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Abstract: The clustering method divides a dataset into groups with similar data using similarity
metrics. However, discovering clusters in different densities, shapes and distinct sizes is still a
challenging task. In this regard, experts and researchers opt to use the DBSCAN algorithm as it
uses density-based clustering techniques that define clusters of different sizes and shapes. However,
it is misapplied to clusters of different densities due to its global attributes that generate a single
density. Furthermore, most existing algorithms are unsupervised methods, where available prior
knowledge is useless. To address these problems, this research suggests the use of a clustering
algorithm that is semi-supervised. This allows the algorithm to use existing knowledge to generate
pairwise constraints for clustering multi-density data. The proposed algorithm consists of two stages:
first, it divides the dataset into different sets based on their density level and then applies the semi-
supervised DBSCAN algorithm to each partition. Evaluation of the results shows the algorithm
performing effectively and efficiently in comparison to unsupervised clustering algorithms.
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1. Introduction

Clustering is utilized to arrange a dataset into a limited set of clusters based on selected
similarity metrics [1]. There are different clustering categories, such as density-based
algorithms that can identify clusters of distinct sizes and shapes. Hence, this algorithm
does not require the specification of cluster numbers—rather, clusters are identified in
a densely connected region that grows based on the direction of density, meaning that
density-based algorithms identify clusters based on regions that have a high density and
are separated from regions with low densities [2–5].

The DBSCAN algorithm provides all the advantages of the density-based clustering
family [6]. It computes the density by counting the number of points within a circle with a
given radius (referred to as Eps) surrounding the point. Core points are characterized as
having a density over a predetermined threshold (called MinPts) [6]. The two provided
parameters (Eps and MinPts) define a single density. Thus, clustering methods based on
the DBSCAN cannot perform well with multi-density data [7,8]. Moreover, most of these
methods are unsupervised and cannot utilize prior knowledge, which may be available
either in the form of labeled data or pairwise constraints.

Semi-supervised clustering improves clustering performance with pairwise constraints
or labeled data. Pairwise constraints are of two types: must-link and cannot-link constraints.
A must-link constraint (i.e., ML(x, y)) means that the two objects x and y must be in the same
cluster. Meanwhile, the cannot-link constraint (i.e., CL(x, y)) means that these two objects x
and y must be in different clusters.

In this study, we present a semi-supervised clustering algorithm for clustering multi-
density data, referred to as the SSMD. Our algorithm is separated into two core parts:
Firstly, we divided the data into various density levels and calculate the density parameters
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for each density level set. Secondly, we applied pairwise constraints to get a set of clusters
based on the computed parameters. We conducted experiments with real datasets. The
comparison results reveal the effectiveness and efficiency of the proposed algorithm.

The main contributions are twofold: Firstly, our proposed algorithm can discover
clusters of changing densities using the available pairwise constraints. Secondly, we
evaluated the performance of the proposed algorithm on different experiments with varied
datasets in comparison to other algorithms.

The remaining part of the paper is organized as follows: Related work is explained
in Section 2. In Section 3, the SSMD algorithm is discussed in detail. Section 4 shows the
performance analysis of the SSMD algorithm compared with other algorithms. Lastly, the
paper is concluded in Section 5.

2. Related Work

In this section, the key literature related to clustering methods is highlighted and
discussed. Hence, the literature on density-based clustering and semi-supervised clustering
algorithms is critically reviewed.

For the purpose of finding clusters in huge spatial data sets, Ester et al. proposed a
density-based clustering algorithm named DBSCAN [6]. The DBSCAN algorithm depends
on two specified parameters (Eps and Minpts) that define a single density. Thus, the
DBSCAN cannot cluster datasets with large differences in densities well.

Ankerst et al. proposed an algorithm named OPTICS that executes and stores dual
parameters—the core distance and reachability distance—for cluster identification with
different densities [9]. If the Eps-neighborhood of a point p contains at least MinPts points,
then that point is a core point. As a result, a core distance is assigned to each point,
describing how far it is from the MinPts-th closest point. The greater of the distances
between two points—o and p—or p’s core distance, defines the reachability distance between
them. The algorithm further creates an ordering process for the dataset which will represent
its density-based clustering structure. This study revealed a process which did not extract
both traditional clustering information and intrinsic clustering structure automatically with
good efficiency [9].

Based on the issue of identifying clusters in high-dimensional data, Ertoz et al. pro-
posed an algorithm that identifies clusters with distinct sizes, shapes, and densities [10].
Firstly, the algorithm checks for the nearest neighbors (NN) of individual data points and
further describes the similarity that resides between the points with respect to the number
of NN shared by the points. Hence, the algorithm defines and builds clusters around these
defined points. An experiment on various datasets showed that the algorithm achieved
good performance compared to traditional methods. To detect clusters of distinct shapes
and sizes, Liu et al. proposed an altered version of the DBSCAN algorithm, coining the
term Entropy and Probability Distribution (EPDCA) [11] for it. Testing on benchmark
datasets indicated that clustering results based on EPDCA achieve good performance.

A study by Kim et al. proposed a density-based clustering algorithm, coined approxi-
mate adaptive AA-DBSCAN [12]. The algorithm focused on minimizing extra computation
needed to determine parameters by utilizing e-distance for each density when identifying
clusters. Based on an experiment conducted, the result showed a significant improvement
with regards to clustering performance, with a decrease in running time. Another study by
Zhang et al., proposed GCMDDBSCAN because DBSCAN cannot handle databases that
are large [13]; the authors highlighted that clustering capabilities on datasets that are large
were improved, together with clustering accuracy.

FlockStream was proposed by Forestiero et al. This algorithm is based on a multi-agent
system and the results demonstrate that FlockStream shows good performance on both
synthetic and real datasets [14]. Chen and Tu proposed a framework named D-Stream with
the aim of clustering stream data by utilizing a density-based approach [15].

Recently, semi-supervised clustering algorithms [16–22] have been created as an exten-
sion of known unsupervised clustering algorithms that utilize background knowledge in
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the form of labeled data or pairwise constraints to improve clustering performance. Huang
et al. proposed an algorithm named MDBSCAN that handles multi-density datasets by
automatically calculating the parameter Eps for each density distribution using pairwise
constraints [16].

A study by Ruiz et al. proposed a pairwise-constrained clustering algorithm (C-DBSCAN)
that utilizes information pairwise constraints to enhance clustering performance [17].
C-DBSCAN creates a set of neighborhoods based on cannot-link constraints and uses
must-link constraints to merge the local clusters in each neighborhood. The results revealed
that C-DBSCAN can detect arbitrary shapes and evolving clusters with current pairwise
constraints. In another study by Lelis et al., a new density-based semi-supervised cluster-
ing algorithm was proposed (SSDBSCAN) that utilizes labeled data for the evaluation of
density parameters [18]. The results showed an improvement in clustering accuracy with
little supervision required. However, C-DBSCAN and SSDBSCAN cannot be applied well
to multi-density data—especially with increases in the number of pairwise constraints.

Wagstaff et al. proposed a well-known semi-supervised clustering algorithm named
MPCKmean. The MPCKmean is a variant of the K-means algorithm, which uses pairwise
constraints for clustering [19]. It is very effective at processing huge datasets, but it cannot
handle clusters of different sizes and densities.

3. The SSMD Algorithm

Semi-supervised clustering algorithms utilize a set of class label constraints on some
examples to help unsupervised clustering. We propose an active semi-supervised clustering
method for a multi-density dataset (called the SSMD) that attempts to identify clusters with
distinct densities and arbitrary shapes. Let D be a dataset of n points in a d-dimensional
space. Each point pi, is given by pi = {pi1, pi2, . . . , pid}. Some supervision information
is available in the form of must-link constraints ML = (pi, pj) or cannot-link constraints
CL = {(pi, pj) where pi and pj belong to the same class or different classes, respectively. The
SSMD algorithm has two main components: (1) Partition the dataset D into distinct density
level sets. (2) Apply the Semi-DBSCAN algorithm to each density level set, where Semi-
DBSCAN is an extension of DBSCAN that makes full use of existing pairwise constraints.
The pseudocode of our SSMD is revealed in Algorithm 1.

First, we computed the density function for each data point (p), as shown in Equation (1).
Then, the density for all the data points was sorted in descending order to evaluate the
variation between each sequence point. The density variation explained how much denser
or sparser the points were:

Den(p, MinPts) =
kdist(p, k)

k
. (1)

We defined kdist(p, k) as the number of p’s neighbors and k as an arbitrary positive
integer that explains the k-nearest neighbor distance. The density variation of point pi with
respect to pj is computed in Equation (2):

DenVar
(

pi, pj
)
=

∣∣Den(pi, k)− Den
(

pj, k
)∣∣

Den(pi, k)
. (2)

We partitioned the dataset into a list of density level sets (DLS). The DLS contained a
set of data points whose densities were approximately the same. We computed the density
variation threshold ( τ) according to the statistical characteristics of the sorted density
variation list:

τ =
∑n

i=0 DenVar(i)
n

where DenVar(i) > 0. (3)
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Finally, we separated the data points into different densities based on the computed
density variation threshold (τ), as follows:

pi, pj ∈ DLSk i f DenVar
(

pi, pj
)
≤ τ. (4)

After the density level partitioning, we acquired a list of density level sets (in short,
the DLSList). Then, we needed to find representative Eps for each density level set. We
computed the Epsi for the DLSi as follows:

Epsi = max(DLSi) ·

√
median(DLSi)

mean(DLSi)
. (5)

We defined max, median, and mean as the maximum, median, and mean values of each
DLSi, respectively.

Algorithm 1 SSMD

Input:
Dataset (D), must-link and cannot-link constraints (ML, CL), number of objects in a

neighborhood (MinPts)
Output:

Set of clusters
Begin

Compute density value for all data points according to Equation (1)
Sort density list in descending order

Compute Density variation values using Equation (2)
Generate Density Level Set (DLS) using a threshold in Equation (3)
EpsList = EstimateEps(DLSList);
For each DLSi in DLSList
Semi-DBSCAN(DLSi, ML, CL, MinPts, Epsi)

End For
Return all clusters

End

With the density level partitioning and parameter estimation completed, we carried
on the clustering process: The global parameter MinPts = k was initialized and the Semi-
DBSCAN algorithm adopted for each Epsi in the EpsList in the corresponding DLS. The semi-
DBSCAN algorithm is able find a set of clusters and a (probably empty) set of noise. Initially,
constraints are preprocessed; constraints given by human experts may be incomplete. Some
constraints are not explicitly given; for example, if we have a ML(pi, pj) and ML(pi, pk), then
we have ML(pj, pk). Then, we used constraints to monitor the process of growing clusters
in Semi-DBSCAN, as presented in Algorithm 2.

First, we computed the neighborhood for each unclassified data point and compared
it with MinPts to determine whether it could be added to the current cluster or noise set.
Then, clusters were expanded using pairwise constraints as follows:

1. Add all data points that have a must-link constraint with d to the current cluster.
2. Add all data points in d’s neighborhood that do not violate the cannot-link constraint

with d to the current cluster.
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Algorithm 2 Semi-DBSCAN (D, ML, CL, MinPts, Eps)

Begin
Cluster.Id: = 0;
For each d in D

If d is UNCLASSIFIED then
Compute d’s Eps-neighborhood neighborhood;

If neighborhood < MinPts
Add d to NOISE set;

Else
Add d to current cluster (ClusterId);

For each data point o that has a must-link constraints ML(d, o)
Add o to current cluster (ClusterId);

For each data point p in the neighborhood set that does not violate cannot-link constraints
Add p to current cluster (ClusterId);

ClusterId = ClusterId + 1;
End

4. Experimental Results

In this section, the datasets used are presented, followed by the evaluation metrics
utilized and the results of the study.

4.1. Datasets and Evaluation Metrics

In this section, the utilized datasets are presented. Table 1 outlines the datasets used.
For our experiments, real datasets such as Magic and Glass were selected from the UCI
repository. Hence, these datasets were labeled with the number of instances, attributes, and
cluster labels, as described in Table 1.

Table 1. The Data Sets Used in the Experiments.

Dataset # Instances # Attributes # Clusters

Glass 214 10 6
Ecoli 336 8 8

Segment 2310 19 7
Magic 19,020 10 2

We utilized four clustering algorithms, i.e., C-DBSCAN [17], SSDBSCAN [18],
AA-DBSCAN [12], and MPCKmean [19], along with SSMD to compare their clustering
performances. Clustering performance was measured in terms of normalized mutual
information (NMI) and Clustering Accuracy (ACC). NMI and Clustering accuracy were
measured using Equations (6) and (7):

NMI =
I(X; Y)

(H(X) + H(Y))/2
. (6)

ACC =
∑n

i=1 I
(
t̂i = ti

)
n

. (7)

4.2. Performance Analysis

In this sub-section, the performance evaluation based on NMI is presented. This
evaluation result was for the proposed algorithm in comparison to the four algorithms
SSDBSCAN, AA-DBSCAN, MPCKmeans, and C-DBSCAN. The goal was to find out
whether or not the proposed algorithm performed better with varied constraints on distinct
datasets. Hence, this experiment presented evidence that the proposed algorithm was more
effective in comparison to the compared algorithms.
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Figure 1 presents the performance results of the four different datasets (Glass, Ecoli,
Segment, and Magic), as presented in Table 1. For each dataset, several constraints were
utilized for the NMI.
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It can be observed from Figure 1 that the SSMD algorithm generally performed better
than the four other methods when the number of constraints was increased (e.g., ecoli,
segment, and magic). For instance, in Figure 1a—with 20 constraints—the proposed
algorithm performance was superior, with a greater than 0.6 NMI—and with 80 constraints,
the proposed algorithm achieved an NMI of more than 0.7, respectively. Looking very
carefully, one can see that SSDBSCAN is the second most effective, followed by C-DBSCAN.
It can be seen from Figure 1, that the performance of AA-DBSCAN in all the datasets was at
a constant value, as it is an unsupervised clustering algorithm. Thus, this proves the utility
of semi-supervised clustering algorithms over unsupervised approaches when knowledge
is available.

For the Ecoli dataset, the SSMD algorithm has also shown to be more effective, with a
0.8 NMI with 80 constraints. This was the same with the other two datasets, Segment and
Magic. Considering the overall result in Figure 1, we can confidently conclude that for NMI
performance evaluation, the proposed algorithm outperformed all four compared algorithms.

Additionally, we present results based on the clustering accuracy of the SSMD algo-
rithm in comparison to other algorithms on the datasets outlined in Table 1. Hence, the
results of each algorithm are displayed in varied colors in Figure 2. As seen in Figure 2,
the proposed algorithm SSMD had a much higher accuracy and more stable state than
SSDBSCAN and C-DBSCAN. For instance, looking at Figure 2a, the accuracy of the SSMD
algorithm reached 88% when selecting 20 constraints from all constraints, and reached the
highest accuracy when selecting more than 100 constraints.
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Considering the general clustering performance on all datasets in Figure 2, SSDBSCAN
is the second most effective algorithm for clustering accuracy on the Glass, Ecoli, and
Segment datasets, followed by AA-DBSCAN and C-DBSCAN. The main advantage of
the proposed algorithm is that it can attain good performance with fewer constraints and
progressively maintain performance. However, we observed that the other compared
algorithms required more constraints to attain a good performance. Some algorithms’
performance also subsided considerably.

4.3. Efficiency Analysis Based on Times

In this section, the clustering times for the proposed algorithm and the four compared
algorithms are presented. Figure 3 gives the results for the execution times using a distinct
number of pairwise constraints on the four datasets. Achieving a low execution time indi-
cates that an algorithm has better performance, and vice versa with a high execution time.
From Figure 3a, SSDBSCAN had the highest execution time with all pairwise constraints
taken into consideration.

It can be seen that the SSMD method is generally time-efficient (about 5 s on the glass
dataset with 214 samples, and about 50 s on the magic dataset with 19,020 samples). Even
though the SSMD is not always the fastest method for all of the data sets, it performs
substantially better than its competitors.
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5. Conclusions

In this paper, we proposed the SSMD algorithm, which is a semi-supervised clustering
algorithm for clustering multi-density data and arbitrary shapes. The proposed algorithm
partitions the dataset into distinct density level sets by examining the statistical characteris-
tics of its variation with respect to density, and then expands the clusters using selected
active pairwise constraints. We conducted experiments to assess the clustering performance
and execution time on real datasets of distinct dimensions and sizes. The experimental
results revealed that the SSMD attained better clustering performance in comparison to the
existing state of the art. Furthermore, the SSMD had a significantly reduced the execution
time in comparison to the compared algorithms in most scenarios. In the future, we intend
to apply the SSMD to the manufacturing environment in order to solve real-world issues
and boost production productivity in pertinent industries.
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