points in that plane. Therefore, we treat the vertices from set
V as points in the two-dimensional plane and edges as vectors in that plane. In this way,
we deal with a kind of projection of graph G in the two-dimensional plane. Note that the
Euclidean TSP is symmetric, i.e., for any edge (i, j), w(i, j) = w(j, i).
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A permutation of the n points defines a feasible tour T = (i1, . . . , in, i1) in the two-
dimensional plane. The cost of tour T, C(T) is

C(T) = w(i1, i2) + w(i2, i3) + · · ·+ w(in−1, in) + w(in, i1) (1)

The objective is to find a feasible solution T∗ whose cost C(T∗) is the minimum,
i.e., C(T∗) = minT C(T).

The Multiple Traveling Salesman Problem (MTSP) is a generalization of the TSP, which
deals with k ≥ 1 salesmen and a specific city d called the depot. Correspondingly, k different
tours are to be constructed such that each tour starts and ends at the depot. The bounded
version of the MTSP (BMTSP) imposes a restriction on the number of cities each tour has to
include where a feasible solution consists of k tours {T1, T2, · · · , Tk}, where

T j = (d, ij
1, ij

2, · · · , ij
mj , d) (2)

An integer mj is the number of cities that tour T j has to include such that m1 + m2 +
· · ·+ mk = n.

The cost of a feasible solution {T1, T2, · · · , Tk} is

C({T1, T2, · · · , Tk}) = C(T1) + C(T2) + · · ·+ C(Tk) (3)

The aim in studying the BMTSP with several salesmen and with upper and lower
bounds on the number of clients for each salesman is not actually to attain a better total
cost compared to the case when a single salesman is used. The motivation here is to reduce
the time needed to serve all the clients taking into account the limited capacity of each
salesman (vehicle). Hence, an upper bound on the number of clients for every salesman is
imposed, where a lower bound somehow “balances” the minimal load for each salesman.
These considerations were first reported by Roerty [2] and later detailed by Necula [3].

In this study, we focus on the Euclidean version of the TSP, which remains strongly NP-
hard [4]. Nevertheless, it is more “transparent” than the general version, in the sense that
simple geometric considerations can be used in a solution process of the Euclidean version
(see, e.g., [5]). Here, we describe our method, based on simple geometric observations,
and three simple, fast, and easily implementable direct combinatorial algorithms yielded
by the method.

Our method uses special types of convex hulls, which serve as a basis for the construc-
tions of our initial and intermediate partial solutions. A basic type of convex hull that we
employ is a girding polygon P [6], the minimal convex polygon that includes all points from
set V, a convex hull for set V.

The method starts with a (partial) tour defined by the girding polygon P. If this tour is
complete, i.e., contains all points from set V, then it is also an optimal tour. Otherwise, yet
uncovered cities are iteratively added to the current partial solution until a feasible solution
is constructed. This feasible solution is further improved using local search algorithms.
This framework for the TSP is extended for the BMTSP using a preliminary stage that
partitions the points from set V into k feasible subsets. The second proposed algorithm for
the Euclidean TSP constructs convex hulls for the subsets of vertices from set V, convex
polygons. These polygons may intersect each other. Every created polygon defines a partial
tour. Iteratively, a partial tour defined by the polygon of a current iteration is unified with
the partial tour of the previous iteration, resulting in the partial tour of the current iteration.
In this way, the polygons and the tours are iteratively “inflated”.

We found a few algorithms that also use convex hulls in one way or another. For exam-
ple, Macgregor and Ormerod in 1996 [7] tested the hypothesis that the difficulty of solving a
TSP for humans is a function of the number of interior points of the corresponding girding
polygon. They designed two experiments with instances of the TSP. The first experiment
used instances with ten points, and the second one used instances with twenty points in
total. These instances were solved by a group of people manually. These solutions were
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compared with the solutions obtained by three common heuristics, the nearest neighbor al-
gorithm, the largest interior angle algorithm (Norback and Love in 1977 [8]), and a variation
of a convex hull heuristic described by Golden et al. in 1980 [9] using the least expensive
insertion criterion. Notably, the manually obtained solutions turned out to be better than
the ones created by the heuristics. Sengupta and Fränti [10] continued this line of research,
measuring the dependence of the complexity of the solutions obtained by the humans on
the number of interior points of the polygon.

We also found several algorithms in the literature for the construction of a girding
polygon. The algorithm from Andrew [11] reorders the set of vertices according to their
x and y coordinates, which are used in the algorithm for the construction of the girding
polygon. In [6,8,12–14], The girding polygon is constructed based angles of the girding
polygon based on the calculation of specially determined angles. In [15–17], the set of
vertices were iteratively partitioned into two subsets separated with a line, formed by
the two specially determined points. The furthest from the constructed line vertex of one
or the other subset was identified as the next point that was be included in the formed
girding polygon. In [18–20], the construction algorithms that use “divide and conquer”
techniques was presented, where a merge algorithm for two non-intersecting convex hulls
was recursively applied.

Our algorithm for the construction of the girding polygon, can briefly be described as
follows. It initially identifies four specially determined auxiliary points on the plane, one
of which forms the partial polygon of the initial iteration 1. The girding polygon is formed
in ν consecutive iterations, where ν ≤ n is the number of vertices of polygon P. At each
iteration h > 1, a subset of vertices from set V is associated with each of the auxiliary
points. This division of the set V at iteration h is performed according to the coordinates
of the four auxiliary points and the coordinates of the point added to the partial polygon
at iteration h − 1. At iteration h, a new point from one of the four subsets is added to
the partial polygon of iteration h− 1. This new point is chosen based on some geometric
calculations. A brief description of this algorithm was originally given in [6], where MTSP
is solved in two phases. In the first phase, after the construction of girding polygon P, set V
is partitioned into k subsets using specially defined k auxiliary edges (d, x), here x ∈ P and
k is the number of salesmen. An algorithm is proposed for the construction of a feasible
tour for TSP, that is applied for each of the subsets at the second phase.

Next, we give a brief overview of some related work and applications. Jünger, Reinelt,
and Rinaldi [21] published an overview in which they described applications of the TSP
in real-life problems and exposed different heuristics and approximation algorithms. Pos-
sible applications occur in the drilling of printed circuit boards, in the analysis of the
structure of crystals (Bland and Shallcross [22]), during material handling in a warehouse
(Ratliff and Rosenthal [23]), in overhauling gas turbine engines (Plante, Lowe, and Chan-
drasekaran [24]), in the order-picking problem in warehouses (Ratliff and Rosenthal [23]),
in constructing computer boards to optimize the connections between different board
components, and in scheduling problems where job process times are sequence-dependent
(Lenstra and Rinnooy Kan [25]).

Bektas [26] described different existing variants of the MTSP and their relationship
with other problems; he also mentioned some other practical applications. Cheikhrouhou
and Khoufi [27] published a comprehensive survey in which they included the approaches
applied to unmanned aerial vehicles and/or drones; they also classified some practical
applications for the MTSP: monitoring and surveillance, network connectivity, search
and rescue, precision agriculture, and disaster management. Other applications arise in
scheduling a printing press (Gorenstein [28]), in mission planning (Brumitt and Stentz [29]),
in interview scheduling (Gilbert and Hofstra [30]), in crew scheduling, in school bus
routing [31], in cash distribution in banks, and in recollecting cash from telephone booths
and their repair (see Svestka and Huckfeldt [32] and Lenstra and Rinnooy Kan [25]). Other
applications occur in the planning of autonomous robots (Yu et al. [33]) and in planning of
unmanned aerial vehicle applications (Ryan et al. [34]). An application of the MTSP arises
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in the optimal design of global navigation satellite systems (Saleh and Chelouah [35]). As
for the bounded version BMTSP, there exist meta-heuristic algorithms for its solution (see,
for example, [3,36–40]).

We conclude this section with a brief description of how this paper is organized.
In Section 2, we describe our general method and three particular algorithms that we
constructed so far using our method. In Section 2.1, we give a detailed description of our
algorithm that generates the girding polygon P. In Section 2.2, the insertion algorithm
from [5] is described. We describe our basic algorithm for the BMTSP in Section 2.3, and we
present another novel inflammation algorithm in Section 2.4. Section 3 presents the results
of our experimental study. The last Section 4 contains some concluding remarks.

Part of the material from this work was presented at the 1st International Online
Conference on Algorithms (IOCA 2021) (see [41,42]).

2. Methods
2.1. Construction of Girding Polygon P

Our girding polygon P can be seen as a convex geometric figure in 2-dimensional
Euclidean space with the edges from the projection of graph G enclosing all vertices of set
V. Polygon P can also be seen as a sub-graph of graph G. Note that polygon P immediately
defines an optimal tour T0 for its ν vertices. Our construction algorithm iteratively extends
this tour until it creates a complete feasible tour.

Figure 1 represents a small problem instance “tsp10” with 10 vertices, which we use
for the illustration purposes throughout this paper.

20 40 60 80
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8

6

4

Figure 1. Example instance “tsp10” with 10 vertices.

Our algorithm for the construction of the girding polygon P works in a number of
iterations, Ph being the partial polygon (polygonal line) of iteration h. Iteratively, at iteration
h, one vertex, denoted by ph, is added to the partial polygon Ph−1 of iteration h − 1,
i.e., Ph = Ph−1 ∪ {ph} (abusing again the notation, we also use Ph for the set of vertices in
polygon Ph).

Let i ∈ Ph−1 and j ∈ V \ Ph−1, and let (i, j) ∈ E be the corresponding vector (edge)
in 2-dimensional Euclidean space. The algorithm for the construction of polygon P uses
function θ(i, j) (Equation (4)), which returns the angle between axes y = yi and vector (i, j);
see Figure 2.

θ(i, j) =


arccos

xj − xi

w(i, j)
i f arcsin

yj − yi

w(i, j)
≥ 0

− arccos
xj − xi

w(i, j)
i f arcsin

yj − yi

w(i, j)
< 0

(4)
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θ(i,j)
(i,j)

y=yii

j

w

Figure 2. Angle θ(i, j) formed by the edge (i, j) and the straight line y = yi.

Now, we turn to the description of the main algorithm that constructs polygon P. It
works in four stages, each stage being associated with one of the specially determined
auxiliary points in 2-dimensional Euclidean space. We denote these auxiliary points by v1,
v2, v3, and v4 and will refer to them as the “uppermost”, the “leftmost”, the “lowermost”, and
the “rightmost” points, respectively [6]; see Figure 3. More formally,

v1 = j1|xj1 is maximum and j1 ∈ {i1|yi1 is maximum and i1 ∈ V}
v2 = j2|yj2 is maximum and j2 ∈ {i2|xi2 is minimal and i2 ∈ V}
v3 = j3|xj3 is minimal and j3 ∈ {i3|yi3 is minimal and i3 ∈ V}
v4 = j4|yj4 is minimal and j4 ∈ {i4|xi4 is maximum and i4 ∈ V}

Below, we illustrate how the four auxiliary points are determined for our problem
instance “tsp10”.

20 40 60 80 100 120

2

7

9

4=v

8=v
3

10

120

80

60

40

20

1

6=v

5=v

1

2

3

4

100

Figure 3. The four auxiliary points v1 = 6, v2 = 4, v3 = 8, and v4 = 5 determined for example
instance “tsp10”.

Roughly, some points located in between points v1 and v2 are added at stage 1; some
points located in between points v2 and v3 are added at stage 2; some points located in
between points v3 and v4 are added at stage 3; some points located in between points v4

and v1 are added at stage 4. Correspondingly, the whole polygon area is divided into four
subareas V l , l = 1, . . . , 4, defined as follows:

V1 = {k | xk < xph−1 ∧ yk ≥ yv2 ; k ∈ V}
V2 = {k | xk ≤ xv3 ∧ yk < yph−1 ; k ∈ V}
V3 = {k | xk > xph−1 ∧ yk ≤ yv4 ; k ∈ V}
V4 = {k | xk ≥ xv1 ∧ yk > yph−1 ; k ∈ V}

The algorithm works in a number of iterations. Initially, P0 = (v1), i.e., the initial
partial polygon (polygonal line) consists of the uppermost vertex v1. At stage l, at iteration
h > 0, ph ∈ V l is the vertex, added to the set Ph−1, resulting in an augmented polygonal
line (set) Ph of iteration h. In particular, vertex ph ∈ V l is such that

θ(ph−1, ph) = min
j∈Vl

θ(ph−1, j).

Omitting some minor details, below, we give a formal description of the algorithm
and its flowchart (Figure 4):
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We illustrate the flowchart of Algorithm 1 (GIRDING−POLYGON) for the problem
instance “tsp10” in Table 1. Column “h” is the current iteration, “l” is the current stage, and
“condition” reflects the “while” condition.

In Figure 5, we illustrate the flowchart of Algorithm 1 (GIRDING−POLYGON) in
graphical form for the same problem instance.

Start

TSP Instance

Yes

No

Yes

No

Yes

Yes

Yes

End

No

No

Figure 4. Girding polygon algorithm flowchart.
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Algorithm 1: GIRDING−POLYGON (V).

1 h := 0
2 ph := v1

3 P0 := (ph)
4 for l := 1 to 4 do
5 while ph 6= v(l mod 4)+1 do
6 h := h + 1
7 if l = 1 then V1 = {k | xk < xph−1 ∧ yk ≥ yv2 ; k ∈ V}
8 if l = 2 then V2 = {k | xk ≤ xv3 ∧ yk < yph−1 ; k ∈ V}
9 if l = 3 then V3 = {k | xk > xph−1 ∧ yk ≤ yv4 ; k ∈ V}

10 if l = 4 then V4 = {k | xk ≥ xv1 ∧ yk > yph−1 ; k ∈ V}
11 ph := j | minj∈Vl{θ(ph−1, j)}
12 Ph := Ph−1 ∪ {ph}

13 return Ph

Table 1. Iterations performed by the Algorithm 1 (GIRDING−POLYGON) for the construction of
the girding polygon P for the example instance “tsp10”.

h l ph−1 v(l mod 4)+1 Condition V l ph Ph := Ph−1 ∪ {ph}
0 6 (6)

1 1 6 4 6 6= 4?: True {1, 10, 4} 10 (6, 10)
2 1 10 4 10 6= 4?: True {4} 4 (6, 10, 4)
3 1 4 4 4 6= 4?: False
3 2 4 8 4 6= 8?: True {7, 8, 9} 7 (6, 10, 4, 7)
4 2 7 8 7 6= 8?: True {8} 8 (6, 10, 4, 7, 8)
5 2 8 8 8 6= 8?: False
5 3 8 5 8 6= 5?: True {1, 2, 3, 5} 3 (6, 10, 4, 7, 8, 3)
6 3 3 5 3 6= 5?: True {2, 5} 2 (6, 10, 4, 7, 8, 3, 2)
7 3 2 5 2 6= 5?: True {5} 5 (6, 10, 4, 7, 8, 3, 2, 5)
8 3 5 5 5 6= 5?: False
8 4 5 6 5 6= 6?: True {6} 5 (6, 10, 4, 7, 8, 3, 2, 5, 6)

2.2. The Basic 3-Phase Insertion Algorithm for TSP

In this section, we overview a 3-phase algorithm from [5]. It starts with phase 1 by
constructing girding polygon P as described in Section 2.1. Recall that this polygon defines
an initial (partial) tour T0. If that tour is complete, i.e., contains all vertices from set V, then
nothing remains to be done; the algorithm halts with this optimal tour. Otherwise, this tour
is iteratively extended at phase 2 by Algorithm 2 (see Figure 6).

Let Th be the partial tour constructed by iteration h. The algorithm iteratively, at it-
eration h > 0, inserts a new, yet non-covered vertex lh ∈ V \ Th−1 into the current
tour Th−1, one that yields the minimal increase in the cost of the formed extended tour
Th = Th−1 ∪ {lh} of iteration h (abusing slightly the notation, here and later, we may use
Th for the set of vertices from tour Th). The insertion algorithm stops when it constructs a
complete feasible tour including all vertices from set V. In the figure below, we illustrate
how the algorithm works for our problem instance.

Figure 7 illustrates the three iterations of the insertion algorithm for our problem
instance “tsp10” with 10 vertices. Here, T0 = (6, 10, 4, 7, 8, 3, 2, 5, 6). At iteration 1, the costs
C1

9 and C1
1 are calculated, and the vertex 9 is inserted between the vertices 7 and 8 since

C1
9 < C1

1 ; see Figure 7b. At iteration 2, C2
1 is (re)calculated and the vertex 1 is inserted

between vertices 5 and 6; see Figure 7c. Hence, a feasible solution (6, 10, 4, 7, 9, 8, 3, 2, 5, 1, 6)
is delivered. The pseudo-code of the insertion algorithm and its flowchart are given below.
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Figure 5. Polygonal lines constructed by algorithm (GIRDING−POLYGON) for instance “tsp10”.
(a) P1 = (6, 10); (b) P2 = (6, 10, 4); (c) P3 = (6, 10, 4, 7); (d) P4 = (6, 10, 4, 7, 8); (e) P5 = (6, 10, 4, 7, 8, 3);
(f) P6 = (6, 10, 4, 7, 8, 3, 2); (g) P7 = (6, 10, 4, 7, 8, 3, 2, 5); (h) P8 = (6, 10, 4, 7, 8, 3, 2, 5, 6).
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Figure 6. Insertion algorithm flowchart.
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Figure 7. Iterations made by the insertion algorithm to solve the example instance “tsp10”. (a)
The tour T0 = (6, 10, 4, 7, 8, 3, 2, 5, 6) is delivered by (GIRDING_POLYGON(V)). (b) Vertex 9 is
inserted between vertices 7 and 8. (c) Vertex 1 is inserted between vertices 5 and 6. The feasible tour
constructed is (6, 10, 4, 7, 9, 8, 3, 2, 5, 1, 6).

Algorithm 2: INSERTION(V).

1 h := 0
2 T0 := GIRDING_POLYGON(V)
3 if V \ T0 6= ∅ then
4 {c1

l } := min ti∈T0{ w(ti, l) + w(l, ti+1)−w(ti, ti+1) }; l ∈ V \ T0
5 while V \ Th 6= ∅ do
6 h := h + 1
7 lh := l | minl∈V\Th−1

{ch
l }

8 i := index of vertex ti ∈ Th−1, where vertex lh reached the minimum cost ch
lh

9 Th := insert vertex lh in the tour Th−1 between the vertices ti and ti+1

10 {ch+1
l } := min{ch

l , w(ti, l) + w(l, ti+1)−w(ti, ti+1), w(ti+1, l) +
w(l, ti+2)−w(ti+1, ti+2)}; l ∈ V \ Th

11 return Th

At phase 3, the algorithm iteratively improves the solution delivered by phase 2 using
a specially constructed local improvement algorithm.

As is easy to verify, phase 1 runs in time O(nν), where ν is the number of vertices
of the polygon P. Phase 2 needs at most n− 3 iterations, where the selection cost at each
iteration is O(n). The improvement phase has an amortized time complexity of O(n2).

2.3. Partition, Construction, and Improvement Algorithm for the BMTSP

This section contains a brief description of our algorithm for the bounded version of
the MTSP, BMTSP [42], this algorithm, roughly, extends the insertion algorithm for the TSP
from the previous section with an additional partition phase. Our partition method adopts
and modifies one from [6].

At the partition phase, we partition set V \ {d} in k subsets V1, V2, · · · , Vk such that
each subset respects the problem restriction , i.e., the number of vertices in each of them is
within the range [mmin, mmax]).

Our partition algorithm first defines an auxiliary point c with the coordinate xc (yc,
respectively) being the average of the x-coordinates (y-coordinates, respectively) of the
vertices from set V:

xc =
∑i∈V\{d} xi

|V \ {d}| ,

and

yc =
∑i∈V\{d} yi

|V \ {d}| .
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Then, k additional auxiliary points i′1, · · · , i′k are defined. The first of them, i′1 ∈ V \ {d}
is the farthest point from the depot. The remaining k − 1 auxiliary points i′2, · · · , i′k are
determined in such a way that the angle between two adjacent vectors (c, i′j) and (c, i′j+1)

is the same and equals 2π
k and that all vectors (c, i′j) have the same length w(c, i′1) (see

Figure 8).
The partition of the set V \ {d} is now carried out in two stages. In stage 1, each

subset Vj, j = 1, . . . , k, contains a single vertex lj ∈ V \ {{Vj} ∪ {d}} such that the distance
between lj and the auxiliary point i′j is the minimal possible among all yet non-selected
vertices of set V \ {d}.

Once the initial sets Vj, j = 1, . . . , k are so formed, repeatedly, for each subset Vj, a new
vertex v with the minimum distance between that vertex and a vertex from the current set
Vj are added to that subset, i.e., Vj := Vj ∪ {v}. This operation is repeated until the current
set Vj contains mmin elements (see Figure 9).

Start

BMTSP Instance

Yes

No

Yes

Yes

No

No

1

Figure 8. A basic flowchart of the partition algorithm to obtain the auxiliary points i′1, · · · , i′k and the
first vertex for each subset Vj, j = 1, · · · , k.

In stage 2, the subsets of stage 2 are augmented. For every yet non-selected vertex v,
a “closest” subset Vj is looked for, i.e., a subset such that the distance between vertex v and
a point from set Vj is the minimal possible among all subsets from the current partition.
This operation is repeated until there remains a non-selected vertex (see Figure 10).
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Yes

No

1

Yes

2No

Figure 9. A partial flowchart for the creation of the subsets Vj, j = 1, · · · , k with mmin vertices.

Once the above partition process is complete, a feasible tour Tj for each of the subsets
Vj ∪ {d} is constructed by merely invoking the insertion algorithm from Section 2.2 (see
Figure 11). This solution is iteratively improved by a local interchange algorithm, which
iteratively selects a vertex from tour T j and alters its position within that tour or this vertex
is relocated to another tour T j′ . The exchange is accomplished if it yields the decrease
of the total cost; among all such exchanges, one which yields the maximum decrease is
accomplished so that the resultant solution remains feasible.

Yes

No

2

Yes

No

No Yes

EndNo Yes

Figure 10. The last partial flowchart of the partition algorithm to obtain the subsets Vj, j = 1, · · · , k.

No
End

Start

Yes

Figure 11. The flowchart of the construction algorithm to obtain the k tours Tj, j = 1, · · · , k.

Figure 12 illustrates the algorithm applied to our sample problem instance with
10 vertices. Here, we let k = 3 salesmen, mmin = 2, and mmax = 4. In Figure 12a,
the auxiliary point i′1 is 7. Then, the coordinates of auxiliary points i′2 and i′3 are calculated.
Figure 12b represents the created partition of set V \ {d} with V1 = {3, 7, 8, 9}, V2 = {2, 5}
and V3 = {4, 6, 10}. In Figure 12c, tours T1 = (d, 9, 7, 8, 3, d), T2 = (d, 2, 5, d), and T3 =
(d, 6, 10, 4) are represented.

As is easy to verify, phase 1 runs in time O(nkm2
max); phase 2 has the same time

complexity as the improvement phase of the previous algorithm; phase 3 runs in time
O(k2m2

max); see [42].
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Figure 12. Phases to construct a solution for an instance of the bounded MTSP with k = 3, mmin = 2
and mmax = 4.

2.4. The Inflammation Algorithm

In this section, we describe our novel algorithm for the basic TSP that we call an
inflammation algorithm. The name comes from the general approach used in the algorithm
that iteratively constructs specially defined polygons delineating larger and larger areas in
the plane with more and more points from set V. Each of these polygons defines a partial
tour including a progressively increasing number of vertices.

Unlike the insertion algorithm, the first polygon P0 that the inflammation algorithm
constructs is the “smallest” one that is extended to “larger” polygons at consecutive iter-
ations (in particular, it is not a girding polygon). The polygon constructed at iteration h,
Ph, is an inner convex hull, i.e., it does not contain vertices from set V in its interval area,
except that it may contain vertices in its internal area that belong to the earlier-constructed
polygons P0, . . . , Ph−1 (if polygon Ph contains a vertex from set V in its internal area, then
this vertex belongs to the polygon of an earlier iteration). Note that each polygon Ph defines
an optimal partial tour for the set of vertices that it contains, similarly to how the girding
polygon P from Section 2.1 defines an optimal tour T0. As we know, if V \ T0 = ∅, then T0
from Section 2.1 defines an optimal tour. Hence, in the inflammation algorithm, we assume
that this condition is not satisfied.

The inflammation algorithm iteratively, at every iteration h, constructs the polygon Ph
containing (some) vertices from set V \ Th−1 (see Algorithm 3), where we denote again by
Th the partial tour constructed by iteration h. Initially, we let T0 = ∅, and T1 is formed by
the partial tour of polygon P1. At iteration h ≥ 2, Algorithm 4 (JOINP) constructs partial
tour Th by joining the vertices of polygon Ph and the partial tour Th−1 as described later in
Section 2.4.2.

This completes an aggregated description of the inflammation algorithm. Abusing
again the notation, we may use Ph for the set of vertices of polygon Ph.

We shall refer to a specially defined point c = (xc, yc) in the two-dimensional plane as
a centroid.

In the following two subsections, we describe Algorithm 5, (INNER−CONVEX−HULL),
which constructs inner convex hull Ph, and Algorithm 4 (JOINP), which creates partial tour
Th from the polygon Ph and the previous tour Th−1, at every iteration h.
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Algorithm 3: INFLAMMATION(V).

1 h := 0
2 T0 := ∅
3 while |V \ Th| > 2 do
4 h := h + 1

5 ch :=
(

∑i∈V\Th−1
xi

|V\Th−1|
,

∑i∈V\Th−1
yi

|V\Th−1|

)
6 Ph := INNER−CONVEX−HULL(V \ Th−1, ch)
7 Th := JOINP(Th−1, Ph)

8 while |V \ Th| > 0 do
9 h := h + 1

10 Determine two adjacent vertices ij and ij+1 from Th−1 such that
w(ij, vl) + w(vl , ij+1)−w(ij, ij+1) is the minimum possible, where
vl ∈ V \ Th−1

11 Th := insert vertex vl in tour Th−1 between vertices ij and ij+1.

12 T := Th
13 return T

Algorithm 4: JOINP(Th−1, Ph).

1 T0
h−1 := Th−1

2 for l := 1 to |Ph| do
3 Determine two adjacent vertices ij and ij+1 from Tl−1

h−1 such that
w(ij, vl) + w(vl , ij+1)−w(ij, ij+1) is the minimum possible.

4 Tl
h−1 := insert vertex vl in tour Tl−1

h−1 between vertices ij and ij+1.

5 Th := T|Ph |
h−1

6 return Th

Algorithm 5: INNER−CONVEX−HULL(V, Th−1, ch).

1 if |V \ Th−1| ≥ 3 then
2 Calculate the angles θ(ch, vi); ∀ vi ∈ V \ Th−1
3 l := 0
4 L0

h := (v1, v2, · · · , v|V\Th−1|); such that θ(ch, v1) ≥ θ(ch, v2) ≥ · · · ≥ θ(ch, v|V\Th−1 |).

5 j := 1
6 while j ≤ |Ll

h| ∧ |L
l
h| > 3 do

7 l := l + 1
// if vj = v1, then vj−1 = v|Ll−1

h |, and if vj = v|Ll−1
h |, then vj+1 = v1

8 if φ((vj−1, vj, vj+1), ch) > π then
9 if w(ch, vj−1) > w(ch, vj+1) then

10 Ll
h := Ll−1

h \ {vj−1}
11 j := j− 1
12 else
13 Ll

h := Ll−1
h \ {vj+1}

14 else
15 j := j + 1

16 Ph := Ll
h

17 return Ph
18 else
19 “It is not possible to construct a polygon with |V \ Th−1| < 3 vertices.”
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2.4.1. Algorithm 5, (INNER−CONVEX−HULL) for the Construction of Polygon Ph.

Given an external iteration h in Algorithm 3 (INFLAMMATION), we denote by Ll
h

a polygonal line of the iteration l in Algorithm 5 (Figure 13), (INNER−CONVEX−HULL),
that is a broken line of a finite number of edges formed by some vertices from set V \ Th−1.
Polygonal line Th serves an auxiliary purpose at every iteration h with |V \ Th−1| ≥ 3 in
Algorithm 3.

Consider an iteration h with |V \ Th−1| ≥ 3 in Algorithm 3 . Initially, at iteration 0
in Algorithm 5, a polygonal line L0

h consists of all vertices of set V \ Th−1 sorted in non-
increasing order of their angles θ(ch, vi) (see Equation (4)) (i.e., L0

h = (v1, v2, · · · , v|V\Th−1|)
where θ(ch, v1) ≥ θ(ch, v2) ≥ · · · ≥ θ(ch, b|V\Th−1|)) (see Figure 14).

Consider the polygonal line with an additional edge (v1, v|V\Th−1|) joining the two
extremal vertices v1 and v|V\Th−1|) of the polygonal line L0

h. In case the polygonal line
obtained in this way forms a convex polygon, then the algorithm delivers this polygon Ph.

Otherwise, at iteration l > 0, the polygon Ph is obtained from the polygonal line Ll−1
h by

eliminating some of its vertices and the two edges associated with every eliminated vertex.
Instead of the two eliminated edges, one additional edge is created. This is accomplished
by an iterative analysis of three consecutive vertices (vj−1, vj, vj+1) from the polygonal
line Ll−1

h at once, where vj−1 = v|Ll−1
h | if vj = v1 and vj+1 = v1 if vj = v|Ll−1

h |), for every

j = 1, . . . , |Ll−1
h |. For such a trio of consecutive points, we define a new angle-related

function φ(vj−1, vj, vj+1, ch); see Equation (5) below. It returns the angle between the edges
(vj−1, vj) and (vj, vj+1) in the range [−π, π]; see Figure 15.

φ1(vj−1, vj, ch) = arccos

(
w(ch, vj−1)

2 −w(ch, vj)
2 −w(vj−1, vj)

2

−2 w(ch, vj) w(vj−1, vj)

)

φ2(vj, vj+1, ch) = arccos

(
w(ch, vj+1)

2 −w(ch, vj)
2 −w(vj, vj+1)

2

−2 w(ch, vj) w(vj, vj+1)

)
φ(vj−1, vj, vj+1, ch) = φ1(vj−1, vj, ch) + φ2(vj, vj+1, ch)

(5)

Given a trio (vj−1, vj, vj+1) of iteration l, the algorithm verifies if the internal angle
between the edges (vj−1, vj) and (vj, vj+1), φ((vj−1, vj, vj+1), ch), is no larger than π radians.
If this holds, then all three points (vj−1, vj, vj+1) are kept in polygon Ph, i.e., Ph := Ll−1

h .
Otherwise, the polygonal path is non-convex; hence, one of the points is to be removed:
If w(ch, vj−1) > w(ch, vj+1), then the vertex vj−1 is removed, i.e., Ll

h := Ll−1
h \ {vj−1}.

Otherwise, the vertex vj+1 is removed, i.e., Ll
h := Ll−1

h \ {vj+1}. Let l be the last iteration.
We illustrate the construction process of the polygon line L0

1 for problem instance
“tsp10”. In Figure 14, Th−1 = ∅ and the centroid ch = c1 with coordinates (52.8, 55) is de-
picted in red color. Figure 14a illustrates how the θ angles are calculated so that θ(c1, 4) ≥
θ(c1, 10) ≥ θ(c1, 6) ≥ θ(c1, 10) ≥ θ(c1, 1) ≥ θ(c1, 5) ≥ θ(c1, 2) ≥ θ(c1, 3) ≥ θ(c1, 8) ≥
θ(c1, 9) ≥ θ(c1, 7). Figure 14b shows the resultant polygonal line L0

1 = (4, 10, 6, 1, 5, 2, 3, 8, 9, 7).
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Figure 13. Inner convex hull algorithm flowchart.
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Figure 14. Construction of the initial polygonal line L0
1 for the example instance “tsp10”, where

c1 = (52.8, 55).

2
φ

φ1
φ

c

j+1

h

v

v

vj

j−1

Figure 15. Angle φ(vj−1, vj, vj+1, ch) formed by the edges (vj−1, vl) and (vj, vj+1), where vj−1, vj,
and vj+1 are consecutive vertices from polygonal line Ll−1

h .

Table 2 and Figure 16 show how Algorithm 5 (INNER− CONVEX−HULL) constructs
the polygon P1 for problem instance “tsp10”. Figure 16a illustrates the initial polygonal
line L1

1 = (4, 10, 6, 1, 5, 2, 3, 8, 9, 7). The first internal angle found in L3
1 that is greater than π

radians is between the edges (6, 1) and (1, 5). Since w(c1, 6) < w(c1, 5), vertex 5 is removed
from L3

1. In Figure 16b, the angle between the edges (6, 1) and (1, 2) is greater than π
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radians. Since w(c1, 6) > w(c1, 2), vertex 2 is removed from L4
1. In Figure 16c, the angle

between the edges (10, 1) and (1, 2) is greater than π radians. Since w(c1, 10) > w(c1, 2),
vertex 10 is removed from L5

1. In Figure 16d, the angle between the edges (8, 9) and (9, 7)
is greater than π radians. Since w(c1, 8) < w(c1, 7), vertex 7 is removed from L10

1 . In
Figure 16e, the angle between the edges (8, 9) and (9, 4) is greater than π radians. Since
w(c1, 8) > w(c1, 4), vertex 8 is removed from L11

1 . Figure 16f shows that the resultant inner
convex hull P = (4, 1, 2, 3, 9) is delivered.

Table 2. Iterations performed by Algorithm 5 (INNER−CONVEX−HULL) for the construction of
the inner convex polygon P for the example instance “tsp10”.

l Ll
h j vj Condition Decision

0 Polygonal line is constructed L0
1 := (4, 10, 6, 1, 5, 2, 3, 8, 9, 7)

1 (4, 10, 6, 1, 5, 2, 3, 8, 9, 7) 1 4 φ(7, 4, 10, c) ≤ π : True L1
1 := L0

1, j := j + 1
2 (4, 10, 6, 1, 5, 2, 3, 8, 9, 7) 2 10 φ(4, 10, 6, c) ≤ π : True L2

1 := L1
1, j := j + 1

3 (4, 10, 6, 1, 5, 2, 3, 8, 9, 7) 3 6 φ(10, 6, 1, c) ≤ π : True L3
1 := L2

1, j := j + 1
4 (4, 10, 6, 1, 5, 2, 3, 8, 9, 7) 4 1 φ(6, 1, 5, c) ≤ π : False L4

1 := L3
1 \ {5}

5 (4, 10, 6, 1, 2, 3, 8, 9, 7) 4 1 φ(6, 1, 2, c) ≤ π : False L5
1 := L4

1 \ {6}, j := j− 1
6 (4, 10, 1, 2, 3, 8, 9, 7) 3 1 φ(10, 1, 2, c) ≤ π : False L6

1 := L5
1 \ {10}, j := j− 1

7 (4, 1, 2, 3, 8, 9, 7) 2 1 φ(4, 1, 2, c) ≤ π : True L7
1 := L6

1, j := j + 1
8 (4, 1, 2, 3, 8, 9, 7) 3 2 φ(1, 2, 3, c) ≤ π : True L8

1 := L7
1, j := j + 1

9 (4, 1, 2, 3, 8, 9, 7) 4 3 φ(2, 3, 8, c) ≤ π : True L9
1 := L8

1, j := j + 1
10 (4, 1, 2, 3, 8, 9, 7) 5 8 φ(3, 8, 9, c) ≤ π : True L10

1 := L9
1, j := j + 1

11 (4, 1, 2, 3, 8, 9, 7) 6 9 φ(8, 9, 7, c) ≤ π : False L11
1 := L10

1 \ {7}
12 (4, 1, 2, 3, 8, 9) 6 9 φ(8, 9, 4, c) ≤ π : False L12

1 := L11
1 \ {8}, j := j− 1

13 (4, 1, 2, 3, 9) 5 9 φ(3, 9, 4, c) ≤ π : True L13
1 := L12

1 , j := j + 1

14 Inner convex hull P1 := L13
1 = (4, 1, 2, 3, 9) is constructed.
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Figure 16. Graphs corresponding to the iterations carried out by Algorithm 5 (INNER−
CONVEX−HULL) for the construction of the inner convex hull P for the example instance “tsp10”.
(a) L3

1 := L2
1 := L1

1 := L0
1; (b) L4

1 := L3
1 \ {5}; (c) L5

1 := L4
1 \ {6}; (d) L10

1 := L9
1 := L8

1 := L7
1 := L6

1 :=
L5

1 \ {10}; (e) L11
1 := L10

1 \ {7}; (f) L13
1 := L12

1 := L11
1 \ {8}.
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2.4.2. Algorithm JOINP

Algorithm 4 (Figure 17) (JOINP) is invoked at every iteration h from Algorithm 3
(INFLAMMATION), where Algorithm 5 (INNER− CONVEX−HULL) is invoked before
returning polygon Ph. Algorithm 4 constructs tour Th based on an earlier-constructed tour
Th−1 = (i1, . . . , i|Th−1|) and polygon Ph = (v1, . . . , v|Ph |). The construction is carried out in a
number of iterations, where we denote by Tl

h−1 a partial tour constructed at iteration l; we
let T0

h−1 := Th−1.
At iteration l ≥ 1, vertex vl from polygon Ph is inserted in between two adjacent pairs

of vertices from tour Tl
h−1. These two vertices ij and ij+1 are determined so that the cost of

inserting vertex vl ∈ Ph in between these vertices is the minimum possible, i.e.,

w(ij, vl) + w(vl , ij+1)−w(ij, ij+1)

is the minimum possible (the triangle inequality). Below is a formal description of
the algorithm.

Figure 18 shows tour T1 and polygon P2 for the problem instance “tsp10”. Table 3 and
Figure 19 show the five iterations performed by Algorithm 4 (JOINP) for the construction
of tour T2.

Table 3. Iterations performed by Algorithm 4 (JOINP) for the construction of tour T2.

l vl (ij, ij+1) T l
h−1

0 (4, 1, 2, 3, 9, 4)

1 10 (4, 1) (4, 10, 1, 2, 3, 9, 4)
2 6 (10, 1) (4, 10, 6, 1, 2, 3, 9, 4)
3 5 (1, 2) (4, 10, 6, 1, 5, 2, 3, 9, 4)
4 8 (3, 9) (4, 10, 6, 1, 5, 2, 3, 8, 9, 4)
5 7 (9, 4) (4, 10, 6, 1, 5, 2, 3, 8, 9, 7, 4)

Start

End
No

Yes

Figure 17. Joinp algorithm flowchart.
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Figure 18. Tour T1 and polygon P2 for the example instance “tsp10”.
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Figure 19. Graphs corresponding to the iterations carried out by Algorithm 4 (JOINP) for the
construction of tour T2. (a) T1

h−1 = (4, 10, 1, 2, 3, 9, 4); (b) T2
h−1 = (4, 10, 6, 1, 2, 3, 9, 4); (c) T3

h−1 =

(4, 10, 6, 1, 5, 2, 3, 9, 4); (d) T4
h−1 = (4, 10, 6, 1, 5, 2, 3, 8, 9, 4); (e) T2 := T5

h−1 = (4, 10, 6, 1, 5, 2, 3, 8, 9, 7, 4).

2.4.3. Algorithm INFLAMMATION

The Algorithm 3 (Figure 20) initially lets T0 := ∅. While |V \ Th| > 2, in the iteration
h > 0, the coordinates xch and ych of the centroid ch are calculated as follows:

xch =
∑i∈V\Th−1

xi

|V \ Th−1|

and

ych =
∑i∈V\Th−1

yi

|V \ Th−1|
.

Once the centroid is so defined, Algorithm 5 (INNER−CONVEX− HULL) is invoked
to obtain the inner convex hull Ph. Then, the tour Th is constructed by the invoking of
Algorithm 4 (JOINP(Th−1, ch)).

If |V \ Th| = 0, then the algorithm halts. Else, if 1 ≤ |V \ Th| ≤ 2, instead of invoking
Algorithm 5 (no inner convex hull can be constructed), the |V \ Th| vertices from set V \ Th
are inserted in between two consecutive vertices of tour Th−1 in |V \ Th| iterations, one
vertex at each iteration, similar to as in Algorithm 4 (so that the increase in the total cost at
each iteration is the minimum possible).
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Figure 20. Inflammation algorithm flowchart.

Table 4 and Figure 21 illustrate Algorithm 3 for problem instance “tsp10” with 10 ver-
tices. In Figure 21a, inner convex polygon P1 = (4, 1, 2, 3, 9) is constructed, considering the
vertices of V \ T0 = V. In Figure 21b, T1 = (4, 1, 2, 3, 9, 4) is constructed with the vertices
included in P1 and P2 = (7, 10, 6, 5, 8) is constructed with the vertices included in V \ T1. In
Figure 21c, T2 = (4, 10, 6, 1, 5, 2, 3, 8, 9, 7, 4) is constructed by inserting the vertices from P2
in tour T1. The resultant feasible solution T = T2.

Table 4. Iterations performed by Algorithm 3 (INFLAMMATION) for the construction of tour T for
example instance “tsp10”.

h Ph Th

0 ∅

1 (4, 1, 2, 3, 9) (4, 1, 2, 3, 9, 4)
2 (10, 6, 5, 8, 7) (4, 10, 6, 1, 5, 2, 3, 8, 9, 7, 4)

T = (4, 10, 6, 1, 5, 2, 3, 8, 9, 7, 4)
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Figure 21. Graphs of the iterations performed by Algorithm 3 (INFLAMMATION) to solve the
example instance “tsp10”.

We applied an improvement algorithm to a complete tour obtained as above. Two
heuristics were used in a loop for this purpose. First, a local search algorithm proposed
by Croes (“2-Opt”) [43] was applied. Then, iteratively, a vertex from the current tour
was relocated to an alternative position if this yielded further reduction in the total cost.
The algorithm halts when no such rearrangement exists.

As is easy to see, algorithm INNER−CONVEX−HULL has time complexity O(n log n);
algorithm JOINP has time complexity O(n2); the improvement phase has the same time
complexity as the improvement phase of the INSERTION algorithm.
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3. Implementation and Results

In this section, we report our experimental study. Our algorithms were coded in C++
and compiled on a Debian GNU/Linux operating system.

According to our earlier experimental results from [5], the insertion algorithm from
Section 2.2 proved to be very fast. It was tested for 218 problem instances with sizes
between 32 and 744,710 from the TSPLIB [44], NATIONAL [45], ART GALLERY [45], and
VLSI [45] group of instances. On average, the cost of the approximation obtained by this
method with respect to the cost of the best-known solution had a margin of error of 7.2%.

The inflammation method was designed to provide solutions of good quality for
some typical real-life instances. A few such sample instances were created based on the
existing tourist tours and network convenience stores from different parts of the world
(Asia, Europe, South America, United States of America, and Mexico. We describe these
instances in the following subsections.

The algorithm for the BMTSP from Section 2.3 was tested for 22 benchmark instances.
For one of them, pr1002.tsp (with k = 5, mmin = 1, and mmax = 5), we obtained the best-
known result C(T) = 329, 128, improving the earlier-known best cost C(BKS) = 334.351
Lo et al. [38]. The remaining 16 instances were solved with an approximation gap less than
or equal to 7%. We refer the reader to Table 1 from [42] for the details.

3.1. Ring Roads

Many towns throughout the world have an important principal avenue, often referred
to as ring (circular) roads or peripheral avenues. They typically surround the populated
areas. They can be seen as circle-type curves or multiple-sided polygons that contain a
given populated area in the interior area. Peripheral avenues contain different important
locations such as military barracks, supermarkets, malls with cinemas, restaurants, gas
stations, etc. The remaining interior destinations such as market places, bus terminals,
teacher training colleges, fields for physical and sports activities, houses, etc., can also be
reached through peripheral avenues. Peripheral avenues have also exits to highways that
connect a given city with neighboring towns. In Figure 22, the peripheral roads of some
major cities are illustrated (these images were taken from the Internet). Based on these
images, we created our first sample problem instance for an abstract peripheral avenue and
tested the inflammation algorithm for this instance.

(a) Los Angeles (b) Berlin (c) Iceland

(d) London (e) Moscow (f) Paris

Figure 22. Peripheral roads of some major cities.
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Figure 23a illustrates this sample instance, and Figure 23b represents the solution
created by the algorithm. The optimality of the created tour is easily verified. For the
real-life instances, strictly optimal solutions may not be obtained, but one would normally
expect the algorithm to deliver close to the optimal solutions. In the following subsections,
we give the results for six other real-life instances.

10 20 30 40 50 60 70

10

20

30

40

50

60

70

80

90

80 90

9

10

11

12

13

14

15

16

17

1819

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34 35

36

37

38

39

40

1

2

3

4

5

6

7

8

(a) Instance (b) Solution

Figure 23. Instance “FNV40.tsp” and its solution.

3.2. Convenience Stores in Iguala

Our next instance was taken from a map of the city of Iguala, located in the state
of Guerrero, Mexico (See Appendix A.1). Different important spots including a chain of
convenience stores are located around the peripheral avenue of this city. This peripheral
avenue is shaped as an eight-sided polygon, as we can see from Figure 24. In Iguala,
an important chain of convenience stores, Oxxo, has 21 stores and an administrative office
in this city; 11 of these stores are located on the peripheral avenue or one block from it; eight
stores are in the city center; two stores are at one of the city exits. Among the employees
who work in those offices, there are those who must visit all the stores, and there are also a
couple of supervisors who only visit between 10 and 13 stores that they are in charge of.

Figure 24. The peripheral avenue of Iguala is shaped as an 8-sided polygon [46].

We tested both the inflammation and BMTSP algorithms for this instance. Figure 25
shows the iterations carried out by the inflammation method for the construction of the tour
for an employee to visit all the stores in the city. The vertex d represents the administrative
office from which that employee starts and ends his/her trip.
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Figure 25. Iterations performed to resolve the instance of Iguala by the inflammation method.

In Figure 25a, the polygon P0 = (d, 6, 20, 8, 16) is constructed. In Figure 25b, T0 =
(d, 6, 20, 8, 16, d) is constructed from the vertices of P0, and the polygon P1 = (7, 2, 14, 19, 9, 10)
is constructed. In Figure 25c, T1 = (d, 6, 7, 2, 20, 14, 8, 19, 9, 16, 10, d) is constructed from the
vertices of P1 inserted in T0, and the polygon P2 = (4, 21, 17, 18, 5, 12) is constructed. In
Figure 25d, T2 = (d, 6, 7, 4, 2, 21, 17, 20, 14, 8, 19, 18, 5, 9, 16, 12, 10, d) is constructed from the
vertices of P2 inserted in T1, and the polygon P3 = (1, 13, 15) is constructed. In Figure 25e,
T3 = (d, 6, 7, 4, 15, 1, 2, 21, 17, 20, 13, 14, 8, 19, 18, 5, 9, 16, 12, 10, d) is constructed from the
vertices of P3 inserted in T2, and the polygon P4 = (3, 11) is constructed. In Figure 25f,
T4 = (d, 6, 7, 4, 15, 3, 11, 1, 2, 21, 17, 20, 13, 14, 8, 19, 18, 5, 9, 16, 12, 10, d) is constructed from
the vertices of P4 inserted in T3, and the method completes the construction of the tour.

Figure 26 shows the phases carried out by the bounded multiprocessor TSP method
for the construction of a tour for each of the two supervisors (with k = 2, mmin = 10 and
mmax = 13). In Figure 26a, the partition of set V \ {d} into two feasible subsets V1 =
{5, 8, 9, 13, 14, 16, 17, 18, 19, 20, 21} and V2 = {1, 2, 3, 4, 6, 7, 10, 11, 12, 15} is shown, whose
number of vertices included in each of them is between 10 and 13 vertices. In Figure 26b,
tours T1 = (d, 21, 17, 20, 13, 14, 8, 8, 5, 18, 19, 16, d) and T2 = (d, 6, 2, 7, 4, 1, 11, 3, 15, 12, 10, d)
are constructed for the subsets V1∪{d} and V2∪{d}, respectively. In Figure 26c, the feasible
solution constructed is improved.
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Figure 26. Tours T1 y T2 constructed by the bounded multiprocessor TSP method for 2 supervisors,
mmin = 10 and mmax = 13.

3.2.1. Instance Asia

Instance “Asia.tsp” was built based on two tourist circuits: “Japan, China and South
Korea in 15 days” by [47] and “17 days—Travel to Japan, South Korea and China” by [48].

The instance includes 22 tourist places: Tokyo, Hakone, Guilin, Xi’an, Shanghai,
Seoul, Beijing, Linfen, Pingyao, Wutai, Jiming Mountain, Datong, Itsukushima Shrine,
Iwakuni, Xinzhou, Shimonoseki, Hiroshima, Busan, Daegu, Tripitaka, Jeonju, and Suwon
(see Figure 27).
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(a) (b) (c)

Figure 27. Map and solution of instance “Asia.tsp”. (a) Map [49]; (b) Solution; (c) Improved solution.

3.2.2. Instance Europe

Instance “Europe.tsp” was taken from the circuit called “Fantastic Europe Circuit”
from [50].

The instance includes 24 tourist places: Madrid, San Sebastian, Bordeaux, Blois, Paris,
Luxembourg, Frankfurt, Heidelberg, Freiburg, Zurich, Lucerne, Vaduz, Innsbruck, Padova,
Venice, Bologna, Florence, Assisi, Rome, Pisa, Nice, Montpellier, Barcelona, and Zaragoza
(see Figure 28).

(a) (b) (c)

Figure 28. Map and solution of instance “Europe.tsp”. (a) Map [51]; (b) Solution; (c) Improved
solution.

3.2.3. Instance South America

Instance “SouthAmerica.tsp” was built based on two tourist circuits: “Peru, Bolivia and
Chile” and “Argentina-Chile” of [52].

The instance includes 15 tourist places: Lima, San Pedro Atacama, Ollantaytambo,
Cusco, Machu Picchu, Sacred Valley of the Incas, Lake Titicaca, Copacabana, Torres de Paine,
El Calafate, Viña del Mar, Buenos Aires, Santiago de Chile, Valparaíso, and Montevideo
(See Figure 29).

(a) (b) (c)

Figure 29. Map and solution of instance “SouthAmerica.tsp”. (a) Map [53]; (b) Solution; (c) Im-
proved solution.
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3.2.4. Instance East of USA

Instance “EastUSA.tsp” was taken from the circuit called “The Grand East” of [54].
The instance includes 19 tourist places: New York, Boston, Quebec, Montreal, Ot-

tawa, Toronto, Niagara Falls, Amish Country, Washington D.C., Wiliamsburg, Roanoke,
Gatlingburg, Nashville, Memphis, New Orleans, Pensacola, Orlando, and Miami (See
Figure 30).

(a) (b) (c)

Figure 30. Map and solution of instance “EastUSA.tsp”. (a) Map [55]; (b) Solution; (c) Improved
solution.

3.2.5. Instance Mexico

The instance “Mexico.tsp” was built based on three tourist circuits: “Mayan Civiliza-
tions” and “Yucatán” from [56] and “The essentials of Mexico to Cancun ” from [57].

The instance includes 22 tourist places: Mexico City, Teotihuacan, Villahermosa,
Palenque, Campeche, Uxmal, Mérida, Chichen Itzá, Cancún, Tulum, Cobá, Kabah, Iza-
mal, Valladolid, Puebla, Mitla, Oaxaca-MonteAlbán, Tehuantepec, Tuxtla Gutierrez, San
Cristobal de las Casas, and Agua Azul Waterfalls (see Figure 31).

(a) (b) (c)

Figure 31. Map and solution of instance “Mexico.tsp”. (a) Map [58]; (b) Solution; (c) Improved
solution.

3.3. Summary of the Results at the Improvement Stage

In Table 5, we give a summary of the improvements accomplished at the last improve-
ment stage of the inflammation algorithm. Column “CIn f (T)” represents the cost of the
tour delivered by the inflammation algorithm, and Column “CImp(T)” represents the cost
of the tour delivered by the improvement stage. Column “% Improvement” presents the
percentage of the improvement.
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Table 5. A summary of the improvements accomplished at the last improvement stage of the
inflammation algorithm.

Instance CInf(T) CImp(T) % Improvement

FNV40.tsp 304.10 304.10 0%
Iguala.tsp 1490.78 1452.21 2.66 %
Asia.tsp 1878.60 1848.94 1.60%
Europe.tsp 2964.18 2578.17 14.97%
SouthAmerica.tsp 1690.70 1686.56 0.25%
EastUSA.tsp 1977.06 1761.28 12.25 %
Mexico.tsp 1389.89 1381.58 0.60 %

4. Conclusions and Future Work

Using convex polygons in our approach provided good-quality solutions for Euclidean
traveling salesman problems. In particular, the inflammation algorithm provided optimal
and near-optimal solutions for the “ring-type” instances of the Euclidean TSP. Ring-type
instances with a symmetric geometric structure were solved optimally, whereas for the real-
life ring-type instances, close to optimum solutions were created. As for the future work, it
would be interesting to compare the practical behavior of the earlier-mentioned algorithms
(including our algorithm) for the construction of a girding polygon. Indeed, the worst-case
time complexity does not always reflect the practical performance. We also intend to extend
the inflammation algorithm with a decomposition stage, which would partition a given
problem instance into sub-instances with a nearly symmetric geometric structure. Then, we
can apply the proposed algorithm to each of the derived substances and unify the created
partial solutions into an overall complete solution. Likewise, our algorithm for the BMTSP
can be extended with different alternative algorithms for partitioning the given set of points.
Our method can also be adapted for more general settings including different versions of
the multiprocessor traveling salesman problem.
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Appendix A

Appendix A.1

Figure A1 contains the location of the administrative office and the 21 convenience
stores installed in Iguala, which are represented in Table A1, which contains the store
number in column i, the x coordinate of store i in column xi, and the y coordinate of store i
in column yi.
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Figure A1. Location of the 21 convenience stores in Iguala. [46]

Table A1. Instance Iguala.

i xi yi i xi yi

0 199 130 11 69 201
1 109 175 12 172 57
2 196 190 13 270 278
3 16 170 14 278 215
4 150 141 15 91 85
5 462 7 16 257 114
6 199 137 17 195 246
7 172 139 18 459 12
8 254 162 19 308 102
9 309 78 20 244 231

10 191 108 21 164 260
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