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Abstract: In this article, we propose a one-dimensional heat conduction model for a double-pane
window with a temperature-jump boundary condition and a thermal lagging interfacial effect
condition between layers. We construct a second-order accurate finite difference scheme to solve
the heat conduction problem. The designed scheme is mainly based on approximations satisfying
the facts that all inner grid points has second-order temporal and spatial truncation errors, while
at the boundary points and at inter-facial points has second-order temporal truncation error and
first-order spatial truncation error, respectively. We prove that the finite difference scheme introduced
is unconditionally stable, convergent, and has a rate of convergence two in space and time for the
L∞-norm. Moreover, we give a numerical example to confirm our theoretical results.
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1. Introduction

In the last decades, there is an increasing interest in the research and development of
mathematical models related with clean technologies; see, for instance, [1]. The interest is
motivated by the diminution of adverse environmental impacts of conventional energies,
the growth of world population with improved life standards, the reduction in energy
production costs, and the optimization of energy consumption [2]. It is known that about a
third of the total energy is used in buildings and a about a third of energy is lost through
windows [3]. Then, a key aspect to understand in order to save energy in buildings is the
design of appropriate windows.

In the recent literature, there are several works focused in the study of heat transfer
in pane windows [4–14]. The finite difference techniques is used to solve numerically the
Boussinesq equations and to simulate the flow of the air in a window cavity [4]. The problem
of natural convective flows in the cavity of a double-glazed window with photovoltaic
cells is modeled and simulated by the Navier–Stokes and energy equations [5]. From a
stationary two-dimensional formulation of heat transfer through a triple-pane window and
applying the method of numerical modeling, we deduced that the thermal resistance of the
triple-pane window filled with air turns out to be 1.7 times higher than that of the double-
pane window having the same thickness as the triple-pane [6]. The determination of the
optimum thickness of the air layer that is trapped between the interior and exterior glass of
a window pane has been studied in the context of window design [7,13]. The research of
other potential problems arising in pane windows (such as the low consumption of energy
in a building with double pane window, the numerical modeling, the design of multiple
pane windows, the relation to the climate, etc.) are conducted by several works [8–12,14].
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The study of transfer heat problems between different substances, for instance, solids
of different types or solids and fluids, are considered by several researchers [15–23]. The
motivations are of different types: simple examples, analytical solutions, creation of mathe-
matical models, different applications, theoretical study, and numerical simulations [15].
Particularly, in relation to the numerical solutions, we propose several numerical methods
including the use of high-order implicit time integration schemes [17], hybrid boundary ele-
ment method and radial basis integral equation [18], high-order finite volume schemed [19],
projection method [20], high-order implicit Runge–Kutta schemes [21], and finite difference
methods [23].

On the other hand, we know that for situations of very-low temperatures near absolute
zero the heat propagate at a finite speed [24]. Then, the classical models of heat transfer,
based on the Fourier law, needs an improvement. One of those generalizations is the
well-known dual-phase-lagging model proposed by Tzou in [25] (see also [26]), which is
based in non-Fourier heat conduction law and the energy equation given by

q(x, t + τq) = −k
∂T
∂x

(x, t + τT), (1)

− ∂q
∂x

(x, t) = C
∂T
∂t

(x, t) + Q(x, t), (2)

respectively; where t is the time, x is the space position, T is the temperature, q is the heat
flux, k is the heat conductivity, τT is the phase lag of the temperature gradient, τq is the
phase lag of the heat flux, C is the heat capacity of the material, and Q is the volumetric
heat generation. By applying a Taylor series expansion in (1), we deduce that

q(x, t) + τq
∂q
∂x

(x, t) = −k
[

∂T
∂x

(x, t) + τT
∂2T
∂t∂x

(x, t)
]

. (3)

Then, by using (2) in (3), we obtain

C
(

∂T
∂t

+ τq
∂2T
∂t∂x

)
= k

(
∂2T
∂x2 + τT

∂3T
∂t∂2x

)
, (4)

which is known as the heat conduction equation under the dual-phase-lagging effect or
briefly as dual-phase-lagging model.

In this paper, we are interested in the problem of heat transfer in a double pane
window. Let us consider a double pane window of a total width thickness L, schematically
presented in Figure 1. The width thickness of exterior glass, air space, and interior glass are
given by `1, `2, and `3, respectively. For convenience of the presentation, we introduce the
following terminology and notation

L0 = 0, L1 = `1, L2 = `1 + `2, L3 = `1 + `2 + `3 = L,
L0 and L3 are called the boundaries and L1 and L2 the interfaces,
I1 =]L0, L1[, I2 =]L1, L2[, and I3 =]L2, L3[, are called the layers,
I lay = I1 ∪ I2 ∪ I3, I int = {L1} ∪ {L2}, I = I lay ∪ I int,
∂I = {L0, L1}, I`,T = {L`} × [0, T], Q`,T = I` × [0, T],
Qlay

T = I lay × [0, T], Iint
T = Iint × [0, T], QT = Qlay

T ∪ I int
T .


(5)

We assume that the mathematical model for heat transfer is given by the initial
interface-boundary value problem

C`

(
∂u
∂t

+ τ
(`)
q

∂2u
∂t2

)
= k`

(
∂2u
∂x2 + τ

(`)
T

∂3u
∂t∂x2

)
+ f`(x, t), ` = 1, 2, 3, in Qlay

T , (6)

u(x, 0) = ψ1(x),
∂u
∂t

(x, 0) = ψ2(x), on I , (7)



Axioms 2022, 11, 422 3 of 21

(
− α1K(1)

n
∂u
∂x

+ u
)
(L0, t) = ϕ1(t), on [0, T], (8)(

α2K(2)
n

∂u
∂x

+ u
)
(L3, t) = ϕ2(t), on [0, T], (9)

u(x− 0, t) = u(x + 0, t), on Iint
T , (10)

k`

(
∂u
∂x

+ τ
(`)
T

∂2u
∂x∂t

)
(x− 0, t)

= k`+1

(
∂u
∂x

+ τ
(`+1)
T

∂2u
∂x∂t

)
(x + 0, t), ` = 1, 2, on Iint

T , (11)

where u(x, t) is the temperature at the position x and time t, C` is the heat capacitance; τ
(`)
q

and τ
(`)
T stand for the heat flux and the temperature gradient phase lags, respectively; k`

is the conductivity; f` are the source functions; α1 and α2 are some coefficients; K(1)
n and

K(2)
n are the Knudsen numbers; ψ1 and ψ2 are the initial conditions; and ϕ1 and ϕ2 are two

given functions modeling the boundary conditions. We notice three facts: the relationship
between Kn and k is given by K2

nCL2
c = 3kτq with Lc a characteristic length, the boundary

conditions (8) and (9) are a consequence of assuming a temperature-jump condition, and
the model are not in dimensionless form; see [27,28] for details.
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Figure 1. A schematic form of a a double-pane window.

The state equation (Equation (6)) is deduced by assuming by the fact that the dual-
phase-lagging model of the form (4) is satisfied in each layer I1, I2 and I3. The interfacial
conditions (10) and (11) are imposed in order to obtain a continuous behavior of tempera-
ture and the heat flux, respectively. For instance at x = L1, we have that (11), by application
of the first-order non-Fourier’s law, is rewritten as follows

q(L1 − 0, t) + τ
(1)
q

∂q
∂t

(L1 − 0, t) = q(L1 + 0, t) + τ
(2)
q

∂q
∂t

(L1 + 0, t).

The condition of the type (11) was introduced in [27] for the case of the mathematical
model of a double-layered nano-scale thin film, where the authors observe that these kind
of interfacial conditions plays an important role in the derivation of energy estimations.
Other important aspect of the mathematical model (6) and (11) is the fact the state equation
and the boundary conditions (8) and (9) are given only in terms of the temperature, which
is different from the standard models where a variable the heat flux is considered.

The main results of the paper are the following: (i) we prove an energy estimate, (ii) we
introduce a second-order accurate finite difference scheme for solving the mathematical
model, and (iii) we prove that the unconditional stability, the convergence, and estimate
that the rate of convergence is two in space and time for the L∞-norm. Additionally, we
give two numerical examples.

The methodology used in the paper is a generalization of the one introduced in [27]
for the case heat transfer in a double-layered nano-scale thin film. We consider the change
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variable v = ut and deduce the equivalent system to (6)–(11) in terms of u and v. We
introduce the discretization by a semidiscrete finite difference scheme. In addition, we
deduce a fully finite difference scheme, approaching the system for (u, v). We rewrite
the discrete scheme to approximate the solution of (6)–(11). Then, we introduce and
prove the results of discrete energy estimation, unconditional stability, convergence, and
error estimates.

2. Change of Variable and Continuous Energy Estimation

We introduce a new function v : QT → R such that v = ut. Then, from (6)–(11), we
deduce that

C`

(
v + τ

(`)
q

∂v
∂t

)
= k`

∂2

∂x2

(
u + τ

(`)
T v

)
+ f`(x, t), ` = 1, 2, 3, in Qlay

T , (12)

v(x, t) =
∂

∂t
u(x, t), in QT , (13)

u(x, 0) = ψ1(x), v(x, 0) = ψ2(x), on I , (14)

− α1K(1)
n

∂

∂x

(
u + τ

(1)
T v

)
(L0, t) + (u + τ

(1)
T v)(L0, t) = φ1(t), on [0, T], (15)

α2K(2)
n

∂

∂x

(
u + τ

(3)
T v

)
(L3, t) + (u + τ

(3)
T v)(L3, t) = φ2(t), on [0, T], (16)

u(x− 0, t) = u(x + 0, t), v(x− 0, t) = v(x + 0, t), on Iint
T , (17)

k`
∂

∂x

(
u + τ

(`)
T v

)
(x− 0, t) = k`+1

∂

∂x

(
u + τ

(`+1)
T v

)
(x + 0, t), on Iint

T , (18)

where φi = ϕi + τ
(i)
T (ϕi)t for i = 1, 2.

Theorem 1. Consider the notation and terminology defined on (5) and u, v solutions of (6)–(11)
and (12)–(18) with boundary conditions φ1 = φ2 = 0, respectively. If we denote by E the function
defined as follows

E(t) =
3

∑
`=1

C`τ
(`)
q ‖v2‖2

L2(I`)
+

3

∑
`=1

k`‖ux‖2
L2(I`)

+
u2(L0, t)

α1K(1)
n

+
u2(L3, t)

α2K(2)
n

· (19)

Then, the estimate

E(t) ≤ E(0) +
1
2

∫ t

0

3

∑
`=1

1
C`

∫
I`

f 2
` (x, s)dxds, (20)

is valid for any t ∈]0, T].

Proof. Multiplying the Equation (12) by v, integrating over I lay, using the identities∫
I`

∂v
∂t

v dx =
1
2

d
dt

∫
I`

v2dx,

∫
I`

∂u
∂x

∂v
∂x

dx =
1
2

d
dt

∫
I`

(
∂u
∂x

)2
dx,∫

I`

∂2

∂x2

(
u + τ

(`)
T v

)
v dx =

(
∂

∂x
(u + τ

(`)
T v)v

)
(L`+, t)

−
(

∂

∂x
(u + τ

(`)
T v)v

)
(L`−1−, t)−

∫
I`

∂u
∂x

∂v
∂x

dx− τ
(`)
T

∫
I`

(
∂v
∂x

)2
dx,

for ` = 1, 2, 3, and the interface conditions (17) and (18), we have that
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3

∑
`=1

C`

∫
I`

v2dx +
1
2

3

∑
`=1

C`τ
(`)
q

d
dt

∫
I`

v2dx

=
3

∑
`=1

k`

[(
∂

∂x
(u + τ

(`)
T v)v

)
(L`+, t)−

(
∂

∂x
(u + τ

(`)
T v)v

)
(L`−1−, t)

]

−
d

∑
`=1

k`
∫
I`

∂u
∂x

∂v
∂x

dx−
3

∑
`=1

k`τ
(`)
T

∫
I`

(
∂v
∂x

)2
dx +

3

∑
`=1

∫
I`

f`(x, t)vdx (21)

= k3

(
∂

∂x
(u + τ

(d)
T v)v

)
(Ld, t)− k1

(
∂

∂x
(u + τ

(1)
T v)v

)
(L0, t)

− 1
2

3

∑
`=1

k`
d
dt

∫
I`

(
∂u
∂x

)2
dx−

3

∑
`=1

k`τ
(`)
T

∫
I`

(
∂v
∂x

)2
dx +

3

∑
`=1

∫
I`

f`(x, t)vdx.

Now, using the fact that φ1 = φ2 = 0, from (15) and (16), we deduce that

k1
∂

∂x
(u + τ

(1)
T v)(L0, t) =

1

α1K(1)
n

(u + τ
(1)
T v)(L0, t) (22)

k3
∂

∂x
(u + τ

(3)
T v)(L3, t) = − 1

α2K(2)
n

(u + τ
(3)
T v)(L3, t). (23)

Thus, replacing (22) and (23) in (21), using the definition of E given on (19), and the
Cauchy–Schwartz inequality, we have that

1
2

d
dt

E(t) +
3

∑
`=1

C`

∫
I`

v2dx +
3

∑
`=1

k`τ
(`)
T

∫
I`

(
∂v
∂x

)2
dx

=
3

∑
`=1

∫
I`

f`(x, t)v2dx

≤
3

∑
`=1

1
4C`

∫
I`

f 2
` (x, t)dx +

3

∑
`=1

C`

∫
I`

v2dx,

which implies (20) by an integration on [0, t].

3. Discretization of the Domain, Finite Difference Notation, and Preliminary Results
3.1. Discretization of the Domain

Let us consider the notation in (5). We assume that each interval I` is divided into
M` parts of size ∆x` = (L` − L`−1)/M`, the temporal interval is divided into N parts
of size ∆t = T/N, and we introduce the notation x`,i = L`−1 + i∆x`, x`,i+1/2 = L`−1 +
(i + 1/2)∆x`, and tn = n∆t for i = 1, . . . , M`; ` = 1, 2, 3 and n = 0, . . . , N. Then, the
discretization of QT is given by

Q∆x,∆t = Ω∆x × T∆t

:=
({

x`,i : i = 0, . . . , M` − 1, ` = 1, . . . , 3,
}
∪
{

L3

})
×
{

tn : n = 1, . . . , N
}

.

3.2. Finite Difference Notation

The grid function space is defined as follows

U∆x,∆t =
{
U = (u0, . . . , uN) : un = (un

1,0, . . . , un
1,M1

, un
2,1, . . . , un

2,M2
, un

3,1, . . . , un
3,M3

)
}

.



Axioms 2022, 11, 422 6 of 21

Then, for (W, `, n) ∈ U∆x,∆t × {1, 2, 3} × {0, . . . , N}, we introduce the finite differ-
ence notation

wn+1/2
`,i =

1
2
(wn

`,i + wn+1
`,i ), i = 0, . . . , M`,

δtwn+1/2
`,i =

1
∆t

(wn+1
`,i − wn

`,i), i = 0, . . . , M`,

wn
`,i =

1
4
(wn+1

`,i + 2wn
`,i + wn−1

`,i ), i = 0, . . . , M`,

∆twn
`,i =

1
2∆t

(wn+1
`,i − wn−1

`,i ), i = 0, . . . , M`,

δxwn
`,i+1/2 =

1
∆x`

(wn
`,i+1 − wn

`,i), i = 0, . . . , M` − 1,

δ2
xw`,i =

1
∆x`

(
δxw`,i+ 1

2
− δxw`,i− 1

2

)
, i = 1, . . . , M` − 1.

Moreover, we consider the notation

(wn
` , vn

` ) = ∆x`

(
1
2

wn
`,0vn

`,0 +
M`−1

∑
i=1

wn
`,iv

n
`,i +

1
2

wn
`,M`

vn
`,M`

)
, (24)

‖wn
` ‖

2 = (wn
` , wn

` ), ‖W‖2 =
3

∑
`=1
‖wn

` ‖
2, (25)

‖wn
` ‖∞ = max

0≤i≤M`

|wn
`,i|, ‖W‖∞ = max

1≤`≤3
‖wn

` ‖∞, (26)

‖δxwn
` ‖

2 = ∆x`
M`−1

∑
i=0

(δxwn
`,i+1/2)

2, ‖δxW‖2 =
3

∑
`=1
‖δxwn

` ‖
2, (27)

for the inner product and norms on U∆x,∆t.
On the other hand, in the case of semidiscrete and discrete sachems, we use the notation

u`,i(t) = u(x`,i, t), v`,i(t) = v(x`,i, t), un
`,i = u(x`,i, tn), vn

`,i = v(x`,i, tn), (28)

for ` = 1, 2, 3 and i = 0, . . . , M`, respectively.

3.3. Four Useful Finite Difference Approximation Lemmas

Lemma 1 ([27,29]). Let us consider that [a, b] is an interval partitioned in m sub-intervals of the
form [zi−1, zi], where zi is defined by zi = a + ih for i = 0, . . . , m with h = (b− a)/m. If we
consider that the function g is such that g ∈ C4([z0, zm]), then it holds

g′′(z0) =
2
h

[
g(z1)− g(z0)

h
− g′(z0)

]
− h

3
g
′′′
(ξ0), ξ0 ∈ [z0, z1], (29)

g′′(zi) =
1
h2 [g(zi+1)− 2g(zi) + g(zi−1)]−

h2

12
g(4)(ξ0),

ξi ∈ [zi−1, zi+1], i = 1, . . . , m− 1, (30)

g′′(zm) =
2
h

[
g′(zm)−

g(zm)− g(zm−1)

h

]
+

h
3

g
′′′
(ξm), ξm ∈ [zm−1, zm]. (31)

Lemma 2 ([29,30]). Consider that the function g is such that g ∈ C4([a, b]), then it holds

1
2

[
g′(a) + g′(b)

]
=

g(b)− g(a)
b− a

+
(b− a)2

8

∫ 1

0

[
g
′′′
(

a + b
2

+
(b− a)s

2

)
+ g

′′′
(

a + b
2
− (b− a)s

2

)]
(1− s2)ds.
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Lemma 3 ([27,29]). Consider that W ∈ U∆x,∆t, then for any ε > 0, it holds

‖u1‖2 ≤ (1 + ε)u2
1,0 +

(
1 +

1
ε

)
L1‖δxu1‖2,

‖u3‖2 ≤ (1 + ε)u2
3,M3

+

(
1 +

1
ε

)
(L3 − L2)‖δxu3‖2.

4. Semidiscrete and Discrete Schemes for Numerical solution of (12)–(18)
4.1. Semidiscrete Approximation of System (12)–(18)

4.1.1. Approximation of (12) on I lay

Here we construct the semidiscrete scheme at inner points, i.e., except on the inter-
faces and boundaries. The inner nodes at I` are x`,i for i = 1, . . . , M` − 1. We start the
discretization by considering Equation (12) at the inner points (x`,i, t), we have that

C`

(
v(x`,i, t) + τ

(`)
q

∂

∂t
v(x`,i, t)

)
= k`

∂2

∂x2

(
u + τ

(`)
T v

)
(x`,i, t) + f`(x`,i, t), (32)

for ` = 1, 2, 3 and i = 1, . . . , M` − 1. To discretize the right-hand side of (32), we can apply
the approximation (30) in Lemma 1 and observe that

∂2

∂x2

(
u + τ

(`)
T v

)
(x`,i, t) = δ2

x

(
u + τ

(`)
T v

)
(x`,i, t)− (∆x`)2

12
∂4

∂x4

(
u + τ

(`)
T v

)
(ξ`,i, t), (33)

for ξ`,i ∈]x`,i−1, x`,i+1[ and i = 1, . . . , M` − 1. Dropping the small value terms in (33),
replacing the approximation in (32), and using the notation (28), we deduce that the
semidiscrete approximation form of (12) at the inner points is given by

C`

(
v`,i(t) + τ

(`)
q

d
dt

v`,i(t)
)
= k`δ2

x

(
u`,i(t) + τ

(`)
T v`,i(t)

)
+ f`(x`,i, t),

for ` = 1, . . . , 3, i = 1, . . . , M` − 1.

 (34)

4.1.2. Approximation of (12) on I int

We observe that the interface between `−th and (`+ 1)−th layers is located at x`,M`
=

x`+1,0. Then, considering Equation (12) at the inner points (x`,M`
, t) and (x`+1,0, t), we

deduce that

C`

(
v + τ

(`)
q

∂

∂t
v
)
(x`,M`

, t) = k`
∂2

∂x2

(
u + τ

(`)
T v

)
(x`,M`

, t) + f`(x`,M`
, t), (35)

C`+1

(
v + τ

(`+1)
q

∂

∂t
v
)
(x`+1,0, t) = k`+1

∂2

∂x2

(
u + τ

(`+1)
T v

)
(x`+1,0, t)

+ f`+1(x`+1,0, t), (36)

for ` = 1, 2. To discretize the right-hand sides of (35) and (36), we can apply the approxima-
tions (29) and (31) in Lemma 1, respectively; observe that

∂2

∂x2

(
u + τ

(`)
T v

)
(x`,M`

, t)

=
2

∆x`

{
∂

∂x

(
u + τ

(`)
T v

)
(x`,M`

, t)− δx

(
u + τ

(`)
T v

)
(x`,M`−1/2, t)

}
(37)

+
∆x`

3
∂3

∂x3

(
u + τ

(`)
T v

)
(ξ`,M`

, t), ξ`,M`
∈ [x`,M`−1, x`,M`

],

∂2

∂x2

(
u + τ

(`+1)
T v

)
(x`+1,0, t)



Axioms 2022, 11, 422 8 of 21

=
2

∆x`+1

{
δx

(
u + τ

(`+1)
T v

)
(x`+1,1/2, t)− ∂

∂x

(
u + τ

(`+1)
T v

)
(x`+1,0, t)

}
(38)

− ∆x`+1
3

∂3

∂x3

(
u + τ

(`+1)
T v

)
(ξ`+1,0, t), ξ`+1,0 ∈ [x`+1,0, x`+1,1].

From (18) we have that

k`
∂

∂x

(
u + τ

(`)
T v

)
(x`,M`

, t) = k`+1
∂

∂x

(
u + τ

(`+1)
T v

)
(x`+1,0, t). (39)

Thus, multiplying (35) and (36) by ∆x`/(∆x` + ∆x`+1) and ∆x`+1/(∆x` + ∆x`+1),
respectively; dropping the small value terms in (37) and (38) and replacing the approx-
imations in (35) and (36), respectively; summing up the results and using (39) and the
notation (28), we obtain the semidiscrete approximation form at the interface points

∆x`C`

∆x` + ∆x`+1

(
v`,M`

(t) + τ
(`)
q

d
dt

v`,M`
(t)
)
+

∆x`+1C`+1
∆x` + ∆x`+1

(
v`+1,0(t) + τ

(`+1)
q

d
dt

v`+1,0(t)
)

=
2

∆x` + ∆x`+1

{
k`+1δx

(
u + τ

(`+1)
T v

)
(x`+1,1/2, t)− k`δx

(
u + τ

(`)
T v

)
(x`,M`−1/2, t)

}
(40)

+
∆x`

∆x` + ∆x`+1
f`(x`,M`

, t) +
∆x`+1

∆x` + ∆x`+1
f`+1(x`+1,0, t), ` = 1, 2.

4.1.3. Approximation of (12) on ∂I
We observe that the boundaries of the physical domain are located at x1,0 = 0 and

x3,M3 = L. Then, considering the Equation (12) at the boundary points (x1,0, t) and (x3,M3 , t),
we deduce that

C1

(
v(x1,0, t) + τ

(1)
q

∂

∂t
v(x1,0, t)

)
= k1

∂2

∂x2

(
u + τ

(1)
T v

)
(x1,0, t) + f1(x1,0, t), (41)

C3

(
v(x3,M3 , t) + τ

(3)
q

∂

∂t
v(x3,M3 , t)

)
= k3

∂2

∂x2

(
u + τ

(3)
T v

)
(x3,M3 , t) + f3(x3,M3 , t), (42)

respectively. To discretize the right-hand sides of (41) and (42), we can apply the approxi-
mations (29) and (31) in Lemma 1 and deduce the following relations

∂2

∂x2

(
u + τ

(1)
T v

)
(x1,0, t)

=
2

∆x1

{
δx

(
u + τ

(1)
T v

)
(x1,1/2, t)− ∂

∂x

(
u + τ

(1)
T v

)
(x1,0, t)

}
(43)

− ∆x1

3
∂3

∂x3

(
u + τ

(1)
T v

)
(ξ1,0, t), ξ1,0 ∈ [x1,0, x1,1],

∂2

∂x2

(
u + τ

(3)
T v

)
(x3,M3 , t)

=
2

∆x3

{
∂

∂x

(
u + τ

(3)
T v

)
(x3,M3 , t)− δx

(
u + τ

(3)
T v

)
(x3,M3−1/2, t)

}
(44)

+
∆x3

3
∂3

∂x3

(
u + τ

(3)
T v

)
(ξ3,M3 , t), ξ3,M3 ∈ [x3,M3−1, x3,M3 ],

respectively. Moreover by (15) and (16), we have that

∂

∂x

(
u + τ

(1)
T v

)
(x1,0, t) =

1

α1K(1)
n

[(
u + τ

(1)
T v

)
(x1,0, t)− φ1(t)

]
, (45)

∂

∂x

(
u + τ

(3)
T v

)
(x3,M3 , t) =

1

α2K(2)
n

[
φ2(t)−

(
u + τ

(3)
T v

)
(x3,M3 , t)

]
. (46)
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Replacing (45) and (46) in (43) and (44), respectively; dropping the small value terms
and replacing the approximations results in (41) and (42), respectively; we obtain the
semidiscrete approximation form at the boundaries

C1

(
v1,0(t) + τ

(1)
q

∂

∂t
v1,0(t)

)
=

2k1

∆x1

{
δx

(
u1,1/2(t) + τ

(1)
T v1,1/2(t)

)
− 1

α1K(1)
n

[(
u1,0(t) + τ

(1)
T v1,0(t)

)
− φ1(t)

]}
(47)

+ f1(x1,0, t),

C3

(
v3,M3(t) + τ

(3)
q

∂

∂t
v3,M3(t)

)
= k3

2
∆x3

{
1

α2K(2)
n

[
φ2(t)−

(
u3,M3 + τ

(3)
T v3,M3

)
(t)
]
− δx

(
u3,M3 + τ

(3)
T v3,M3

)
(t)

}
(48)

+ f3(x3,M3 , t).

4.1.4. Approximation of (13)

Considering Equation (13) at the point (x`,i, t) we have that

v(x`,i, t) =
∂

∂t
u(x`,i, t), ` = 1, 2, 3, i = 0, . . . , M`. (49)

Then, the semidiscrete approximation of (13) is given by

v`,i(t) =
d
dt

u`,i(t), ` = 1, 2, 3, i = 0, . . . , M`, (50)

which is deduced by using the notation (28) in (49).

4.1.5. Semidiscrete Finite Difference Scheme to Approximate (12)–(18)

Summarizing the results obtained before, we have that the semidiscrete scheme is
given by (34), (40), (47), (48), and (50).

4.2. Fully Discrete Finite Difference Scheme to Approximate (12)–(18)

In order to obtain the full discrete finite difference scheme, we consider the semidiscrete
approximation and evaluating each of semidiscrete relations at t = tn and t = tn+1,
applying the Taylor expansion, Lemma 2 and adding the results, for n = 0, . . . , N − 1, we
obtain the scheme

C1

(
vn+1/2

1,0 + τ
(1)
q δtvn+1/2

1,0

)
=

2k1

∆x1

{
δx

(
un+1/2

1,1/2 + τ
(1)
T vn+1/2

1,1/2

)
− 1

α1K(1)
n

[(
un+1/2

1,0 + τ
(1)
T vn+1/2

1,0

)
− φn+1/2

1

]}
(51)

+ f n+1/2
1,0 ,

C`

(
vn+1/2
`,i + τ

(`)
q δtvn+1/2

`,i

)
= k`δ2

x

(
un+1/2
`,i + τ

(`)
T vn+1/2

`,i

)
+ f n+1/2

`,i ,

i = 1, . . . , M` − 1, ` = 1, 2, 3, (52)
∆x`C`

∆x` + ∆x`+1

(
vn+1/2
`,M`

+ τ
(`)
q δtvn+1/2

`,M`

)
+

∆x`+1C`+1
∆x` + ∆x`+1

(
vn+1/2
`+1,0 + τ

(`+1)
q δtvn+1/2

`+1,0

)
=

2
∆x` + ∆x`+1

{
k`+1δx

(
un+1/2
`+1,1/2 + τ

(`+1)
T vn+1/2

`+1,1/2

)
− k`δx

(
un+1/2
`,M`−1/2
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+ τ
(`)
T vn+1/2

`,M`−1/2

)}
+

∆x`
∆x` + ∆x`+1

f n+1/2
`,M`

+
∆x`+1

∆x` + ∆x`+1
f n+1/2
`+1,0 , ` = 1, 2, (53)

C3

(
vn+1/2

3,M3
+ τ

(3)
q δtvn+1/2

3,M3

)
=

2k3

∆x3

{
1

α2K(2)
n

[
φn+1/2

2 −
(

un+1/2
3,M3

+ τ
(3)
T vn+1/2

3,M3

)]
− δx

(
un+1/2

3,M3
+ τ

(3)
T vn+1/2

3,M3

)}
+ f n+1/2

3,M3
, (54)

vn+1/2
`,i = δtun+1/2

`,i , i = 0, . . . , M`, ` = 1, 2, 3, (55)

with the initial condition

u0
`,i = ψ1(x`,i), v0

`,i = ψ2(x`,i), i = 0. (56)

5. Discrete Scheme for Numerical Solution of (6)–(11)

In this section, we derive a finite difference scheme to solve the initial-interface bound-
ary problem (6)–(11), using the discrete scheme (51)–(56), and especially, the discrete
version of the change of variable given in Equation (55). More precisely, let us consider the
following finite difference scheme to obtain the numerical solution of (6)–(11)

C1

δtu1/2
1,0 +

2τ
(1)
q

∆t

(
δtu1/2

1,0 − ψ2(x1,0)
) =

2k1

∆x1

×
{

δx

(
u1/2

1,1/2 + τ
(1)
T δtu1/2

1,1/2

)
− 1

α1K(1)
n

[(
u1/2

1,0 + τ
(1)
T δtu1/2

1,0

)
− φ1/2

1

]}
+ f 1/2

1,0 , (57)

C`

δtu1/2
`,i + τ

(`)
q

2τ
(1)
q

∆t

(
δtu1/2

`,i − ψ2(x`,i)
) = k`δ2

x

(
u1/2
`,i + τ

(`)
T δtu1/2

`,i

)
+ f 1/2

`,i ,

i = 1, . . . , M` − 1, ` = 1, 2, 3, (58)

∆x`C`

∆x` + ∆x`+1

δtu1/2
`,M`

+
2τ

(`)
q

∆t

(
δtu1/2

`,M`
− ψ2(x`,M`

)
)+

∆x`+1C`+1
∆x` + ∆x`+1

(
δtu1/2

`+1,0

+
2τ

(`+1)
q

∆t

(
δtu1/2

`+1,0 − ψ2(x`+1,0)
))

=
2

∆x` + ∆x`+1

{
k`+1δx

(
u1/2
`+1,1/2 + τ

(`+1)
T

× δtu1/2
`+1,1/2

)
− k`δx

(
u1/2
`,M`−1/2 + τ

(`)
T δtu1/2

`,M`−1/2

)}
+

∆x`
∆x` + ∆x`+1

f 1/2
`,M`

+
∆x`+1

∆x` + ∆x`+1
f 1/2
`+1,0, for ` = 1, 2, (59)

C3

δtu1/2
3,M3

+
2τ

(3)
q

∆t

(
δtu1/2

3,M3
− ψ2(x3,M3)

) =
2k3

∆x3

×
{

1

α2K(2)
n

[
φ1/2

2 −
(

u1/2
3,M3

+ τ
(3)
T δtu1/2

3,M3

)]
− δx

(
u1/2

3,M3
+ τ

(3)
T δtu1/2

3,M3

)}
+ f 1/2

3,M3
, (60)

C1

(
∆tun

1,0 + τ
(1)
q δ2

t un
1,0

)
=

2k1

∆x1

×
{

δx

(
un̄

1,1/2 + τ
(1)
T ∆tun

1,1/2

)
− 1

α1K(1)
n

[(
un̄

1,0 + τ
(1)
T ∆tun

1,0

)
− φn̄

1

]}
+ f n̄

1,0, (61)

C`

(
∆tun

`,i + τ
(`)
q δ2

t un
`,i

)
= k`δ2

x

(
un̄
`,i + τ

(`)
T ∆tun

`,i

)
+ f n

`,i,
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i = 1, . . . , M` − 1, ` = 1, 2, 3, (62)
∆x`C`

∆x` + ∆x`+1

(
∆tun

`,M`
+ τ

(`)
q δ2

t un
`,M`

)
+

∆x`+1C`+1
∆x` + ∆x`+1

(
∆tun

`+1,0 + τ
(`+1)
q δ2

t un
`+1,0

)
=

2
∆x` + ∆x`+1

{
k`+1δx

(
un̄
`+1,1/2 + τ

(`+1)
T ∆tun

`+1,1/2

)
− k`δx

(
un̄
`,M`−1/2

+ τ
(`)
T ∆tun

`,M`−1/2

)}
+

∆x`
∆x` + ∆x`+1

f n̄
`,M`

+
∆x`+1

∆x` + ∆x`+1
f n̄
`+1,0, ` = 1, 2, (63)

C3

(
∆tun

3,M3
+ τ

(3)
q δ2

t un
3,M3

)
=

2k3

∆x3

×
{

1

α2K(2)
n

[
φn̄

2 −
(

un̄
3,M3

+ τ
(3)
T ∆tun

3,M3

)]
− δx

(
un̄

3,M3
+ τ

(3)
T ∆tun

3,M3

)}
+ f n̄

3,M3
, (64)

vn+1
`,i = 2δtun

`,i − vn
`,i, i = 0, . . . , M` ` = 1, 2, 3, (65)

for n = 1, . . . , N, with the initial condition

u0
`,i = ψ1(x`,i), v0

`,i = ψ2(x`,i), i = 0, . . . , M`, ` = 1, 2, 3. (66)

Theorem 2. The finite difference schemes (51)–(56) and (57)–(66) are equivalent.

Proof. From (55) with n = 0, Lemma 1, and the initial condition (56), we observe that

v1/2
`,i = δtu1/2

`,i , i = 0, . . . , M`, ` = 1, 2, 3, (67)

δtv1/2
`,i =

2
∆t

(
v1/2
`,i − v0

`,i

)
=

2
∆t

(
δtu1/2

`,i − ψ2(x`,i)
)

, i = 0, . . . , M`, ` = 1, 2, 3. (68)

Letting n = 0 in (51)–(54) and using the relations (67)–(68) we deduce Equations (57)–(60).
On the other hand, we observe the identities

1
2

(
vn+1/2
`,i + vn−1/2

`,i

)
= ∆tun

`,i and
1
2

(
δvn+1/2

`,i + δvn−1/2
`,i

)
= δ2

t un
`,i. (69)

We follow the equations on (61)–(66), by adding the equations (51)–(55) with super-
scripts n− 1/2 and n + 1/2 and using (69) .

6. Numerical Analysis: Discrete Energy, Stability, Convergence, and Order Estimates

Theorem 3. Let us consider that{
(un

`,i, vn
`,i) : i = 1, . . . , M`, ` = 1, 2, 3, n = 1, . . . , N

}
,

is the solution of the fully finite difference scheme (51)–(56) with boundary conditions φn+1/2
1 =

φn+1/2
2 = 0 for n = 0, . . . , N − 1. Moreover, assuming that En is defined by

En :=
3

∑
`=1

C`‖vn
` ‖

2 +
3

∑
`=1

k`‖δxun
` ‖

2 +
k1

α1K(1)
n

(un
1,0)

2 +
k2

α2K(2)
n

(un
3,M3

)2. (70)

Then, the following discrete energy estimate

En+1 ≤ E0 +
∆t
2

n

∑
k=0

3

∑
`=1

1
C`
‖ f k+ 1

2
` ‖2, (71)

for n = 0, . . . , N − 1, is satisfied.
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Proof. Let us multiply (51) by 2−1∆x1vn+1/2
1,0 ; (52) by ∆x`v

n+1/2
`,i , (53) by 2−1(∆x` + ∆x`+1)

vn+1/2
`,i , for ` = 1, 2; (54) by 2−1∆x3vn+1/2

3,M3
; summing up the results; and rearranging some

terms, we obtain

3

∑
`=1

C`∆x`

[
1
2
(vn+1/2

`,0 )2+
M`−1

∑
i=1

(vn+1/2
`,i )2+

1
2
(vn+1/2

`,M`
)2

]
+

3

∑
`=1

C`∆x`τ
(`)
q

[
1
2

δtvn+1/2
`,0 vn+1/2

`,0

+
M`−1

∑
i=1

δtvn+1/2
`,i vn+1/2

`,i +
1
2

δtvn+1/2
`,M`

vn+1/2
`,M`

]
=

3

∑
`=1

k`

[
δx

(
un+1/2

1,1/2 + τ
(1)
T vn+1/2

1,1/2

)
vn+1/2
`,0

+
M`−1

∑
i=1

∆x`δ2
x

(
un+1/2
`,i + τ

(`)
T vn+1/2

`,i

)
vn+1/2
`,i + δx

(
un+1/2
`,M`

+ τ
(`)
T vn+1/2

`,M`

)
vn+1/2
`,M`

]
(72)

+
3

∑
`=1

∆x`

[
1
2

f n+1/2
`,0 vn+1/2

`,0 +
M`−1

∑
i=1

f n+1/2
`,i vn+1/2

`,i +
1
2

f n+1/2
`,M3

vn+1/2
`,M3

]

− k1

α1K(1)
n

(
un+1/2

1,0 + τ
(1)
T vn+1/2

1,0

)
vn+1/2

1,0 − k3

α2K(2)
n

(
un+1/2

3,M3
+ τ

(3)
T vn+1/2

3,M3

)
vn+1/2

3,M3
.

From the following identities

δtvn+1/2
`,i vn+1/2

`,i =
1

2∆t

(
(vn+1

`,i )2 − (vn
`,i)

2
)

, i = 1, . . . , M`, ` = 1, 2, 3,

M`−1

∑
i=1

∆x`δ2
x

(
un+1/2
`,i + τ

(`)
T vn+1/2

`,i

)
vn+1/2
`,i = −

M`−1

∑
i=1

δx

(
un+1/2
`,i + τ

(`)
T vn+1/2

`,i

)
δxvn+1/2

`,i+1/2

− δx

(
un+1/2
`,1/2 + τ

(`)
T vn+1/2

`,1/2

)
vn+1/2
`,1 + δx

(
un+1/2
`,M`−1/2 + τ

(`)
T vn+1/2

`,M`−1/2

)
vn+1/2
`,M`

, ` = 1, 2, 3;

δxvn+1/2
`,i+1/2 = δt

(
δxvn+1/2

`,i+1/2

)
, ` = 1, 2, 3, i = 0, . . . , M` − 1;

the relation (55); and the norm notation, we have that the relation (72) can be rewritten
as follows

3

∑
`=1

C`‖vn+1/2
` ‖2 +

3

∑
`=1

C`τ
(`)
q

2∆t

(
‖vn+1

` ‖2 − ‖vn
` ‖

2
)

+
k1τ

(1)
T

α1K(1)
n

(
vn+1/2

1,0

)2
+

k3τ
(3)
T

α2K(2)
n

(
vn+1/2

3,M3

)2

= −
3

∑
`=1

k`∆x`
M`−1

∑
i=1

δx

(
un+1/2
`,i

)
δt

(
δxvn+1/2

`,i+1/2

)
−

3

∑
`=1

k`τ
(`)
T ‖δxvn+1/2

` ‖2

+
3

∑
`=1

(fn+1/2
` , vn+1/2

` )−
k1τ

(1)
T

α1K(1)
n

un+1/2
1,0 δtun+1/2

1,0 −
k3τ

(3)
T

α2K(2)
n

un+1/2
3,M3

δtun+1/2
3,M3

= − 1
2∆t

3

∑
`=1

k`
(
‖δxun+1

` ‖2 − ‖δxun
` ‖

2
)
−

3

∑
`=1

k`τ
(`)
T ‖δxvn+1/2

` ‖2

−
k1τ

(1)
T

2∆tα1K(1)
n

(
(un+1

1,0 )2 − (un
1,0)

2
)
−

k3τ
(3)
T

2∆tα2K(2)
n

(
(un+1

3,M3
)2 − (un

3,M3
)2
)

+
3

∑
`=1

(fn+1/2
` , vn+1/2

` ).
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The definition of En given on (70) and the application of Cauchy–Schwartz inequality
imply the estimate

1
2∆t

(En+1 − En) +
3

∑
`=1

C`‖vn+1/2
` ‖2

+
3

∑
`=1

k`τ
(`)
T ‖δxvn+1/2

` ‖2 +
k1τ

(1)
T

α1K(1)
n

(
vn+1/2

1,0

)2
+

k3τ
(3)
T

α2K(2)
n

(
vn+1/2

3,M3

)2

=
3

∑
`=1

(fn+1/2
` , vn+1/2

` ) ≤
3

∑
`=1

1
4C`
‖fn+1/2

` ‖2 +
3

∑
`=1

C`‖vn+1/2
` ‖2,

for n = 0, . . . , N − 1, which implies (71) and conclude the proof.

Theorem 4. The finite difference scheme (51)–(56) is unconditionally stable with respect to the
initial values and the source term.

Proof. The proof is consequence of Theorem 3.

Theorem 5. Let us consider that (un
`,i, vn

`,i) and (Un
`,i, Vn

`,i) for i = 1, . . . , M`, ` = 1, 2, 3, and
n = 1, . . . , N are the solution of the fully finite difference scheme (51)–(56) and the analytic solution
of (12)–(18) on U∆x,∆t, respectively. If 3∆t ≤ 2, the following estimate

3

∑
`=1
‖Un

` − un
` ‖∞ +

3

∑
`=1
‖Vn

` − vn
` ‖∞ ≤ C

(
∆t2 +

3

∑
`=1

(∆x`)2
)

(73)

is satisfied for a positive constant C.

Proof. Using the finite difference notation, we notice that Un
`,i and Vn

`,i satisfy the follow-
ing relations

C1

(
Vn+1/2

1,0 + τ
(1)
q δtVn+1/2

1,0

)
=

2k1

∆x1

{
δx

(
Un+1/2

1,1/2 + τ
(1)
T Vn+1/2

1,1/2

)
− 1

α1K(1)
n

[(
Un+1/2

1,0 + τ
(1)
T Vn+1/2

1,0

)
− φn+1/2

1

]}
(74)

+ f n+1/2
1,0 + Rn+1/2

1,0 ,

C`

(
Vn+1/2
`,i + τ

(`)
q δtVn+1/2

`,i

)
= k`δ2

x

(
Un+1/2
`,i + τ

(`)
T Vn+1/2

`,i

)
+ f n+1/2

`,i + Rn+1/2
`,i ,

i = 1, . . . , M` − 1, ` = 1, 2, 3,
(75)

∆x`C`

∆x` + ∆x`+1

(
Vn+1/2
`,M`

+ τ
(`)
q δtVn+1/2

`,M`

)
+

∆x`+1C`+1
∆x` + ∆x`+1

(
Vn+1/2
`+1,0 + τ

(`+1)
q δtVn+1/2

`+1,0

)
=

2
∆x` + ∆x`+1

{
k`+1δx

(
Un+1/2
`+1,1/2 + τ

(`+1)
T Vn+1/2

`+1,1/2

)
− k`δx

(
Un+1/2
`,M`−1/2 + τ

(`)
T Vn+1/2

`,M`−1/2

)}
+

∆x`
∆x` + ∆x`+1

f n+1/2
`,M`

+
∆x`+1

∆x` + ∆x`+1
f n+1/2
`+1,0 + Rn+1/2

`,M`
+ Rn+1/2

`+1,0 , ` = 1, 2,

(76)

C3

(
Vn+1/2

3,M3
+ τ

(3)
q δtVn+1/2

3,M3

)
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=
2k3

∆x3

{
1

α2K(2)
n

[
φn+1/2

2 −
(

Un+1/2
3,M3

+ τ
(3)
T Vn+1/2

3,M3

)]
(77)

− δx

(
Un+1/2

3,M3−1/2 + τ
(3)
T Vn+1/2

3,M3−1/2

)}
+ f n+1/2

3,M3
+ Rn+1/2

3,M3
,

Vn+1/2
`,i = δtUn+1/2

`,i + rn+1/2
`,i , i = 0, . . . , M`, ` = 1, 2, 3, (78)

with the initial condition U0
`,i = ψ1(x`,i), and V0

`,i = ψ2(x`,i), for i = 0, . . . , M` and ` = 1, 2, 3;
there exists a positive constant C such that∣∣∣Rn+1/2

1,0

∣∣∣ ≤ C(∆t2 + ∆x1), n = 0, . . . , N − 1, (79)∣∣∣Rn+1/2
`,i

∣∣∣ ≤ C(∆t2 + ∆x2
`), n = 0, . . . , N − 1, ` = 1, 2, 3, (80)∣∣∣Rn+1/2

`,M`

∣∣∣ ≤ C(∆t2 + ∆x`), n = 0, . . . , N − 1, ` = 1, 2, 3, (81)∣∣∣Rn+1/2
3,M3

∣∣∣ ≤ C(∆t2 + ∆x3), n = 0, . . . , N − 1, (82)∣∣∣rn+1/2
`,i

∣∣∣ ≤ C∆t2, i = 0, . . . , M`, ` = 1, 2, 3, n = 0, . . . , N − 1, (83)∣∣∣δxrn+1/2
`,i+1/2

∣∣∣ ≤ C∆t2, i = 0, . . . , M` − 1, ` = 1, 2, 3, n = 0, . . . , N − 1. (84)

The estimates (83) and (84) are deduced by application of Lemma 2, i.e., are conse-
quence of the following relation

rn+1/2
`,i =

∆t2

8

∫ 1

0

[
∂3u
∂t3

(
xi, tn+1/2 − ∆t

2
s
)
+

∂3u
∂t3

(
xi, tn+1/2 +

∆t
2

s
)]

(1− s2)ds.

Let us consider the notation Un
`,i = Un

`,i − un
`,i and Vn

`,i = Vn
`,i − vn

`,i. From (51)–(56) and
(74)–(78), we have that (Un

`,i,V
n
`,i) satisfy the following scheme

C1

(
Vn+1/2

1,0 + τ
(1)
q δtVn+1/2

1,0

)
=

2k1

∆x1

{
δx

(
Un+1/2

1,1/2 + τ
(1)
T V

n+1/2
1,1/2

)
− 1

α1K(1)
n

(
Un+1/2

1,0 + τ
(1)
T V

n+1/2
1,0

)}
(85)

+ Rn+1/2
1,0 ,

C`

(
Vn+1/2
`,i + τ

(`)
q δtVn+1/2

`,i

)
= k`δ2

x

(
Un+1/2
`,i + τ

(`)
T V

n+1/2
`,i

)
+ Rn+1/2

`,i ,

i = 1, . . . , M` − 1, ` = 1, 2, 3, (86)
∆x`C`

∆x` + ∆x`+1

(
Vn+1/2
`,M`

+ τ
(`)
q δtVn+1/2

`,M`

)
+

∆x`+1C`+1
∆x` + ∆x`+1

(
Vn+1/2
`+1,0 + τ

(`+1)
q δtVn+1/2

`+1,0

)
=

2
∆x` + ∆x`+1

{
k`+1δx

(
Un+1/2
`+1,1/2 + τ

(`+1)
T Vn+1/2

`+1,1/2

)
(87)

− k`δx

(
Un+1/2
`,M`−1/2 + τ

(`)
T V

n+1/2
`,M`−1/2

)}
+ Rn+1/2

`,M`
+ Rn+1/2

`+1,0 , ` = 1, 2,

C3

(
Vn+1/2

3,M3
+ τ

(3)
q δtVn+1/2

3,M3

)
=

2k3

∆x3

{
−1

α2K(2)
n

(
Un+1/2

3,M3
+ τ

(3)
T V

n+1/2
3,M3

)
− δx

(
Un+1/2

3,M3−1/2 + τ
(3)
T V

n+1/2
3,M3−1/2

)}
(88)

+ Rn+1/2
3,M3

.

Vn+1/2
`,i = δtUn+1/2

`,i + rn+1/2
`,i , i = 0, . . . , M`, ` = 1, 2, 3, (89)
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U 0
`,i = V

0
`,i = 0, i = 0, . . . , M`, ` = 1, 2, 3. (90)

The rest of the proof is similar to the methodology used in Theorem 3.
Multiplying Equations (85)–(88) by 2−1∆x1Vn+1/2

1,0 , ∆x`Vn+1/2
`,i , 2−1(∆x` + ∆x`+1)Vn+1/2

`,M`
for

` = 1, 2, and 2−1∆x3Vn+1/2
3,M3

, respectively; summing up the results and using the follow-
ing relation

M`−1

∑
i=1

∆x`δ2
x

(
Un+1/2
`,i + τ

(`)
T V

n+1/2
`,i

)
Vn+1/2
`,i

= −
M`−1

∑
i=1

δx

(
Un+1/2
`,i + τ

(`)
T V

n+1/2
`,i

)
δxVn+1/2

`,i+1/2 − δx

(
Un+1/2
`,1/2 + τ

(`)
T V

n+1/2
`,1/2

)
Vn+1/2
`,1

+ δx

(
Un+1/2
`,M`−1/2 + τ

(`)
T V

n+1/2
`,M`−1/2

)
Vn+1/2
`,M`

, ` = 1, 2, 3,

we obtain

3

∑
`=1

C`∆x`

[
1
2
(Vn+1/2

`,0 )2 +
M`−1

∑
i=1

(Vn+1/2
`,i )2 +

1
2
(Vn+1/2

`,M`
)2

]

+
3

∑
`=1

C`∆x`τ
(`)
q

[
1
2

δtVn+1/2
`,0 Vn+1/2

`,0 +
M`−1

∑
i=1

δtVn+1/2
`,i Vn+1/2

`,i +
1
2

δtVn+1/2
`,M`

Vn+1/2
`,M`

]
= −

3

∑
`=1

k`∆x`
M`−1

∑
i=1

δx

(
Un+1/2
`,i+1/2 + τ

(`)
T V

n+1/2
`,i+1/2

)
δxVn+1/2

`,i+1/2 (91)

− k1

α1K(1)
n

(
Un+1/2

1,0 + τ
(1)
T V

n+1/2
1,0

)
Vn+1/2

1,0 − k3

α2K(2)
n

(
Un+1/2

3,M3
+ τ

(3)
T V

n+1/2
3,M3

)
Vn+1/2

3,M3

+
3

∑
`=0

∆x`

{
1
2

Rn+1/2
`,0 Vn+1/2

`,0 +
M`−1

∑
i=1

Rn+1/2
`,i Vn+1/2

`,i +
1
2

Rn+1/2
`,M`

Vn+1/2
`,M`

}
.

We observe that the following identities

δtVn+1/2
`,i Vn+1/2

`,i =
1

2∆t

(
(Vn+1

`,i )2 − (Vn
`,i)

2
)

, i = 1, . . . , M`, ` = 1, 2, 3,

δxVn+1/2
`,i+1/2 = δt

(
δxUn+1/2

`,i+1/2

)
+ δxrn+1/2

`,i+1/2, ` = 1, 2, 3, i = 0, . . . , M` − 1; (from (89)),
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are satisfied. Then, (91) is equivalent to

3

∑
`=1

C`‖Vn+1/2
` ‖2

+
3

∑
`=1

C`

τ
(`)
q

2∆t

(
‖Vn+1

` ‖2 − ‖Vn
` ‖

2
)
+

k1τ
(1)
T

α1K(1)
n

(
Vn+1/2

1,0

)2
+

k3τ
(3)
T

α2K(2)
n

(
Vn+1/2

3,M3

)2

= −
3

∑
`=1

k`∆x`
M`−1

∑
i=1

δx

(
Un+1/2
`,i

)
δt

(
δxVn+1/2

`,i+1/2

)
−

3

∑
`=1

k`τ
(`)
T ‖δxVn+1/2

` ‖2

−
k1τ

(1)
T

α1K(1)
n

Un+1/2
1,0 Vn+1/2

1,0 −
k3τ

(3)
T

α2K(2)
n

Un+1/2
3,M3

Vn+1/2
3,M3

+
3

∑
`=1

(Rn+1/2
` ,Vn+1/2

` )

= − 1
2∆t

3

∑
`=1

k`
(
‖δxUn+1

` ‖2 − ‖δxUn
` ‖

2
)
−

3

∑
`=1

k`τ
(`)
T ‖δxVn+1/2

` ‖2

−
k1τ

(1)
T

2∆tα1K(1)
n

(
(Un+1

1,0 )2 − (Un
1,0)

2
)
−

k3τ
(3)
T

2∆tα2K(2)
n

(
(Un+1

3,M3
)2 − (Un

3,M3
)2
)

+
3

∑
`=1

(Rn+1/2
` ,Vn+1/2

` ) +
3

∑
`=1

k`∆x`
M`−1

∑
i=1

(
δxUn+1/2

`,i+1/2

)(
δxrn+1/2

`,i+1/2

)
− k1

α1K(1)
n

(
Un+1/2

1,0

)(
rn+/2

1,0

)
− k3

α2K(2)
n

(
Un+1/2

3,M3

)(
rn+1/2

3,M3

)
.

(92)

In order to introduce the estimates, we consider the notation Hn defined as follows

Hn =
3

∑
`=1

C`

τ
(`)
q

2∆t
‖Vn

` ‖
2 +

3

∑
`=1

k`‖δxUn
` ‖

2 +
k1τ

(1)
T

2∆tα1K(1)
n

(Un
1,0)

2 +
k3τ

(3)
T

2∆tα2K(2)
n

(Un
3,M3

)2.

From (92), we have that

LHSn ≤ RHSn, for n = 0, . . . , N − 1, (93)

where

LHSn =
1

2∆t
(Hn+1 − Hn) +

3

∑
`=1

C`‖Vn+1/2
` ‖2 +

3

∑
`=1

k`τ
(`)
T ‖δxVn+1/2

` ‖2

+
k1τ

(1)
T

α1K(1)
n

(
Vn+1/2

1,0

)2
+

k3τ
(3)
T

α2K(2)
n

(
Vn+1/2

3,M3

)2

RHSn = −
3

∑
`=1

M`−1

∑
i=1

k`
(

δxUn+1/2
`,i+1/2

)(
δxrn+1/2

`,i+1/2

)
−

k1τ
(1)
T

α1K(1)
n

(
Un+1/2

1,0

)(
rn+1/2

1,0

)
−

k3τ
(3)
T

α2K(2)
n

(
Un+1/2

3,M3

)(
rn+1/2

3,M3

)
+

3

∑
`=1

(Rn+1/2
` ,Vn+1/2

` ),

By application of Lemma 3, we deduce that(
k1τ

(1)
T ‖δxVn+1/2

1 ‖2+
k1τ

(1)
T

α1K(1)
n

(
Vn+1/2

1,0

)2
)
+

(
k1τ

(3)
T ‖δxVn+1/2

3 ‖2+
k3τ

(3)
T

α2K(2)
n

(
Vn+1/2

3,M3

)2
)

≥
k1τ

(1)
T

α1K(1)
n + L1

[(
1 +

L1

α1K(1)
n

)(
Vn+1/2

1,0

)2
+

(
1 +

α1K(1)
n

L1

)
‖δxVn+1/2

1 ‖2
∞

]
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+
k2τ

(2)
T

α2K(2)
n + L3 − L2

[(
1 +

L3 − L2

α1K(2)
n

)(
Vn+1/2

3,M3

)2
+

(
1 +

α2K(2)
n

L3 − L2

)
‖δxVn+1/2

3 ‖2
∞

]

≥
k1τ

(1)
T

α1K(1)
n + L1

‖Vn+1/2
1 ‖2 +

k2τ
(2)
T (L3 − L2)

α2K(2)
n + L3 − L2

‖Vn+1/2
3 ‖2,

which implies the following lower estimate for LHSn

LHSn ≥ 1
2∆t

(Hn+1 − Hn) +
3

∑
`=1

C`‖Vn+1/2
` ‖2 + k2τ

(1)
T ‖δxVn+1/2

2 ‖2

+
k1τ

(1)
T

α1K(1)
n + L1

‖Vn+1/2
1 ‖2

∞ +
k2τ

(2)
T

α2K(2)
n + (L3 − L2)

‖Vn+1/2
3 ‖2

∞.

(94)

By Cauchy–Schwartz inequality, we follow that∣∣∣∣∣− 3

∑
`=1

k`∆x`
M`−1

∑
i=1

(
δxUn+1/2

`,i+1/2

)(
δxrn+1/2

`,i+1/2

)∣∣∣∣∣
≤ 1

4

3

∑
`=1

k`
(
‖δxUn+1

` ‖2 + ‖δxUn
` ‖

2
)
+

1
2

3

∑
`=1

k`∆x`
M`−1

∑
i=1

(
δxrn+1/2

`,i+1/2

)2
,∣∣∣∣∣− k1

α1K(1)
n

(
Un+1/2

1,0

)(
rn+1/2

1,0

)
− k3

α2K(2)
n

(
Un+1/2

3,M3

)(
rn+1/2

3,M3

)∣∣∣∣∣
≤ k1

4α1K(1)
n

(
(Un+1

1,0 )2 + (Un
1,0)

2
)
+

k2

4α2K(2)
n

(
(Un+1

3,M3
)2 + (Un

3,M3
)2
)

+
k1

2α1K(1)
n

(
rn+1/2

1,0

)2
+

k2

2α2K(2)
n

(
rn+1/2

3,M3

)2
,∣∣∣∣∣ 3

∑
`=1

(Rn+1/2
` ,Vn+1/2

` )

∣∣∣∣∣
=

1
2

3

∑
`=0

∆x`Rn+1/2
`,0 Vn+1/2

`,0 +
3

∑
`=0

M`−1

∑
i=1

Rn+1/2
`,i Vn+1/2

`,i +
1
2

3

∑
`=0

Rn+1/2
`,M`

Vn+1/2
`,M`

≤
k1τ

(1)
T

2(α1K(1)
n + L1)

3

∑
`=1
‖Vn+1/2

` ‖2
∞ +

α1K(1)
n + L1

2k1τ
(1)
T

3

∑
`=0

(
∆x`

2
Rn+1/2

1,0

)2

+
3

∑
`=1

C`‖Vn+1/2
` ‖2 +

3

∑
`=1

1
4C`

∆x`
M`−1

∑
i=1

(
Rn+1/2
`,i

)2
+

k1τ
(1)
T

2(α1K(1)
n + L1)

3

∑
`=1
‖Vn+1/2

` ‖2
∞

+
α1K(1)

n + L1

2k1τ
(1)
T

3

∑
`=1

(
∆x`

2
Rn+1/2
`,M`

)2
.

We can bound RHSn as follows

RHSn ≤ 1
4

3

∑
`=1

k`
(
‖δxUn+1

` ‖2 + ‖δxUn
` ‖

2
)
+

k1

4α1K(1)
n

(
(Un+1

1,0 )2 + (Un
1,0)

2
)

+
k2

4α2K(2)
n

(
(Un+1

3,M3
)2 + (Un

3,M3
)2
)
+

k1τ
(1)
T

2(α1K(1)
n + L1)

3

∑
`=0
‖Vn+1/2

` ‖2
∞ (95)

+
3

∑
`=1

C`‖Vn+1/2
1 ‖2 +

k1τ
(1)
T

2(α1K(1)
n + L1)

3

∑
`=1
‖Vn+1/2

` ‖2
∞ + δn+1/2,
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where

δn+1/2 =
1
2

3

∑
`=1

k`∆x`
M`−1

∑
i=1

(
δxrn+1/2

`,i+1/2

)2
+

k1

2α1K(1)
n

(
rn+1/2

1,0

)2
+

k2

2α2K(2)
n

(
rn+1/2

3,M3

)2

+
α1K(1)

n + L1

2k1τ
(1)
T

3

∑
`=1

(
∆x`

2
Rn+1/2
`,0

)2
+

3

∑
`=1

1
4C`

∆x`
M`−1

∑
i=1

(
Rn+1/2
`,i

)2
(96)

+
α1K(1)

n + L1

2k1τ
(1)
T

3

∑
`=1

(
∆x`

2
Rn+1/2
`,M`

)2
.

From (94)–(96) we obtain

1
2∆t

(Hn+1 − Hn) ≤ 1
4
(Hn+1 + Hn) + δn+1/2, n = 0, . . . , N − 1. (97)

Moreover, as consequence of (79)–(84) we deduce that there is a positive constant such
that δn+1/2 ≤ C(∆t2 + ∑3

`=0(∆x`)2). Then, replacing in (97), we deduce the estimate

1
2∆t

(Hn+1 − Hn) ≤ 1
4
(Hn+1 + Hn) + C(∆t2 +

3

∑
`=0

(∆x`)2), n = 0, . . . , N − 1

or equivalently(
1− ∆t

2

)
Hn+1 ≤

(
1 +

∆t
2

)
Hn + 2C∆t(∆t2 +

3

∑
`=0

(∆x`)2), n = 0, . . . , N − 1.

If we consider the assumption 3∆t ≤ 2, the last estimate implies that

Hn+1 ≤
(

1 +
3
2

∆t
)

Hn + 3C∆t(∆t2 +
3

∑
`=0

(∆x`)2), n = 0, . . . , N − 1.

Thus, by the Gronwall inequality and Lemma 3 we obtain the estimate (73) and
conclude the proof of theorem.

Remark 1. We notice that the second-order approximation, given by the estimate (73), is obtained
although a first-order truncation is considered as a discretization strategy at the boundaries.

7. A Numerical Example

Let us consider that the physical and geometry parameters are given by

L0 = 0, L1 = 1/3, L2 = 2/3, L3 = 1, C1 = C2 = C3 = 1,

τ
(1)
q = τ

(2)
q = τ

(3)
q = 1, τ

(1)
T = 1, τ

(2)
T = 4, τ

(3)
T = 2,

k1 = 8/27π2, k2 = 16/9π2, k3 = 4/9π2, and α1 = α2 = 1/2;

the initial conditions are given by

u(x, 0) =


sin(3πx/4), 0 ≤ x < L1,
cos(π(x + 2/3)/4), L1 ≤ x < L2,
sin(π(x− 1/2)), L2 ≤ x ≤ L3,

∂u
∂t

(x, 0) = −1
3

u(x, 0);
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and the boundary conditions are ϕ1(t) = −3π exp(−t/3)/8 and ϕ2(t) = π exp(−t/3)/2.
We observe that the analytic solution is given by

u(x, t) =


exp(−t/3) sin(3πx/4), 0 ≤ x < L1,
exp(−t/3) cos(π(x + 2/3)/4), L1 ≤ x < L2,
exp(−t/3) sin(π(x− 1/2)), L2 ≤ x ≤ L3.

We consider that the discretization parameters are ∆x1 = ∆x2 = ∆x. Let us consider
Û = u(x, t) for (x, t) ∈ Q∆x,∆t (see Section 3.1), i.e., the evaluation of the analytical solution
on the discretization domain; U the numerical solution; introduce the notation

E∆x,∆t = ‖Û−U‖∞, Orderx = log2

(
E2∆x,∆t

E∆x,∆t

)
, Ordert = log2

(
E∆x,2∆t

E∆x,∆t

)
,

where ‖ · ‖∞ is the notation defined in (24)–(27). For the spatial convergence orders in
the L∞-norm error, we consider several values of ∆x with fixed ∆t = 1/1000 and for the
temporal convergence in the L∞-norm error, we consider several values of ∆t with fixed
∆x = 1/1000, the results of the simulation are shown on Table 1. The numerical solution is
given on Figure 2.

Table 1. Convergence error. For space convergence, we fix ∆t = 1/1000. For temporal convergence
we fix ∆x = 1/1000.

∆x E∆x,∆t Orderx ∆t E∆x,∆t Ordert

0.1000 2.415× 10−4 - 0.1000 4.688× 10−5 -
0.0500 4.087× 10−5 1.992 0.0500 2.257× 10−5 2.000
0.0250 2.537× 10−5 1.997 0.0250 3.762× 10−6 2.001
0.0125 4.828× 10−6 1.998 0.0125 6.276× 10−7 2.002

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

u
(
x
,
1
)

(b)

Figure 2. Numerical solution of the mathematical model (6)–(11) with the data of Section 7. (a) Full
solution for for (x, t) ∈ [0, 1]× [0, 2] and (b) profile at T = 1.

8. Conclusions

In this paper, we have proposed a theoretical one-dimensional mathematical model
for heat conduction model in a double-pane window with a temperature-jump boundary
condition and a thermal lagging interfacial effect condition between layers. We construct
a second-order accurate finite difference scheme and prove that finite difference scheme
introduced is unconditionally stable, convergent, and has rate of convergence two in space
and time for the L∞-norm.
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