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Abstract: In this paper we study single-valued and multi-valued (k, ψ)-Hilfer-type boundary value
problems of fractional order in (1, 2], subject to nonlocal boundary conditions involving (k, ψ)-Hilfer-
type derivative and integral operators. The results for single-valued case are established by using
Banach and Krasnosel’skiĭ fixed point theorems as well as Leray–Schauder nonlinear alternative. In
the multi-valued case, we establish an existence result for the convex valued right-hand side of the
inclusion via Leray–Schauder nonlinear alternative for multi-valued maps, while the second one
when the right-hand side has non-convex values is obtained by applying Covitz–Nadler fixed point
theorem for multi-valued contractions. Numerical examples illustrating the obtained theoretical
results are also presented.
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1. Introduction

Fractional calculus is concerned with integral and derivative operators of non-integer
order and arises in many engineering and scientific fields such as physics, chemistry, math-
ematical biology, mechanics, and so forth; see the monographs [1–9]. Usually, fractional in-
tegral operators are used to define fractional derivative operators. Many kinds of fractional
derivative operators such as Rieman–Liouville, Caputo, Hadamard, Katugampola, Hilfer,
etc., are proposed in the literature. Certain forms of fractional operators include definitions
of other fractional operators. For example, the concept of generalized fractional deriva-
tives and integrals introduced by Katugampola in [10,11] includes Riemann–Liouville and
Hadamard fractional derivatives. The Hilfer fractional derivative operator [12] includes
Rieman–Liouville and Caputo fractional derivative operators. The ψ-fractional derivative
operator [13] unifies Caputo, Caputo–Hadamard and Caputo–Erdélyi-Kober fractional
derivative operators. A wide class of fractional operators is covered by the (k, ψ)-Hilfer
fractional derivative operator introduced in [14,15].

In [14], the authors, by applying Banach’s fixed point theorem, proved the existence
of a unique solution for a nonlinear initial value problem involving (k, ψ)-Hilfer-type
fractional derivative operator. Tariboon et al. [16] studied the existence and uniqueness of
solutions for (k, ψ)-Hilfer fractional differential equations and inclusions with multi-point
boundary conditions.
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To enrich the literature in this new research topic, which is very limited at the mo-
ment, we continue in the present paper the study of boundary value problems involving
(k, ψ)-Hilfer-type fractional derivatives in the order of (1, 2], supplemented with nonlocal
boundary conditions involving (k, ψ)-Hilfer-type derivative and integral operators of the
form {

k,H Dα,β;ψu(t) = f(t, u(t)), t ∈ (a, b],
u(a) = 0, u(b) = λ k,H Dp,q;ψu(η) + µ kIv,ψu(σ),

(1)

where k,H Dα,β;ψ denotes the (k, ψ)-Hilfer-type fractional derivative of order α, 1 < α < 2
and parameter β, 0 ≤ β ≤ 1, k > 0, f : [a, b]×R → R is a continuous function, k,H Dp,q;ψ

denotes the (k, ψ)-Hilfer-type fractional derivative of order p, 1 < p < 2 and parameter
q, 0 ≤ q ≤ 1, p < α, kIv,ψ is the (k, ψ)-Riemann–Liouville fractional integral of order
v > 0, λ, µ ∈ R, and a < ξ, σ < b. Existence and uniqueness will be established, by
using Banach’s and Krasnosel’skiĭ’s fixed point theorems, as well as the Laray–Schauder
nonlinear alternative.

We also study the corresponding multi-valued case of the problem (1) given by{
k,H Dα,β;ψu(t) ∈ F(t, u(t)), t ∈ (a, b],
u(a) = 0, u(b) = λ k,H Dp,q;ψu(η) + µ kIv,ψu(σ),

(2)

in which F : [a, b] × R → P(R) is a multivalued map (P(R) denotes the family of all
nonempty subsets of R) while the other parameters are the same as defined in problem (1).
The existence results for the problem (2) associated with convex and non-convex cases of
the multi-valued map F(t, u(t)) will be obtained by using the Laray–Schauder nonlinear
alternative for multi-valued maps and the Covitz–Nadler fixed point theorem for multi-
valued contractions, respectively.

The fixed point theory provides an excellent approach to establish the existence theory
for initial and boundary value problems. For some recent publications on this branch of
mathematical analysis, we refer the reader to some recent books [17–19].

The content in the rest of paper is arranged as follows. Section 2 contains some
necessary definitions and lemmas, while Section 3 is concerned with an auxiliary lemma
which enables us to transform the nonlinear (k, ψ)-Hilfer type boundary value problem (1)
into an equivalent fixed point problem. The main results for the problems (1) and (2)
are presented in Sections 4 and 5, respectively. Finally, in Section 6, numerical examples
illustrating the obtained theoretical results are presented.

2. Preliminaries

In this section we introduce some definitions and lemmas that will be used throughout
the paper.

Definition 1 ([20]). Let h ∈ L1([a, b],R) and k, α ∈ R+. Then, the k-Riemann–Liouville frac-
tional derivative of order α of the function h is given by

kIα
a+h(t) =

1
kΓk(α)

∫ t

a
(t− w)

α
k−1h(w)dw, (3)

where Γk is the k-Gamma function for z ∈ C with <(z) > 0 and k ∈ R, k > 0 which is defined
in [21] by

Γk(z) =
∫ +∞

0
sz−1e−

sk
k ds.

The following relations are well known.

Γ(θ) = lim
k→1

Γk(θ), Γk(θ) = k
θ
k−1Γ

(
θ

k

)
and Γk(θ + k) = θΓk(θ).
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Definition 2 ([22]). Let h ∈ L1([a, b],R) and k, α ∈ R+. Then the k-Riemann–Liouville fractional
derivative of order α of the function h is given by

k,RLDα
a+h(t) =

(
k

d
dt

)n
kInk−α

a+ h(t), n =
⌈α

k

⌉
, (4)

where
⌈

α
k

⌉
is the ceiling function of α

k .

Definition 3 ([2]). Let h ∈ L1([a, b],R) and an increasing function ψ : [a, b]→ R with ψ′(t) 6=
0 for all t ∈ [a, b]. Then the ψ-Riemann–Liouville fractional integral of the function h is given by

Iα;ψh(t) =
1

Γk(α)

∫ t

a
ψ′(u)(ψ(t)− ψ(u))α−1h(u)du. (5)

Definition 4. Let n − 1 < α ≤ n, ψ ∈ Cn([a, b],R) is an increasing function with ψ′(t) 6=
0, t ∈ [a, b], and h ∈ C([a, b],R).

(a) The ψ-Riemann–Liouville fractional derivative of the function h of order α is given in [2] as

RLDα;ψh(t) =
( 1

ψ′(t)
d
dt

)n
I

n−α;ψ
a+ h(t). (6)

(b) The ψ-Caputo fractional derivative of the function h of order α is defined in [13] as

CDα;ψh(t) = I
n−α;ψ
a+

( 1
ψ′(t)

d
dt

)n
h(t). (7)

(c) The ψ-Hilfer fractional derivative of the function h ∈ C([a, b],R) of order α ∈ (n− 1, n] and
type β ∈ [0, 1] is defined in [23] as

H Dα,β;ψh(t) = I
β(n−α);ψ
a+

( 1
ψ′(t)

d
dt

)n
I
(1−β)(n−α);ψ
a+ h(t). (8)

Definition 5 ([24]). Let ψ : [a, b]→ R be an increasing function with ψ′(t) 6= 0 for all t ∈ [a, b].
Then the (k, ψ)-Riemann–Liouville fractional integral of order α > 0 (α ∈ R) of a function
h ∈ L1([a, b],R) is given by

kI
α;ψ
a+ h(t) =

1
kΓk(α)

∫ t

a
ψ′(u)(ψ(t)− ψ(u))

α
k−1h(u)du, k > 0. (9)

Definition 6 ([14]). Let α, k ∈ R+ = (0,+∞), β ∈ [0, 1], ψ ∈ Cn([a, b],R) is an increasing
function with ψ′(t) 6= 0, t ∈ [a, b] and h ∈ Cn([a, b],R). Then the (k, ψ)-Hilfer fractional
derivative of the function h of order α and type β, is defined by

k,H Dα,β;ψh(t) = kI
β(nk−α);ψ
a+

( k
ψ′(t)

d
dt

)n
kI

(1−β)(nk−α);ψ
a+ h(t), n =

⌈α

k

⌉
. (10)

Remark 1. Observe that the (k, ψ)-Hilfer-type fractional derivative can be expressed in terms of
(k, ψ)-Riemann–Liouville fractional derivative as

k,H Dα,β;ψh(t) = kI
θk−α;ψ
a+

( k
ψ′(t)

d
dt

)n
kI

nk−θk ;ψ
a+ h(t)

= kI
θk−α;ψ
a+

(
k,RLDθk ;ψh

)
(t),

where θk = α + β(nk− α), β(nk− α) = θk − α and (1− β)(nk− α) = nk− θk, β ∈ [0, 1]. Note
that n− 1 < θk

k ≤ n when n− 1 < α
k ≤ n.
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We recall now some useful lemmas.

Lemma 1 ([14]). Assume that h ∈ Cn([a, b],R) and kI
nk−µ;ψ
a+ h ∈ Cn([a, b],R) with µ, k ∈

R+ = (0,+∞) and n =
⌈

µ
k

⌉
. Then

kIµ;ψ
(

k,RLDµ;ψh(t)
)
= h(t)−

n

∑
j=1

(ψ(t)− ψ(a))
µ
k−j

Γk(µ− jk + k)

[(
k

ψ′(t)
d
dt

)n−j
kI

nk−µ;ψ
a+ h(t)

]
z=a

.

Lemma 2 ([14]). Let θk = α + β(k− α) with α, k ∈ R+ = (0,+∞), α < k, β ∈ [0, 1]. Then

kIθk ;ψ
(

k,RLDθk ;ψh
)
(t) = kIα;ψ

(
k,H Dα,β;ψh

)
(t), h ∈ Cn([a, b],R).

Lemma 3 ([14]). Let ζ, k ∈ R+ = (0,+∞) and η ∈ R such that η
k > −1. Then

(i). kIζ,ψ(ψ(t)− ψ(a))
η
k =

Γk(η + k)
Γk(η + k + ζ)

(ψ(t)− ψ(a))
η+ζ

k .

(ii). kDζ,ψ(ψ(t)− ψ(a))
η
k =

Γk(η + k)
Γk(η + k− ζ)

(ψ(t)− ψ(a))
η−ζ

k .

3. An Auxiliary Result

In this section, an auxiliary result dealing with the linear variant the problem (1) is
presented.

Lemma 4. Let g ∈ C(a, b) ∩ L1(a, b) (see [25,26]) and

Ω : =
(ψ(b)− ψ(a))

θk
k −1

Γk(θk)
− λΓk(θk)

(ψ(η)− ψ(a))
θk−p

k −1

Γk(θk − p)

−µΓk(θk)
(ψ(σ)− ψ(a))

θk+v
k −1

Γk(θk + v)
6= 0. (11)

Then, the function u ∈ C2([a, b],R) is a solution of the (k, ψ)-Hilfer-type nonlocal fractional
boundary value problem{

k,H Dα,β;ψu(t) = g(t), t ∈ (a, b], k > 0, 1 < α ≤ 2, β ∈ [0, 1],
u(a) = 0, u(b) = λ k,H Dp,q;ψu(η) + µ kIv,ψu(σ),

(12)

if and only if

u(t) = kIα;ψg(t) +
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψg(η) + µ kIv+α,ψg(σ)− kIα;ψg(b)

]
, (13)

where θk = α + β(2k− α).

Proof. Assume that u is a solution of the (k, ψ)-Hilfer-type nonlocal fractional boundary
value problem (12). Operating on both sides of equation in (12), the fractional integral kIα;ψ

and using Lemmas 2 and 1, we obtain

kIα;ψ
(

k,H Dα,β;ψu
)
(t) = kIθk ;ψ

(
k,RLDθk ;ψu

)
(t)

= u(t)− (ψ(t)− ψ(a))
θk
k −1

Γk(θk)

[( k
ψ′(t)

d
dt

)
kI2k−θk ;ψu(t)

]
w=a

− (ψ(t)− ψ(a))
θk
k −2

Γk(θk − k)

[
kI2k−θk ;ψu(t)

]
w=a

.
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Consequently

u(t) = kIα;ψg(t) + c0
(ψ(t)− ψ(a))

θk
k −1

Γk(θk)
+ c1

(ψ(t)− ψ(a))
θk
k −2

Γk(θk − k)
, (14)

where
c0 =

[( k
ψ′(t)

d
dt

)
kI2k−θk ;ψu(t)

]
w=a

, c1 =
[

kI2k−θk ;ψu(t)
]

w=a
.

By the condition u(a) = 0, we find that c1 = 0 as θk
k − 2 < 0 by Remark 1. By using

Lemma 3, we obtain

kDp,q;ψ(ψ(t)− ψ(a))
θk
k −1 =

Γk(θk)

Γk(θk − p)
(ψ(t)− ψ(a))

θk−p
k −1. (15)

and
kIv,ψ(ψ(t)− ψ(a))

θk
k −1 =

Γk(θk)

Γk(θk + v)
(ψ(t)− ψ(a))

θk+v
k −1. (16)

From (15), (16) and the boundary condition: u(b) = λu(ξ) + µ kIv,ψu(σ), we obtain

c0 =
1
Ω

[
λ kIα−p;ψg(η) + µ kIv+α,ψg(σ)− kIα;ψg(b)

]
.

Replacing c0 and c1 in (14) by their above values, we obtain the solution (13). The converse
can be proved easily by direct computation. This finishes the proof.

4. The Single Valued Problem

Let us begin this section by defining the solution of problem (1).

Definition 7. A function u ∈ C2([a, b],R) possessing the (k, ψ)-Hilfer fractional derivative
in the sense of Definition 6 is said to be a solution of the (k, ψ)-Hilfer-type nonlocal fractional
boundary value problem (1) if it satisfies the equations k,H Dα,β;ψu(t) = f(t, u(t)), t ∈ (a, b]
with f ∈ C(([a, b],R),R) and the boundary conditions u(a) = 0, u(b) = λ k,H Dp,q;ψu(η) +
µ kIv,ψu(σ).

In view of Lemma 4, we define an operator A : C([a, b],R)→ C([a, b],R) by

(Au)(t) =
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψf(η, u(η)) + µ kIv+α,ψf(σ, u(σ))

−kIα;ψf(b, u(b))
]
+ kIα;ψf(t, u(t)), t ∈ [a, b], (17)

where C([a, b],R) denotes the Banach space of all continuous real valued functions defined
on [a, b] equipped with the sup-norm ‖u‖ = supt∈[a,b] |u(t)|.

Observe that the solutions of the (k, ψ)-Hilfer-type nonlocal fractional boundary value
problem (1) must be sought among the fixed points of A.

For computational convenience we put:

G =
(ψ(b)− ψ(a))

α
k

Γk(α + k)
+

(ψ(b)− ψ(a))
θk
k −1

|Ω|Γk(θk)

[
|λ| (ψ(η)− ψ(a))

α−p
k

Γk(α− p + k)

+|µ| (ψ(σ)− ψ(a))
α+v

k

Γk(α + v + k)
+

(ψ(b)− ψ(a))
α
k

Γk(α + k)

]
. (18)
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4.1. Existence of a Unique Solution

In this subsection, we make use of Banach’s fixed point theorem [27] to prove the
existence of a unique solution to the problem (1).

Theorem 1. Let the following condition hold:

(H1) |f(t, u)− f(t, y)| ≤ L|u− y|, L > 0 for each t ∈ [a, b] and u, y ∈ R.

Then there exists a unique solution to the (k, ψ)-Hilfer-type nonlocal fractional boundary value
problem (1) on [a, b], provided that

LG < 1, (19)

where G is defined by (18).

Proof. We verify that the operator A defined in (17) satisfies the hypothesis of Banach’s
fixed point theorem. Letting supt∈[a,b] |f(t, 0)| = M < +∞, we define Br = {u ∈
C([a, b],R) : ‖u‖ ≤ r} with

r ≥ MG
1− LG . (20)

We will first show that ABr ⊂ Br. By the assumptions (H1), we have

|f(t, u(t))| ≤ |f(t, u(t))− f(t, 0)|+ |f(t, 0)|
≤ L|u(t)|+M ≤ L‖u‖+M ≤ Lr +M.

Then, for any u ∈ Br, we obtain

|(Au)(t)| ≤ sup
t∈[a,b]

{
(ψ(t)− ψ(a))

θk
k −1

|Ω|Γk(θk)

[
|λ| kIα−p;ψ|f(η, u(η))|+ |µ| kIv+α,ψ|f(σ, u(σ))|

+kIα;ψ|f(b, u(b))|
]
+ kIα;ψ|f(t, u(t))|

}
≤ kIα;ψ(|f(t, u(t))− f(t, 0)|+ |f(t, 0)|)

+
(ψ(b)− ψ(a))

θk
k −1

|Ω|Γk(θk)

(
|λ| kIα−p;ψ(|f(η, u(η))− f(η, 0)|+ |f(η, 0)|)

+|µ| kIv+α,ψ(|f(σ, u(σ))− f(σ, 0)|+ |f(σ, 0)|)

+kIα;ψ(|f(b, u(b))− f(b, 0)|+ |f(b, 0)|)
)

≤
{
(ψ(b)− ψ(a))

α
k

Γk(α + k)
+

(ψ(b)− ψ(a))
θk
k −1

|Ω|Γk(θk)

[
|λ| (ψ(η)− ψ(a))

α−p
k

Γk(α− p + k)

+|µ| (ψ(σ)− ψ(a))
α+v

k

Γk(α + v + k)
+

(ψ(b)− ψ(a))
α
k

Γk(α + k)

]}
(L‖u‖+M)

≤ (Lr +M)G ≤ r.

Hence, ‖Au‖ ≤ r, which means that ABr ⊂ Br as u ∈ Br is an arbitrary element.
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In the second step, it will be established that A is a contraction. For u, y ∈ C([a, b],R)
and t ∈ [a, b], we obtain

|(Au)(t)− (Ay)(t)|
≤ kIα;ψ|f(t, u(t))− f(t, y(t))|

+
(ψ(b)− ψ(a))

θk
k −1

|Ω|Γk(θk)

(
|λ|kIα−p;ψ|f(η, u(η))− f(η, y(η)|

+|µ| kIα+v;ψ|f(σ, u(σ))− f(σ, y(σ)|

+kIα;ψ(|f(b, u(b))− f(b, y(b))|
)

≤
{
(ψ(b)− ψ(a))

α
k

Γk(α + k)
+

(ψ(b)− ψ(a))
θk
k −1

|Ω|Γk(θk)

[
|λ| (ψ(η)− ψ(a))

α−p
k

Γk(α− p + k)

+|µ| (ψ(σ)− ψ(a))
α+v

k

Γk(α + v + k)
+

(ψ(b)− ψ(a))
α
k

Γk(α + k)

]}
L‖u− y‖

= LG‖u− y‖,

which, on taking the norm for t ∈ [a, b], yields ‖Au−Ay‖ ≤ LG‖u− y‖. Since LG < 1,
therefore A is a contraction. As the hypothesis of the Banach’s fixed point theorem is
verified, we conclude that the operator A has a unique fixed point, which is indeed a
unique solution of the problem (1). This finishes the proof.

4.2. Existence Results

Here we present two existence results for the problem (1) by applying Krasnosel’skiĭ’s
fixed point theorem [28] and nonlinear alternative of Leray–Schauder type [29].

Theorem 2. Suppose that (H1) and th following condition hold:

(H2) ∀(t, u) ∈ [a, b]×R, there exists θ ∈ C([a, b],R+) such that |f(t, u)| ≤ θ(t).

Then, if G1L < 1, where

G1 : =
(ψ(b)− ψ(a))

θk
k −1

|Ω|Γk(θk)

[
|λ| (ψ(η)− ψ(a))

α−p
k

Γk(α− p + k)
+ |µ| (ψ(σ)− ψ(a))

α+v
k

Γk(α + v + k)

+
(ψ(b)− ψ(a))

α
k

Γk(α + k)

]
, (21)

the problem (1) has at least one solution on [a, b].

Proof. Set supt∈[a,b] θ(t) = ‖θ‖ and consider the ball Bρ = {u ∈ C([a, b],R) : ‖u‖ ≤ ρ},
with ρ ≥ ‖θ‖G. Introduce the operators A1 and A2 on Bρ to R as

A1u(t) = kIα;ψf(t, u(t)), t ∈ [a, b],

(A2u)(t) =
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψf(η, u(η)) + µ kIv+α,ψf(σ, u(σ))

−kIα;ψf(b, u(b))
]
, t ∈ [a, b].
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For any u, y ∈ Bρ, we have

|(A1u)(t) + (A2y)(t)|

≤ sup
t∈[a,b]

{
(ψ(t)− ψ(a))

θk
k −1

|Ω|Γk(θk)

[
|λ| kIα−p;ψ|f(η, u(η))|+ |µ| kIv+α,ψ|f(σ, y(σ))|

+kIα;ψ|f(b, y(b))|
]
+ kIα;ψ|f(t, u(t))|

}

≤
{
(ψ(b)− ψ(a))

α
k

Γk(α + k)
+

(ψ(b)− ψ(a))
θk
k −1

|Ω|Γk(θk)

[
|λ| (ψ(η)− ψ(a))

α−p
k

Γk(α− p + k)

+|µ| (ψ(σ)− ψ(a))
α+v

k

Γk(α + v + k)
+

(ψ(b)− ψ(a))
α
k

Γk(α + k)

]}
‖θ‖

= G‖θ‖ ≤ ρ.

Therefore ‖(A1u) + (A2y)‖ ≤ ρ, which shows thatA1u +A2y ∈ Bρ. It is easy to show,
by using (21), that the operator A2 is a contraction.

Note that continuity of f implies the continuity of the operator A1. Furthermore, the
operator A1 is uniformly bounded on Bρ as

‖A1u‖ ≤ (ψ(b)− ψ(a))
α
k

Γk(α + k)
‖θ‖.

Now we establish that the operator A1 is compact. For t1 < t2 (t1, t2 ∈ [a, b]), we have

|(A1u)(t2)− (A1u)(t1)|

≤ 1
Γk(α)

∣∣∣∣∣
∫ t1

a
ψ′(s)[(ψ(t2)− ψ(s))

α
k−1 − (ψ(t1)− ψ(s))

α
k−1]f(s, u(s))ds

+
∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))
α
k−1f(s, u(s))ds

∣∣∣∣∣
≤ ‖θ‖

Γk(α + k)
[2(ψ(t2)− ψ(t1))

α
k + |(ψ(t2)− ψ(a))

α
k − (ψ(t1)− ψ(a))

α
k |]

−→ 0 as t2 − t1 → 0,

independently of u. Hence, the operator A1 is equicontinuous, and consequently, it follows
by the Arzelá–Ascoli theorem that the operator A1 is completely continuous. Thus, the
conclusion of Krasnosel’skiĭ’s fixed point theorem applies, and the problem (1) has at least
one solution on [a, b]. The proof is completed.

Theorem 3. Suppose that the following conditions hold:

(H3) ∃ a continuous, nondecreasing function χ : [0,+∞) → (0,+∞) and a function γ ∈
C([a, b],R+) such that, ∀ (t, u) ∈ [a, b]×R, |f(t, u)| ≤ γ(t)χ(|u|);

(H4) ∃ a constant K > 0 such that
K

χ(K)‖γ‖G > 1.

Then there exists at least one solution for the problem (1) on [a, b].
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Proof. Consider the operatorA is defined by (17). We will split the proof into several steps.
It will be shown in the first step that the operator Amaps bounded sets into bounded set in
C([a, b],R). For r > 0, let Br = {u ∈ C([a, b],R) : ‖u‖ ≤ r}. Then, for t ∈ [a, b], we obtain

|(Au)(t)| ≤ sup
t∈[a,b]

{
(ψ(t)− ψ(a))

θk
k −1

|Ω|Γk(θk)

[
|λ| kIα−p;ψ|f(η, u(η))|+ |µ| kIv+α,ψ|f(σ, u(σ))|

+kIα;ψ|f(b, u(b))|
]
+ kIα;ψ|f(t, u(t))|

}

≤
{
(ψ(b)− ψ(a))

α
k

Γk(α + k)
+

(ψ(b)− ψ(a))
θk
k −1

|Ω|Γk(θk)

[
|λ| (ψ(η)− ψ(a))

α−p
k

Γk(α− p + k)

+|µ| (ψ(σ)− ψ(a))
α+v

k

Γk(α + v + k)
+

(ψ(b)− ψ(a))
α
k

Γk(α + k)

]}
‖γ‖χ(‖u‖),

which implies that
‖Ax‖ ≤ χ(r)‖γ‖G.

Now, we establish that Amaps bounded sets into equicontinuous sets of C([a, b], R).
Consider u ∈ Br and t1, t2 ∈ [a, b] such that t1 < t2. Then we obtain

|(Au)(t2)− (Au)(t1)|

≤ 1
Γk(α)

∣∣∣∣∣
∫ t1

a
ψ′(s)[(ψ(t2)− ψ(s))

α
k−1 − (ψ(t1)− ψ(s))

α
k−1]f(s, u(s))ds

+
∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))
α
k−1f(s, u(s))ds

∣∣∣∣∣
+
(ψ(t2)− ψ(a))

θk
k −1 − (ψ(t1)− ψ(a))

θk
k −1

|Ω|Γk(θk)

[
|λ| kIα−p;ψ|f(η, u(η))|

+|µ| kIv+α,ψ|f(σ, u(σ))|+ kIα;ψ|f(b, u(b))|
]

≤ ‖γ‖χ(r)
Γk(α + k)

[2(ψ(t2)− ψ(t1))
α
k + |(ψ(t2)− ψ(a))

α
k − (ψ(t1)− ψ(a))

α
k |],

+
(ψ(t2)− ψ(a))

θk
k −1 − (ψ(t1)− ψ(a))

θk
k −1

|Ω|Γk(θk)

[
|λ| (ψ(η)− ψ(a))

α−p
k

Γk(α− p + k)

+|µ| (ψ(σ)− ψ(a))
α+v

k

Γk(α + v + k)
+

(ψ(b)− ψ(a))
α
k

Γk(α + k)

]
‖γ‖χ(r)

−→ 0 as t2 − t1 → 0,

independently of u ∈ Br. Thus, an immediate consequence of the Arzelá–Ascoli theorem
implies that the operator A : C([a, b],R)→ C([a, b],R) is completely continuous.

In the final step, we establish the boundedness of the set of all solutions to the equation
u = ωAu for ω ∈ (0, 1).

As in the first step, we obtain

|u(t)| ≤ χ(‖u‖)‖γ‖G,

or
‖u‖

χ(‖u‖)‖γ‖G ≤ 1.
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By (H4), we can find K such that ‖u‖ 6= K. Consider the set

U = {u ∈ C([a, b],R) : ‖u‖ < K}.

Observe that the operator A : U → C([a, b],R) is continuous and completely con-
tinuous, where U denotes the closure of U. By the given choice of U, we cannot find
any u ∈ ∂U (∂U denotes the boundary of U) such that u = ωAu for some ω ∈ (0, 1) in
view of the assumption (H4). In consequence, we deduce by the nonlinear alternative of
Leray–Schauder type the operator A has a fixed point u ∈ U, which is a solution of the
problem (1). This finishes the proof.

5. The Multivalued Problem

Definition 8. A function u ∈ C2([a, b],R) possessing the (k, ψ)-Hilfer fractional derivative in the
sense of Definition 6 is said to be a solution of the (k, ψ)-Hilfer-type nonlocal fractional multi-valued
boundary value problem (2) if there exists a function f ∈ L1([a, b],R) with f (t) ∈ F(t, u) for
a.e. t ∈ [a, b] such that u satisfies the differential equation k,H Dα,β;ψu(t) = f (t) on [a, b] and the
boundary conditions u(a) = 0, u(b) = λ k,H Dp,q;ψu(η) + µ kIv,ψu(σ).

For each u ∈ C([a, b],R), we define the set of selections of F as

SF,u := { f ∈ L1([a, b],R) : f (t) ∈ F(t, u(t)) on [a, b]}.

Our first result for the multi-valued problem (2) is concerned with the case when
the multi-valued map F has convex values, and relies on the nonlinear alternative of
Leray–Schauder type for multi-valued maps [29].

Theorem 4. Suppose that:

(G1) F : [a, b] × R → Pcp,c(R) is L1-Carathéodory, where Pcp,c(R) = {R ∈ P(R) :
R is compact and convex};

(G2) ∃ a continuous nondecreasing function z : [0,+∞)→ (0,+∞) and a positive continuous
real valued function q such that, ∀ (t, u) ∈ [a, b]×R,

‖F(t, u)‖P := sup{| f | : f ∈ F(t, u)} ≤ q(t)z(‖u‖);

(G3) ∃ a constant M > 0 such that
M

‖q‖z(M)G > 1,

where G is defined by (18).

Then the multi-valued problem (2) has at least one solution on [a, b].

Proof. Define an operator F : C([a, b],R) −→ P(C([a, b],R)) as

F (u) =


h ∈ C([a, b],R) :

h(t) =


(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψ f (η) + µ kIα+v;ψ f (σ)− kIα;ψ f (b)

]
+kIα;ψ f (t),


for t ∈ [a, b] and f ∈ SF,x. Observe that the fixed points of the operator F are solutions to
the multi-valued problem (2).

We will split the proof in different steps.

Step 1. F (u) is convex for each u ∈ C([a, b],R.

Since SF,u is convex, this step is obvious.

Step 2. Bounded sets are mapped into bounded sets in C([a, b],R) by F .
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Let Br = {u ∈ C([a, b],R) : ‖u‖ ≤ r}, r > 0. Then, for each h ∈ F (u), u ∈ Br, there
exists f ∈ SF,x such that

h(t) =
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψ f (η) + µ kIα+v;ψ f (σ)− kIα;ψ f (b)

]
+ kIα;ψ f (t).

Then, for t ∈ [a, b], we have

|h(t)| ≤ sup
t∈[a,b]

{
(ψ(t)− ψ(a))

θk
k −1

|Ω|Γk(θk)

[
|λ| kIα−p;ψ| f (η)|+ |µ| kIα+v;ψ| f (σ)|+ kIα;ψ| f (b)|

]

+kIα;ψ| f (t)|
}

≤
{
(ψ(b)− ψ(a))

α
k

Γk(α + k)
+

(ψ(b)− ψ(a))
θk
k −1

|Ω|Γk(θk)

[
|λ| (ψ(η)− ψ(a))

α−p
k

Γk(α− p + k)

+|µ| (ψ(σ)− ψ(a))
α+v

k

Γk(α + v + k)
+

(ψ(b)− ψ(a))
α
k

Γk(α + k)

]}
‖q‖z(‖u‖),

which implies that ‖h‖ ≤ z(r)‖q‖G.

Step 3. Bounded sets are mapped into equicontinuous sets of C([a, b],R) by F .

Consider t1, t2 ∈ [a, b], t1 < t2 and u ∈ Br. Then, for each h ∈ F (u), we have

|h(t2)− h(t1)|

≤ 1
Γk(α)

∣∣∣∣∣
∫ t1

a
ψ′(s)[(ψ(t2)− ψ(s))

α
k−1 − (ψ(t1)− ψ(s))

α
k−1] f (s)ds

+
∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))
α
k−1 f (s)ds

∣∣∣∣∣
+
(ψ(t2)− ψ(a))

θk
k −1 − (ψ(t1)− ψ(a))

θk
k −1

|Ω|Γk(θk)

[
|λ| kIα−p;ψ| f (η)|

+|µ| kIα+v;ψ| f (σ)|+ kIα;ψ| f (b)|
]

≤ ‖q‖z(r)
Γk(α + k)

[2(ψ(t2)− ψ(t1))
α
k + |(ψ(t2)− ψ(a))

α
k − (ψ(t1)− ψ(a))

α
k |],

+
(ψ(t2)− ψ(a))

θk
k −1 − (ψ(t1)− ψ(a))

θk
k −1

|Ω|Γk(θk)

[
|λ| (ψ(η)− ψ(a))

α−p
k

Γk(α− p + k)

+|µ| (ψ(σ)− ψ(a))
α+v

k

Γk(α + v + k)
+

(ψ(b)− ψ(a))
α
k

Γk(α + k)

]
‖q‖z(r)

−→ 0 as t2 − t1 → 0,

independently of u ∈ Br. Hence it follows by the Arzelá–Ascoli theorem thatF : C([a, b],R)
→ P(C([a, b],R)) is completely continuous.

To prove that F is upper semi-continuous multivalued mapping, it is enough to prove
that the F has a closed graph, by Proposition 1.2 of [30].

Step 4. F has a closed graph.
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Assume that un → u∗, hn ∈ F (un) and hn → h∗. Then we must to show that h∗ ∈
F (u∗). Since hn ∈ F (un), there exists vn ∈ SF,un such that for each t ∈ [a, b],

hn(t) =
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψ fn(η) + µ kIα+v;ψ fn(σ)− kIα;ψ fn(b)

]
+ kIα;ψ fn(t).

We must show that there exists v∗ ∈ SF,u∗ such that for each t ∈ [a, b],

h∗(t) =
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψ f∗(η) + µ kIα+v;ψ f∗(σ)− kIα;ψ f∗(b)

]
+ kIα;ψ f∗(t).

Consider the linear operator Θ : L1([a, b],R)→ C([a, b],R) given by

v 7→ Θ(v)(t) =
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψ f (η) + µ kIα+v;ψ f (σ)− kIα;ψ f (b)

]
+ kIα;ψ f (t).

Observe that ‖hn(t)− h∗(t)‖ → 0, as n→ +∞. From a result due to Lazota–Opial [31],
we deduce that Θ ◦ SF is a closed graph operator, and moreover we have hn(t) ∈ Θ(SF,un).
We have, since un → u∗,

h∗(t) =
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψ f∗(η) + µ kIα+v;ψ f∗(σ)− kIα;ψ f∗(b)

]
+ kIα;ψ f∗(t),

for some v∗ ∈ SF,u∗ .

Step 5. An open set U ⊆ C([a, b],R) exists with u /∈ νF (u) for any ν ∈ (0, 1) and all
u ∈ ∂U .

Consider ν ∈ (0, 1) and u ∈ νF (u). Then there exists f ∈ L1([a, b],R) with f ∈ SF,u
such that, for t ∈ [a, b], we have

u(t) = ν
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψ f (η) + µ kIα+v;ψ f (σ)− kIα;ψ f (b)

]
+ ν kIα;ψ f (t).

As in second step, we obtain

|u(t)| ≤ ‖q‖z(‖u‖)G.

Consequently

‖u‖ ≤ ‖q‖z(‖u‖)G,

or
‖u‖

‖q‖z(‖u‖)G ≤ 1.

By (H3), we can find M satisfying ‖u‖ 6= M. Consider the set

U = {u ∈ C([a, b],R) : ‖u‖ < M}.

From the preceding arguments, F : U → P(C([a, b],R)) is a compact and upper
semi-continuous multivalued map with convex closed values. By definition U , there does
not exist any u ∈ ∂U such that u ∈ νF (u) for some ν ∈ (0, 1). Hence, it follows by the
nonlinear alternative of Leray–Schauder type for multi-valued maps [29] that F has a fixed
point u ∈ U , which is indeed a solution of the multi-valued problem (2). The proof is
complete.
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Now we consider the case when F is not necessarily convex valued and show that there
exists a solution to the problem (2) with the aid of a fixed point theorem for multivalued
contractive maps due to Covitz and Nadler [32].

Theorem 5. Suppose that:

(A1) F : [a, b]× R → Pcp(R) is such that f(·, u) : [a, b] → Pcp(R) is measurable for each
u ∈ R, where Pcp(R) = {K ∈ P(R) : K is compact};

(A2) ∃ a function m ∈ C([a, b],R+) such that

Hd(F(t, u),F(t, ū)) ≤ m(t)|u− ū|,

with d(0,F(t, 0)) ≤ m(t) for almost all t ∈ [a, b] and u, ū ∈ R.

Then the problem (2) has at least one solution on [a, b], provided that

δ := G‖m‖ < 1, (22)

where G is given by (18).

Proof. Observe that the set SF,u is nonempty for each u ∈ C([a, b],R), by the assump-
tion (A1). Thus, by Theorem III.6 [33], F has a measurable selection. Now for each
u ∈ C([a, b],R), it will be shown that F (u) ∈ Pcl(C([a, b],R)),where Pcl(R) = {K ∈
P(R) : K is closed}. Assume that {un}n≥0 ∈ F (u) with un → u (n→ +∞) in C([a, b],R).
Then we have u ∈ C([a, b],R) and vn ∈ SF,un such that, for each t ∈ [a, b],

un(t) =
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψ fn(η) + µ kIα+v;ψ fn(σ)− kIα;ψ fn(b)

]
+ kIα;ψ fn(t).

Since F has compact values, one can pass onto a subsequence (if necessary) to get vn
converges to v in L1([a, b],R). In consequence, v ∈ SF,x and we have

un(t)→ u(t) =
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψ f (η) + µ kIα+v;ψ f (σ)− kIα;ψ f (b)

]
+kIα;ψ f (t), for each t ∈ [a, b].

Therefore, u ∈ F (u).
Finally we show that

Hd(F (u),F (ū)) ≤ δ‖u− ū‖, δ < 1, for each u, ū ∈ C2([a, b],R).

Assume that u, ū ∈ C2([a, b],R) and h1 ∈ F (u). Then we can find v1(t) ∈ F(t, u(t))
satisfying

h1(t) =
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψ f1(η) + µ kIα+v;ψ f1(σ)− kIα;ψ f1(b)

]
+ kIα;ψ f1(t), for each t ∈ [a, b].

By (A2), we have

Hd(F(t, u),F(t, ū)) ≤ m(t)|u(t)− ū(t)|.

So, there exists an element υ ∈ F(t, x̄(t)) such that

|v1(t)− υ| ≤ m(t)|u(t)− ū(t)|, t ∈ [a, b].

Define V : [a, b]→ P(R) by

V(t) = {υ ∈ R : |v1(t)− υ| ≤ m(t)|u(t)− ū(t)|}.
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By Proposition III.4 [33], the multivalued operator V(t)∩ F(t, ū(t)) is measurable, and
thus we can find a measurable selection v2(t) for V. So v2(t) ∈ F(t, ū(t)) and |v1(t) −
v2(t)| ≤ m(t)|u(t)− ū(t)|, for each t ∈ [a, b]. Let us define

h2(t) =
(ψ(t)− ψ(a))

θk
k −1

ΩΓk(θk)

[
λ kIα−p;ψ f2(η) + µ kIα+v;ψ f2(σ)− kIα;ψ f2(b)

]
+ kIα;ψ f2(t),

for each t ∈ [a, b]. Consequently, we have

|h1(t)− h2(t)|

≤ (ψ(t)− ψ(a))
θk
k −1

ΩΓk(θk)

[
|λ| kIα−p;ψ(| f1(s)− f2(s)|)(η)

+|µ| kIα+v;ψ(| f1(s)− f2(s)|)(σ) + kIα;ψ(| f1(s)− f2(s)|)(b)
]

+kIα;ψ(| f1(s)− f2(s)|)(t)

≤
{
(ψ(b)− ψ(a))

α
k

Γk(α + k)
+

(ψ(b)− ψ(a))
θk
k −1

|Ω|Γk(θk)

[
|λ| (ψ(η)− ψ(a))

α−p
k

Γk(α− p + k)

+|µ| (ψ(σ)− ψ(a))
α+v

k

Γk(α + v + k)
+

(ψ(b)− ψ(a))
α
k

Γk(α + k)

]}
‖m‖‖u− ū‖

= G‖m‖‖u− ū‖,

which yields
‖h1 − h2‖ ≤ G‖m‖‖u− ū‖.

Similarly, switching the roles of u and ū, we can obtain

Hd(F (u),F (ū)) ≤ G‖m‖‖u− ū‖.

Hence,F is a contraction and we deduce by Covitz and Nadler fixed point theorem [32]
that F has a fixed point u, which is indeed a solution of the multi-valued problem (2). This
ends the proof.

6. Examples

In this section, numerical examples illustrating the applicability of our theoretical
results are presented.

Example 1. Consider the following (k, ψ)-Hilfer-type fractional differential equations and inclu-
sions with mixed (k, ψ)-derivative and integral boundary conditions of the form

3
2 ,H D

7
4 , 1

4 ; t+1
t+2 u(t) = f(t, u(t)),

1
5
< t <

8
5

,

u
(

1
5

)
= 0, u

(
8
5

)
=

2
31

3
2 ,H D

3
4 , 1

2 ; t+1
t+2 u

(
3
5

)
+

3
51

3
2 I

15
16 , t+1

t+2 u
(

6
5

)
.

(23)

Here, we choose k = 3/2, α = 7/4, β = 1/4, ψ(t) = (t + 1)/(t + 2), a = 1/5, b = 8/5,
λ = 2/31, p = 3/4, q = 1/2, η = 3/5, µ = 3/51, v = 15/16, σ = 6/5. The computational
yields θ 3

2
= 33/16, Ω ≈ 0.3485295041, G ≈ 0.2007468250, G1 ≈ 0.1245096496.

(i) Let the nonlinear unbounded Lipschitzian function f : [1/5, 8/5] × R → R be
given by

f(t, u) =
(

u2 + 4|u|
1 + |u|

)
sin2 πt +

1
3

t2 +
1
4

t +
1
5

. (24)
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Now, we see that f satisfies the Lipschitzian condition as

|f(t, u1)− f(t, u2)| ≤ 4|u1 − u2|,

for each u1, u2 ∈ R and t ∈ [1/5, 8/5] with L = 4. Therefore, we obtain LG ≈ 0.802987300 <
1, which means that the condition (19) is satisfied. Hence, by Theorem 1, the (k, ψ)-Hilfer-
type fractional differential equation with mixed (k, ψ)-derivative and integral boundary
conditions (23) with the function f given by (24), has a unique solution on the interval
[1/5, 8/5].

(ii) Suppose that a nonlinear bounded Lipschitzian function f : [1/5, 8/5]×R→ R is

f(t, u) =
(

8|u|
1 + |u|

)
cos4 πt + 3t + 2, (25)

which is bounded as
|f(t, u)| ≤ 8 cos4 πt + 3t + 2 := θ(t),

for all t ∈ [1/5, 8/5]. Observe that f satisfies the Lipschitz condition: |f(t, u1)− f(t, u2)| ≤
8|u1 − u2|, with Lipschitz constant L = 8. Hence, we obtain LG1 ≈ 0.9960771968 < 1.
Then, the result in Theorem 2 yields that the (k, ψ)-Hilfer-type boundary value problem (23)
with f presented by (25), has at least one solution on [1/5, 8/5]. As LG ≈ 1.605974600 > 1,
the uniqueness result (Theorem 1) does not apply in this situation.

(iii) Assume that
f(t, u) = θ(t)(Ag1(u) + B), (26)

where θ : [1/5, 8/5] → R+, g1 : R → R with |g1(u)| ≤ |u|, for example, g1(u) = u sin8 u.
In addition, 0 ≤ A < 1/(‖θ‖G) and B > 0. Then we have

|f(t, u)| ≤ ‖θ‖(A|u|+ B).

Writing χ(u) = A|u| + B, there exists a constant K satisfying condition (H4) in
Theorem 3:

K >
B‖θ‖G

1− A‖θ‖G .

Therefore, by applying Theorem 3, we deduce that the boundary value problem of
(k, ψ)-Hilfer-type fractional differential equation (23) with f given in (26) has at least one
solution on [1/5, 8/5].

(iv) Suppose that
f(t, u) = θ(t)(Ag2(u) + B), (27)

where θ : [1/5, 8/5] → R+, g2 : R→ R with |g2(u)| ≤ u2, for example, g2(u) = u18/(1 +
u16). In addition, two positive constants A and B are such that AB < 1/(4‖θ‖2G2). Then,
we have

|f(t, u)| ≤ ‖θ‖
(

Au2 + B
)

.

Setting a function χ(u) = Au2 + B, there exists a constant

K ∈
(

1−
√

1− 4AB‖θ‖2G2

2A‖θ‖G ,
1 +

√
1− 4AB‖θ‖2G2

2A‖θ‖G

)
,

satisfying condition (H4) in Theorem 3. Therefore, all conditions of Theorem 3 are satisfied.
Hence (k, ψ)-Hilfer-type nonlocal fractional boundary value problem (23), with f given
in (27) has at least one solution on [1/5, 8/5].
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(v) Suppose that the first equation of (23) is presented by

3
2 ,H D

7
4 , 1

4 ; t+1
t+2 u(t) ∈ F(t, u(t)),

1
5
< t <

8
5

, (28)

where

F(t, u) =
[

0,
1

5t + 1

(
u2 + 6|u|
1 + |u| +

1
4

sin2 t +
3
4

e−|5t−1|
)]

.

Obviously F(t, u) is a measurable set. Moreover,

Hd(F(t, u),F(t, u)) ≤ 6
5t + 1

|u− u|.

Let us choose m(t) = 6/(5t+ 1) and observe that d(0,F(t, 0)) ≤ 1/(5t+ 1) < 6/(5t+ 1)
= m(t) for almost all t ∈ [1/8, 5/8]. Since δ = G‖m‖ ≈ 0.6022404750 < 1, the (k, ψ)-Hilfer-
type nonlocal fractional inclusion (28) with mixed (k, ψ)-derivative and integral boundary
conditions as in (23), has at least one solution on [1/5, 8/5].

7. Conclusions

This research is devoted to the analysis of single-valued and multi-valued (k, ψ)-
Hilfer-type nonlocal fractional boundary value problems involving (k, ψ)-Hilfer fractional
derivative and integral operators in boundary conditions. We established existence and
uniqueness results for the single-valued case after transforming the given problem into a
fixed point problem, with the help of Banach contraction mapping principle, Krasnosel’skiĭ
fixed point theorem and the Leray–Schauder nonlinear alternative. Two existence results for
the multi-valued problem are obtained by applying Leray–Schauder nonlinear alternative
for multivalued maps and Covitz–Nadler fixed point theorem for contractive multivalued
maps, respectively, for the cases of convex and non-convex multivalued map involved in
the problem. All the obtained theoretical results are well-illustrated by numerical examples.
The results are new and enrich the new research area on (k, ψ)-Hilfer nonlocal fractional
boundary value problems in the order of (1, 2]. In a future study, we plan to extend the
results of this paper to cover (k, ψ)-Hilfer nonlocal fractional systems of order in (1, 2].
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