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Comparison of Overlap and Grouping Functions
Songsong Dai

School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China; ssdai@tzc.edu.cn

Abstract: This paper investigates the pointwise comparability of overlap and grouping functions
which obtained by Bustince et al.’s and Bedregal et al.’s generator pairs, respectively. Some necessary
and sufficient conditions for the comparison of these functions are proved. We also introduce some
compositions of these functions and study the order preservation of these compositions.
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1. Introduction

Overlap function introduced by Bustince et al. [1] is a particular type of aggregation
function [2]. Its dual concept is the grouping function [3]. In recent years, those two concepts
have attracted a wide range of interests. For applications, they have been successfully
applied to many domains, such as image processing [1,4], classification [5,6] and decision
making [7,8]. For theoretical research, general overlap and grouping functions [9,10], N-
dimensional overlap functions [11], Archimedean overlap functions [12], general interval-
valued overlap functions [13], complex-valued overlap and grouping functions [14,15],
quasi-homogeneous overlap functions [16], pseudo-homogeneous overlap and grouping
functions [17], overlap functions on bounded lattices [18], overlap and grouping functions
on complete lattices [19] have been introduced. Many fuzzy concepts derived from overlap
and grouping functions, such as generalized interval-valued OWA operators [20], residual
implications [21,22], (G,N)-implications [23], binary relations [24], (IO, O)-fuzzy rough
sets [25] and so on.

In the study of overlap and grouping functions, the study of their properties accounts
for a large proportion and play an important role. Bustince et al. [1] gave an alternative
characterization of overlap functions by their generator pairs. Bedregal et al. [26] gave an
alternative characterization of grouping functions in a similar way. Dimuro et al. [27] intro-
duced the additive generators of overlap and grouping functions. Qiao and Hu [28] studied
the interval additive generators of interval overlap and grouping functions. They [29] also
introduced the multiplicative generators of overlap and grouping functions.

We have already known that there is a partial order between two t-norms T1 and T2,
i.e., T1 ≤ T2 if T1(a, b) ≤ T2(a, b) for all (a, b) ∈ [0, 1]2 (see [30], Chapter 6). Klement et
al. [31] presented a necessary and sufficient condition for the comparability of continu-
ous Archimedean t-norms. There also exist some pointwise comparison results of fuzzy
implications (see [32], Chapter 1). However, comparatively little investigation has been
made on the comparability of overlap/grouping functions. Bustince et al. [1] defined the
pointwise order of two overlap functions O1 and O2, i.e., O1 ≤ O2 if O1(a, b) ≤ O2(a, b) for
all (a, b) ∈ [0, 1]2. Bedregal et al. [26] defined the pointwise order of two grouping functions
in a similar way. Dai et al. [33] showed that the meet operation, join operation, convex
combination, and ~-composition of overlap and grouping functions are order preserving.
But the research on the pointwise comparability of overlap and grouping functions have not
been studied in details. Therefore, in this paper, we study the pointwise comparability of
overlap and grouping functions involving Bustince et al. [1] and Bedregal et al. [26] genera-
tors. We present some necessary and sufficient conditions for their comparability. We also
investigate order preservation of some compositions of overlap and grouping functions.
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The paper is organized as follows: In Section 2, we recall the concepts of over-
lap/grouping functions and their order relationship. In Section 3, we study the pointwise
comparability of overlap functions involving Bustince et al. [1] generators. In Section 4,
we study the pointwise comparability of grouping functions involving Bedregal et al. [26]
generators. In Section 5, we introduce some compositions of overlap/grouping functions
and study properties preservation of these compositions. In Section 6, our researches
are concluded.

2. Preliminaries
2.1. Overlap and Grouping Functions

In this section, we recall the basic theory of overlap and grouping functions. More
details can be found in [1,11,26,28].

Definition 1 ([1]). A bivariate function O : [0, 1]2 → [0, 1] is a overlap function if, for any
a, b ∈ [0, 1], it has the following properties:

(O1) O is commutative;
(O2) O(a, b) = 0 if and only if ab = 0;
(O3) O(a, b) = 1 if and only if ab = 1;
(O4) O is non-decreasing;
(O5) O is continuous.

Definition 2 ([3]). A bivariate function G : [0, 1]2 → [0, 1] is a grouping function if, for any
a, b ∈ [0, 1], it has the following properties:

(G1) G is commutative;
(G2) G(a, b) = 0 if and only if a = b = 0;
(G3) G(a, b) = 1 if and only if a = 1 or b = 1.
(G4) G is non-decreasing;
(G5) G is continuous.

Denote by O the set of all overlap functions, and G the set of all grouping functions.
Let O be an overlap function, the dual grouping function of O is defined as GO(a, b) =

1−O(1− a, 1− b).

Example 1 ([1,26]). The following are typical examples of overlap and grouping functions, where
p > 0,

• Onm(a, b) = min(a, b)max(a2, b2);

• Op(a, b) = apbp;

• Omp(a, b) = min(ap, bp);

• OMp(a, b) = 1−max((1− a)p, (1− b)p);

• ODB(a, b) =
{ 2ab

a+b , i f a + b 6= 0,
0, i f a + b = 0.

• Gnm(a, b) = 1−min(1− a, 1− b)max((1− a)2, (1− b)2);

• Gp(a, b) = 1− (1− a)p(1− b)p;

• Gmp(a, b) = 1−min((1− a)p, (1− b)p);

• GMp(a, b) = max(ap, bp);

• GDB(a, b) =
{ a+b−2ab

2−a−b , i f a 6= 1 or b 6= 1,
1, i f a = b = 1.
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2.2. Orders of Overlap and Grouping Functions

Bustince et al. [1] and Bedregal et al. [26] introduced the following partial order for
overlap and grouping functions, respectively.

Definition 3 ([1,26]). Let f1, f2 ∈ O (or both f1, f2 ∈ G),

(i) we say that f1 is weaker than f2, denote f1 � f2, if f1(a, b) ≤ f2(a, b) holds for all (a, b) ∈
[0, 1]2.

(ii) we write f1 ≺ f2 if f1 � f2 and f1 6= f2.

Proposition 1. Let O1 and O2 be two overlap functions, if O1 � O2, then GO2 � GO1 , where
GO1 and GO2 are the dual grouping functions of O1 and O2, respectively.

Proof. First O1 � O2 means O1(a, b) ≤ O2(a, b) holds for all (a, b) ∈ [0, 1]2. Then O1(1−
a, 1− b) ≤ O2(1− a, 1− b) holds for all (a, b) ∈ [0, 1]2.

Afterwards we have 1−O1(1− a, 1− b) ≥ 1−O2(1− a, 1− b) holds for all (a, b) ∈
[0, 1]2. Thus GO2 � GO1 , i.e., GO2(a, b) ≤ GO1(a, b) holds for all (a, b) ∈ [0, 1]2.

Example 2. Consider the overlap and grouping functions in Example 1, we have

• Onm � Omp, where 0 < p ≤ 1;

• Omp � Onm, where p ≥ 3;

• Op � Omp;

• Op � ODB, where p ≥ 1;

• Gmp � Gnm, where 0 < p ≤ 1;

• Gnm � Gmp, where p ≥ 3;

• Gmp � Gp;

• GDB � Gp, where p ≥ 1.

Remark 1. � is a partial order, but not a linear order. For example, consider the Omp with
p = 2 and Onm, Omp(a, b) = min(a2, b2) and Onm are incomparable since Omp(1, 1

2 ) = 1
4 <

Onm(1, 1
2 ) =

1
2 and Omp(

1
2 , 1

2 ) =
1
4 > Onm(

1
2 , 1

2 ) =
1
8 .

3. Comparison of Overlap Functions

Bustince et al. [1] gave an alternative characterization of overlap functions.

Theorem 1 ([1]). The bivariate function O f g : [0, 1]2 → [0, 1] is an overlap function if and only if

O f g(a, b) =
f (a, b)

f (a, b) + g(a, b)
(1)

for some f , g : [0, 1]2 → [0, 1] satisfying the following conditions

(F1) f and g are symmetric;
(F2) f is non decreasing and g is non increasing;
(F3) f (a, b) = 0 if and only if ab = 0;
(F4) g(a, b) = 0 if and only if ab = 1;
(F5) f and g are continuous functions.

For any overlap function O f g characterized by Equation (1), ( f , g) is said to be the
generator pair of O f g.

We give the following necessary and sufficient condition for the comparison of overlap
functions characterized by different generator pairs.
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Theorem 2. Let O f1g1 and O f2g2 be two overlap functions with generator pair f1, g1 : [0, 1]2 →
[0, 1] and f2, g2 : [0, 1]2 → [0, 1], respectively. Then O f1g1 � O f2g2 if and only if f1g2 ≤ f2g1, i.e.,
for all a, b ∈ [0, 1],

f1(a, b)g2(a, b) ≤ f2(a, b)g1(a, b). (2)

Proof. (⇒) From the definition of the generator pair in Equation (1), if O f1g1 � O f2g2 , then
for all a, b ∈ [0, 1], by Definition 3,

f1(a, b)
f1(a, b) + g1(a, b)

≤ f2(a, b)
f2(a, b) + g2(a, b)

.

From Theorem 1 (F3) and (F4), we have f1(a, b) + g1(a, b) > 0 and f2(a, b) + g2(a, b) >
0 for all a, b ∈ [0, 1], and we have

f1(a, b)[ f2(a, b) + g2(a, b)] ≤ f2(a, b)[ f1(a, b) + g1(a, b)].

Then for all a, b ∈ [0, 1], it holds that

f1(a, b)g2(a, b) ≤ f2(a, b)g1(a, b)

Thus f1g2 ≤ f2g1.
(⇐) If f1g2 ≤ f2g1, i.e., for all a, b ∈ [0, 1], it holds that

f1(a, b)g2(a, b) ≤ f2(a, b)g1(a, b).

By adding f1(a, b) f2(a, b) in both sides of this inequality, we obtain

f1(a, b) f2(a, b) + f1(a, b)g2(a, b) ≤ f1(a, b) f2(a, b) + f2(a, b)g1(a, b),

i.e.,
f1(a, b)[ f2(a, b) + g2(a, b)] ≤ f2(a, b)[ f1(a, b) + g1(a, b)].

From f1(a, b) + g1(a, b) > 0 and f2(a, b) + g2(a, b) > 0 for all a, b ∈ [0, 1], one has that
[ f2(a, b) + g2(a, b)][ f1(a, b) + g1(a, b)] > 0 for all a, b ∈ [0, 1].

Then by dividing both sides of the equation by [ f2(a, b) + g2(a, b)][ f1(a, b) + g1(a, b)],
we get for all a, b ∈ [0, 1]

f1(a, b)
f1(a, b) + g1(a, b)

≤ f2(a, b)
f2(a, b) + g2(a, b)

.

Thus by Definition 3, O f1g1 � O f2g2 .

Corollary 1. Let O f1g1 and O f2g2 be two overlap functions with generator pair f1, g1 : [0, 1]2 →
[0, 1] and f2, g2 : [0, 1]2 → [0, 1], respectively. Then O f1g1 � O f2g2 if and only if f1

f2
≤ g1

g2
, i.e., for

all (a, b) ∈ (0, 1]2\{(1, 1)},

f1(a, b)
f2(a, b)

≤ g1(a, b)
g2(a, b)

. (3)

Corollary 2. Let O f1g and O f2g be two overlap functions with generator pair ( f1, g) and ( f2, g),
respectively. If f1 ≤ f2, i.e., f1(a, b) ≤ f2(a, b) for all a, b ∈ [0, 1]. Then O f1g � O f2g.

Corollary 3. Let O f g1 and O f g2 be two overlap functions with generator pair ( f , g1) and ( f , g2),
respectively. If g1 ≤ g2, i.e., g1(a, b) ≤ g2(a, b) for all a, b ∈ [0, 1]. Then O f g2 � O f g1 .
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Example 3. Consider the following functions f1, g1, f2, g2 : [0, 1]2 → [0, 1], defined by

f1(a, b) =
√

ab, (4)

f2(a, b) = a2b2, (5)

g1(a, b) = 1− ab, (6)

g2(a, b) = max(1− a, 1− b). (7)

Obviously, they satify the conditions of Theorem 1. We also have f2 ≤ f1 and g2 ≤ g1. Then
it holds that f2g2 ≤ f1g1.

From Theorem 2, we obtain O f2g1 � O f1g2 , i.e.,

a2b2

a2b2 + 1− ab
≤

√
ab√

ab + max(1− a, 1− b)

for all a, b ∈ [0, 1].
Moreover,

f1(a, b)
f2(a, b)

=

√
ab

a2b2 =
1

a3/2b3/2

and
g1(a, b)
g2(a, b)

=
1− ab

max(1− a, 1− b)

are incomparable since

f1(0.9, 0.9)
f2(0.9, 0.9)

=
1

0.93 ≈ 1.372 <
g1(0.9, 0.9)
g2(0.9, 0.9)

= 1.9

and
f1(0.1, 0.1)
f2(0.1, 0.1)

=
1

0.13 = 1000 >
g1(0.1, 0.1)
g2(0.1, 0.1)

= 1.1.

Then O f1g1(a, b) =
√

ab√
ab+1−ab

and O f2g2(a, b) = a2b2

a2b2+max(1−a,1−b) are incomparable because
of Corollary 1.

4. Comparison of Grouping Functions

Bedregal et al. [26] gave an alternative characterization of grouping functions.

Theorem 3 ([26]). The bivariate function G f g : [0, 1]2 → [0, 1] is a grouping function if and
only if

G f g(a, b) = 1− f (a, b)
f (a, b) + g(a, b)

(8)

for some f , g : [0, 1]2 → [0, 1] satisfying the following conditions

(T1) f and g are symmetric;
(T2) f is non increasing and g is non decreasing;
(T3) f (a, b) = 0 if and only if a = 1 or b = 1;
(T4) g(a, b) = 0 if and only if a = b = 0;
(T5) f and g are continuous functions.

For any grouping function G f g characterized by Equation (8), ( f , g) is said to be the
generator pair of G f g.

We give the following necessary and sufficient condition for the comparison of group-
ing functions characterized by different generator pairs.
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Theorem 4. Let G f1g1 and G f2g2 be two grouping functions with generator pair f1, g1 : [0, 1]2 →
[0, 1] and f2, g2 : [0, 1]2 → [0, 1], respectively. Then G f1g1 � G f2g2 if and only if f2g1 ≤ f1g2, i.e.,
for all a, b ∈ [0, 1],

f2(a, b)g1(a, b) ≤ f1(a, b)g2(a, b). (9)

Proof. (⇒) From the definition of the generator pair in Equation (8), if G f1g1 � G f2g2 , then
for all a, b ∈ [0, 1], by Definition 3,

1− f1(a, b)
f1(a, b) + g1(a, b)

≤ 1− f2(a, b)
f2(a, b) + g2(a, b)

.

This is
f2(a, b)

f2(a, b) + g2(a, b)
≤ f1(a, b)

f1(a, b) + g1(a, b)
.

From Theorem 3 (T3) and (T4), we have f1(a, b) + g1(a, b) > 0 and f2(a, b) + g2(a, b) >
0 for all a, b ∈ [0, 1], and we have

f2(a, b)[ f1(a, b) + g1(a, b)] ≤ f1(a, b)[ f2(a, b) + g2(a, b)].

Then for all a, b ∈ [0, 1], it holds that

f2(a, b)g1(a, b) ≤ f1(a, b)g2(a, b).

Thus f2g1 ≤ f1g2.
(⇐) If f2g1 ≤ f1g2, i.e., for all a, b ∈ [0, 1], it holds that

f2(a, b)g1(a, b) ≤ f1(a, b)g2(a, b).

By adding f1(a, b) f2(a, b) in both sides of this inequality, we obtain

f1(a, b) f2(a, b) + f2(a, b)g1(a, b) ≤ f1(a, b) f2(a, b) + f1(a, b)g2(a, b),

i.e.,
f2(a, b)[ f1(a, b) + g1(a, b)] ≤ f1(a, b)[ f2(a, b) + g2(a, b)].

From f1(a, b) + g1(a, b) > 0 and f2(a, b) + g2(a, b) > 0 for all a, b ∈ [0, 1], one has that
[ f2(a, b) + g2(a, b)][ f1(a, b) + g1(a, b)] > 0 for all a, b ∈ [0, 1].

Then by dividing both sides of the equation by [ f2(a, b) + g2(a, b)][ f1(a, b) + g1(a, b)],
we get for all a, b ∈ [0, 1]

f2(a, b)
f2(a, b) + g2(a, b)

≤ f1(a, b)
f1(a, b) + g1(a, b)

.

So we have, for all a, b ∈ [0, 1]

1− f1(a, b)
f1(a, b) + g1(a, b)

≤ 1− f2(a, b)
f2(a, b) + g2(a, b)

.

Thus by Definition 3, G f1g1 � G f2g2 .

Corollary 4. Let G f1g1 and G f2g2 be two grouping functions with generator pair f1, g1 : [0, 1]2 →
[0, 1] and f2, g2 : [0, 1]2 → [0, 1], respectively. Then G f1g1 � G f2g2 if and only if g1

g2
≤ f1

f2
, i.e., for

all (a, b) ∈ [0, 1)2\{(0, 0)},

g1(a, b)
g2(a, b)

≤ f1(a, b)
f2(a, b)

. (10)
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Corollary 5. Let G f1g and G f2g be two grouping functions with generator pair ( f1, g) and ( f2, g),
respectively. If f1 ≤ f2, then G f2g � G f1g.

Corollary 6. Let G f g1 and G f g2 be two grouping functions with generator pair ( f , g1) and ( f , g2),
respectively. If g1 ≤ g2, then G f g1 � G f g2 .

Example 4. Consider the following functions f1, g1, f2, g2 : [0, 1]2 → [0, 1], defined by

f1(a, b) = (1− a)(1− b), (11)

f2(a, b) = (1− a2)(1− b2), (12)

g1(a, b) =
a + b

2
, (13)

g2(a, b) = min(a, b). (14)

Obviously, they satify the conditions of Theorem 3. We also have f1 ≤ f2 and g2 ≤ g1. Then
it holds that f1g2 ≤ f2g1.

From Theorem 4, we obtain G f2g2 � G f1g1 , i.e.,

1− (1− a2)(1− b2)

(1− a2)(1− b2) + min(a, b)
≤ 1− (1− a)(1− b)

(1− a)(1− b) + a+b
2

for all a, b ∈ [0, 1].
Moreover, for all (a, b) ∈ [0, 1)2\{(0, 0)}

f1(a, b)
f2(a, b)

=
(1− a)(1− b)
(1− a2)(1− b2)

=
1

(1 + a)(1 + b)

and
g2(a, b)
g1(a, b)

=
min(a, b)

a+b
2

=
2 min(a, b)

a + b

are incomparable since

f1(0.25, 0.25)
f2(0.25, 0.25)

=
1

1.252 = 0.64 <
g2(0.25, 0.25)
g1(0.25, 0.25)

= 1

and
f1(0.1, 0.9)
f2(0.1, 0.9)

=
1

1.1 ∗ 1.9
≈ 0.4785 >

g1(0.1, 0.9)
g2(0.1, 0.9)

= 0.2.

Then G f1g2(a, b) = 1 − (1−a)(1−b)
(1−a)(1−b)+min(a,b) and G f2g1(a, b) = 1 − (1−a2)(1−b2)

(1−a2)(1−b2)+ a+b
2

are

incomparable because of Corollary 4.

5. Order Preservation of Some Compositions of Overlap and Grouping Functions

In this section, we consider the following problem.

Problem 1. Whether we have

H f1g1 � H f2g2 , H f3g3 � H f4g4 ⇒ H( f1◦1 f3)(g1◦1g3)
� H( f2◦2 f4)(g2◦2g4)

(15)

for some operations ◦1 and ◦2 of bivariate functions, where H fi gi
, with i = 1, ..., 4 are all overlap

functions or all grouping functions?
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Let h1 and h2 be two bivariate functions, their meet, join and product operations are
defined as

(h1 ∨ h2)(a, b) = max
(
h1(a, b), h2(a, b)

)
, (16)

(h1 ∧ h2)(a, b) = min
(
h1(a, b), h2(a, b)

)
, (17)

(h1 × h2)(a, b) = h1(a, b)h2(a, b), (18)

for all (a, b) ∈ [0, 1]2.
First, we prove the closures of the proposed compositions of overlap (or grouping)

functions H( f1◦ f2)(g1◦g2)
, where ◦ ∈ {∨,∧,×}.

Lemma 1. If f1, g1 : [0, 1]2 → [0, 1] and f2, g2 : [0, 1]2 → [0, 1] satisfy the following conditions
(F1)-(F5) of Theorem 1. Then ( f1 ∨ f2, g1 ∨ g2), ( f1 ∧ f2, g1 ∧ g2) and ( f1 × f2, g1 × g2) also
satisfy these conditions.

Proof. The cases for (F1), (F2), and (F5) are straightforward.
(F3) (⇒) If ( f1 ∨ f2)(a, b) = max

(
f1(a, b), f2(a, b)

)
= 0. Then, f1(a, b) = f2(a, b) = 0,

thus ab = 0.
If ( f1 ∧ f2)(a, b) = min

(
f1(a, b), f2(a, b)

)
= 0. Case I, f1(a, b) = 0 then ab = 0. Case II,

f2(a, b) = 0 then ab = 0.
If ( f1 × f2)(a, b) = f1(a, b) f2(a, b) = 0. Case I, f1(a, b) = 0 then ab = 0. Case II,

f2(a, b) = 0 then ab = 0.
(⇐) is straightforward.
(F4) (⇒) If (g1 ∨ g2)(a, b) = max

(
g1(a, b), g2(a, b)

)
= 0. Then g1(a, b) = g2(a, b) = 0,

thus ab = 1.
If (g1 ∧ g2)(a, b) = min

(
g1(a, b), g2(a, b)

)
= 0. Case I, g1(a, b) = 0 then ab = 1. Case

II, g2(a, b) = 0 then ab = 1.
If (g1 × g2)(a, b) = g1(a, b)g2(a, b) = 0. Case I, g1(a, b) = 0 then ab = 1. Case II,

g2(a, b) = 0 then ab = 1.
(⇐) is straightforward.

Corollary 7. If O f1g1 and O f2g2 be two overlap function functions with generator pair f1, g1 :
[0, 1]2 → [0, 1] and f2, g2 : [0, 1]2 → [0, 1], respectively. Then O( f1◦ f2)(g1◦g2)

is an overlap
function, where ◦ ∈ {∨,∧,×}

Lemma 2. If f1, g1 : [0, 1]2 → [0, 1] and f2, g2 : [0, 1]2 → [0, 1] satisfy the following conditions
(T1)-(T5) of Theorem 3. Then ( f1 ∨ f2, g1 ∨ g2), ( f1 ∧ f2, g1 ∧ g2) and ( f1 × f2, g1 × g2) also
satisfy these conditions.

Proof. The cases for (T1), (T2), and (T5) are straightforward.
(T3) (⇒) If ( f1 ∨ f2)(a, b) = max

(
f1(a, b), f2(a, b)

)
= 0. Then, f1(a, b) = f2(a, b) = 0,

thus a = 1 or b = 1.
If ( f1 ∧ f2)(a, b) = min

(
f1(a, b), f2(a, b)

)
= 0. Case I, f1(a, b) = 0 then a = 1 or b = 1.

Case II, f2(a, b) = 0 then a = 1 or b = 1.
If ( f1 × f2)(a, b) = f1(a, b) f2(a, b) = 0. Case I, f1(a, b) = 0 then a = 1 or b = 1. Case

II, f2(a, b) = 0 then a = 1 or b = 1.
(⇐) is straightforward.
(T4) (⇒) If (g1 ∨ g2)(a, b) = max

(
g1(a, b), g2(a, b)

)
= 0. Then g1(a, b) = g2(a, b) = 0,

thus a = b = 0.
If (g1 ∧ g2)(a, b) = min

(
g1(a, b), g2(a, b)

)
= 0. Case I, g1(a, b) = 0 then a = b = 0.

Case II, g2(a, b) = 0 then a = b = 0.
If (g1 × g2)(a, b) = g1(a, b)g2(a, b) = 0. Case I, g1(a, b) = 0 then a = b = 0. Case II,

g2(a, b) = 0 then a = b = 0.
(⇐) is straightforward.
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Corollary 8. If G f1g1 and G f2g2 be two grouping functions with generator pair f1, g1 : [0, 1]2 →
[0, 1] and f2, g2 : [0, 1]2 → [0, 1], respectively. Then G( f1◦ f2)(g1◦g2)

is a grouping function, where
◦ ∈ {∨,∧,×}

Lemma 3. Let a1, a2, a3, a4, b1, b2, b3, b4 ∈ [0, 1]. If a1b2 ≤ a2b1 and a3b4 ≤ a4b3. Then

(1) (a1a3)(b2b4) ≤ (a2a4)(b1b3).
(2) (a1 ∧ a3)(b2 ∧ b4) ≤ (a2 ∨ a4)(b1 ∨ b3).

Theorem 5. Let O f1g1 , O f2g2 , O f3g3 and O f4g4 be four overlap functions with generator pair
( f1, g1), ( f2, g2, ( f3, g3) and ( f4, g4), respectively. If O f1g1 � O f2g2 and O f3g3 � O f4g4 , then

(1) O( f1× f3)(g1×g3)
� O( f2× f4)(g2×g4)

;
(2) O( f1∧ f3)(g1∧g3)

� O( f2∨ f4)(g2∨g4)
.

Proof. From O f1g1 � O f2g2 and O f3g3 � O f4g4 , by Theorem 1, it hold that f1g2 ≤ f2g1
and f3g4 ≤ f4g3. By Lemma 3(1) and (2), we have ( f1 × f3)(g2 × g4) ≤ ( f2 × f4)(g1 × g3)
and ( f1 ∧ f3)(g2 ∧ g4) ≤ ( f2 ∨ f4)(g1 ∨ g3), respectively. Thus we obtain O( f1× f3)(g1×g3)

�
O( f2× f4)(g2×g4)

and O( f1∧ f3)(g1∧g3)
� O( f2∨ f4)(g2∨g4)

.

Theorem 6. Let G f1g1 , G f2g2 , G f3g3 and G f4g4 be four grouping functions with generator pair
( f1, g1), ( f2, g2, ( f3, g3) and ( f4, g4), respectively. If G f1g1 � G f2g2 and G f3g3 � G f4g4 , then

(1) G( f1× f3)(g1×g3)
� G( f2× f4)(g4×g4)

;
(2) G( f1∨ f3)(g1∧g3)

� G( f2∧ f4)(g2∨g4)
.

Proof. From G f1g1 � G f2g2 and G f3g3 � G f4g4 , by Theorem 4, it hold that f2g1 ≤ f1g2
and f4g3 ≤ f3g4. By Lemma 3(1) and (2), we have ( f2 × f4)(g1 × g3) ≤ ( f1 × f3)(g2 × g4)
and ( f2 ∧ f4)(g1 ∧ g3) ≤ ( f1 ∨ f3)(g2 ∨ g4), respectively. Thus we obtain G( f1× f3)(g1×g3)

�
G( f2× f4)(g2×g4)

and G( f1∨ f3)(g1∧g3)
� G( f2∧ f4)(g2∨g4)

.

6. Conclusions

This paper studies the pointwise comparability of overlap and grouping functions,
respectively. We give some necessary and sufficient conditions for the comparison of
overlap functions characterized by Bustince et al. generator pairs [1] and grouping functions
characterized by Bedregal et al. generator pairs [26]. We present some more general results
on order preservation with respect to some compositions of overlap and grouping functions.

In this paper, we only focus on overlap and grouping functions characterized by
Bustince et al. [1] and Bedregal et al. [26] generators, respectively. Naturally, a more
detailed discussion of other generators of overlap and grouping functions, such as additive
generators proposed by Dimuro et al. [27] and multiplicative generators proposed by Qiao
and Hu [29], will be both necessary and interesting.

It was observed that there are various compositions of overlap and grouping functions.
Obviously, the results presented in this paper are particular cases of order preservation
with respect to some compositions of overlap and grouping functions. Therefore, it will be
meaningful to further discuss order preservation of other compositions.
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