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Abstract: The theory of singular perturbations in a unified formulation is used, for the first time,
to study the propagation of two-dimensional periodic perturbations, including capillary and grav-
itational surface waves and accompanying ligaments in the 10−4 < ω < 103 s−1 frequency range,
in a viscous continuously stratified fluid. Dispersion relations for flow constituents are given, as
well as expressions for phase and group velocities for surface waves and ligaments in physically
observable variables. When the wave-length reaches values of the order of the stratification scale, the
liquid behaves as homogeneous. As the wave frequency approaches the buoyancy frequency, the
energy transfer rate decreases: the group velocity of surface waves tends to zero, while the phase
velocity tends to infinity. In limiting cases, the expressions obtained are transformed into known
wave dispersion expressions for an ideal stratified or actually homogeneous fluid.
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1. Introduction

Waves on the surface of rivers, seas and oceans became one of the main objects of
theoretical research as the first fundamental equations of continuum mechanics and closed
systems of equations were formulated [1–3]. Due to a large difference in the physical prop-
erties of the atmosphere and water [4], the theory of waves evolved with the approximation
of the homogeneity and immutability of the density of the contacting media. B. Franklin in
the 18th century observed the water–olive oil interface motion in a ship’s lighting lamp and
pointed out that the variability of density with depth should be taken into account when
analyzing the wave phenomena in a liquid [5].

The results of the analysis of the first papers, which considered the variability of
the density of the liquid in depth, were presented [6], but for some unknown reason,
mathematicians and mechanics did not pay attention to these topics. For example, such
a fundamental characteristic as the buoyancy frequency calculated in [7], which is the
limiting frequency for propagating internal waves in a continuously stratified fluid, escaped
from attention. Independently the buoyancy frequency was re-discovered as the natural
oscillation frequency of probe balls drifting in a stratified atmosphere [8] and later it was
associated with the local extreme in the spectrum of high-frequency pressure oscillations
recorded by a microbarograph [9].

Due to the practical importance of the issue, for a long time, researchers have been
concentrating their efforts on studying periodic phenomena in a liquid in the context of the
force action of waves on obstacles and the wave resistance of bodies moving in a liquid.
The scientists assumed the constancy of density and incompressibility of the liquid [10]
to be the most important qualities. Nowadays the constant density approximation is still
considered high priority in the description of wave processes [11].

In theoretical works much attention is paid to the study of nonlinear properties of
waves. The first heuristic discovery—the theory of periodic nonlinear vortex waves [12]—is
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significant in wave theory development. The approach was extended in [13,14], then
analyzed in [15] and it has recently been supplemented with new results [16,17]. Another
large cycle of studies of nonlinear waves, initiated by observations of a solitary wave in a
shipping channel [18], is successfully proceeding at the present time. The number of various
model equations [19,20] for the description of nonlinear wave properties is continuously
increasing [21].

Seminal works [22,23] occupied a special place among the first publications. In these
studies, the parameters of infinitesimal waves were determined, the waves of finite am-
plitude were calculated and showed the existence of the wave transfer of matter (Stokes
drift) using the methods of the regular perturbations theory. The mass transfer is caused
by nonlinear effects, which are distinctly revealed in the deviation of the waveform from
the ideal one, i.e., in a nonlinear wave, the crests become sharper, and the troughs become
flatter. The limiting angle between the tangents to the right and left sides of the crest is
calculated as α = 120◦ in [23], and as α = 90◦ in [13]. It depends on the nonlinearity
parameter ε = ω2ζ0/g [24] when describing the propagating potential waves of finite
amplitude by means of Lambert’s complex functions (ζ0 and ω are the amplitude and
frequency of the wave, g is the gravity acceleration).

Calculations of the viscous attenuation of waves in a deep liquid and a channel of finite
depth were carried out by asymptotic methods in a linear and nonlinear
formulation [6,25,26]. Such calculations continue to be conducted at the present time
using various approximations [27–30].

The “boundary layer” ideas (i.e., a mathematical model of the flow adjacent to the
surface of the liquid, in which the influence of viscosity is considerably revealed), which
were formulated at the beginning of the 20th century, had a significant impact on the
development of the theory of waves in a liquid. The approximation of the boundary
layer, accompanied by the reformulation of the defining equations [31], stimulated the
development of the search for new analytical methods of finding their solutions [32]. The
analysis of the wave equations by the theory of regular perturbations methods showed that
in a homogeneous liquid with kinematic viscosity ν, a surface gravitational wave with a
frequencyω is accompanied by a boundary layer with a specific thickness δω =

√
2ν/ω.

Separate boundary layers are formed on the free surface and on the solid bottom of the
channel through which the waves propagate [33].

The boundary layer greatly influences all the parameters of fluid flows, namely pres-
sure distribution, velocity and substance transfer characteristics [34]. Corrections of the
theory formulas [33] due to the viscous attenuation of waves were later calculated in the
second order of the perturbation theory [35]. The analysis of the dispersion relation for
surface gravitational waves and accompanying boundary layers in a viscous liquid, supple-
mented by calculations of the attenuation coefficient and the scale of spatial attenuation of
the wave was carried out in [36].

A more complex model of a “double boundary layer”, inside which there is a periodic
boundary layer with a length scale δω =

√
2ν/ω, was proposed to describe standing

waves [37].
With the frequency increasing, the surface tension influences more the pattern of

waves on the surface of the liquid. The surface tension coefficient σ is a parameter that
determines the type of dispersion relation for short waves [38] and accompanying fine
constituents [39]. The surface tension changes the dependences of the group and phase
velocity, the attenuation coefficient and the velocity of matter transfer Uρ on frequencyω,
wave vector k or wavelength λ. The pattern of waves generated by a short-range localized
source in a viscous liquid, taking into account the effects of surface tension, was calculated
in [40].

The data of the first systematic experimental studies of surface waves, which were
conducted in laboratory basins at the end of the 19th century [41], generally showed
satisfactory agreement with the calculations of velocity in the liquid thickness [23]. The
visualization of the velocity profile using a “marker” (i.e., a colored wake of a submerging
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particle) showed the existence of a drift in the near-surface and bottom layers in the
direction of wave propagation and slow counterflow in the middle of the liquid layer [42].
Additional cleaning from dust and film of the target liquid surface and consideration of
viscous attenuation in the calculations of the near-surface boundary layer significantly
reduced the difference between the data of calculations and experiments in a laboratory
channel [43]. The observations of rearrangement of the distribution pattern of initially
homogeneous suspension in the field of standing gravity waves in a vertically oscillating
basin are given in [44].

In the field of propagating gravitational-capillary waves (5 < ω < 50 Hz), the sub-
stance of the colored drop is distributed unevenly over the surface of the primary cavity [45],
the same as in the case of a drop merging with a target liquid at rest [46]. In the evolutionary
process a slowly drifting colored primary contact area, a near-surface jet with a vortex
head and a sinking ring vortex remain in the distribution pattern of the substance. There
is a pronounced fibrous structure in the distribution of the drop substance in the target
fluid [45].

Widespread capillary waves, which are observed in various rivers, seas and oceans,
are caused by weak wind gusts in calm [47] and are certainly present on the slopes of large
gravitational waves [48] in the stormy open ocean [49] and coastal regions [50]. Capillary
waves contribute to the formation of bubbles, drops and foam [51] and participate in the
processes of generating sound packets when drops fall [52]. Drop impact sounds form rain
noise [53], which is one of the main sources determining the acoustic background of the
ocean [54].

The capillary ripples determine the roughness and the real area of the contact surface.
The estimation of their influence on the transfer of momentum, energy and matter between
the atmosphere and the hydrosphere is of scientific and practical interest. A continuously
expanding list of scientific tasks supports the interest in studying the dynamics of capillary
waves in a wide range of conditions.

The analysis of the additional dissipation of short gravitational and gravitational-
capillary waves caused by “parasitic” capillary waves on the slopes of longer waves in a
laboratory pool are given in [55]. The presence of a surfactant film dampens short capillary
waves, which in turn amplifies decimeter waves [56]. The discussion of modern optical
methods for studying capillary waves and the data of detailed experiments is carried out
in [57]. A review of papers on the nonlinear interaction of coexisting waves of different
frequencies within the framework of the theory of “wave turbulence” is presented in [58].
The basic mechanism of energy transfer in weak turbulence theory is validated experimen-
tally in the gravity (four-wave interactions) and capillary (three-wave interactions) regimes.
Advanced experiments enable the achievement of full spatiotemporal reconstruction of the
wave field in a weakly or strong nonlinear regime, to infer wave statistics as well as waves’
nonlinear dispersion relationship, to compare with theory [58]. The study in [59] discusses
the influence of attenuation on nonlinear interactions of short waves and surface waves
and the properties of “wave turbulence”. In all cases, the density of the liquid is assumed
to be homogeneous.

However, in real conditions, the influence of differences in atmospheric and hydro-
sphere temperatures, insolation, radiative heat transfer, variability in the concentration of
dissolved and suspended particles and flows ensure the heterogeneity of the density profile
throughout the depth of the liquid [60]. The same happens in a thin near-surface layer,
where temperature changes rapidly with depth and forms a “cold” or “warm” film [61].

The given study of the properties of surface waves and accompanying fine components
in a viscous stably stratified liquid is based on a complete system of fundamental equations,
which was firstly collected in [62] and later was considered in [63,64]. In this paper, a
reduced system of the fundamental equations in which the density variability is preserved
without considering variations in temperature, salinity or pressure that cause it to change
is used. This system of equations is analyzed by methods of the singular perturbations
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theory [65] taking into account the compatibility condition [66], enabling calculation of both
the waves themselves and the family of accompanying fine constituents (i.e., ligaments).

Analysis of the solutions of the fundamental equations system in a continuously
stratified fluid has shown that for periodic flows (with a frequency less than the buoyancy
frequency), regular solutions describe waves. The wave frequency ω is related to the
wave number k by an algebraic dispersion relationω = ω(k, Ak), which may include the
amplitude A [66,67].

Singular solutions describe ligaments perturbations—extended in some direction and
fine in others—outlining wave beams. The transverse scale of the ligaments δνω is deter-
mined by the kinematic viscosity of the liquid ν and the wave frequencyω: δνω =

√
ν/ω

(Stokes scale) or equivalent parameter with the buoyancy frequency N: δνN =
√
ν/N. The

number and positions of the ligaments in space are determined by the geometry of the
source, the amplitude and frequency of its oscillations. Calculations of internal wave beams
and accompanying ligaments in stratified liquids and gases are given in [68,69].

In this paper, a dispersion equation in a linear approximation for two-dimensional pe-
riodic perturbations on the surface of a viscous exponentially stratified liquid is constructed
for the first time. The properties of its complete solutions are analyzed. Approximate solu-
tions are obtained by perturbation theory. Regular solutions describe waves in the range
from infra-low frequency to gravitational-capillary and capillary waves. The dispersion
relations continuously transform into the well-known formulas of the theory of waves in
a homogeneous viscous or ideal liquid. Singular solutions characterize ligaments—fine
constituents that complement waves. Graphs of the dependence of the wavelengths and
ligaments on the frequency, phase and group velocity of the constituents on the wavelength
are given. The results can be used to solve problems of generation and propagation of
surface waves with physically justified initial and boundary conditions and comparison
with a high-resolution experiment.

2. Periodic Flows in a Viscous Exponentially Stratified Fluid

We consider the propagation of periodic perturbations over the surface of a viscous
exponentially stratified fluid in a uniform gravity field. The undisturbed liquid filling
the lower half-space is regarded to be incompressible; meanwhile the effects of thermal
conductivity and diffusion are neglected.

We perform the study in a Cartesian coordinate system Oxyz in which the plane
Oxy coincides with the equilibrium position of a free surface of the liquid, and the axis
Oz is directed vertically upwards against the direction of the gravity acceleration g. The
undisturbed density distribution over depth is exponential ρ0(z) = ρ00 exp(−z/Λ). It is
characterized by reference density ρ00(z0) (i.e., the density value at the equilibrium level
z = z0), as well as the scale Λ = |d ln ρ/dz|−1, frequency N =

√
g/Λ and buoyancy period

Tb = 2π/N.
Mostly, changes of real fluids density are usually small and produce a small impact on

the inertial properties of the flows. Nevertheless, the conservation of terms describing the
stratification effects in the governing equations set is important since gravity acceleration
is large. In this regard, it is useful to consider three types of medium: stratified fluids
when buoyancy scale Λ, frequency N and period Tb which are included in the list of main
parameters; then very weakly stratified fluids, when the scale of buoyancy substantially
exceeds the values of other length scales of the problem (so called potentially homogeneous
fluid) and actually homogeneous liquid whose density is assumed to be constant in the
entire space [70]. Using a weak but variable density helps to save the rank of complete
non-linear set and order of the linearized set of governing equations [66,71] and analyzes
additional solutions which are lost in approximation of homogeneous fluid.

Depending on the magnitude of the density gradient created by the corresponding
temperature or salinity distributions, it is customary to distinguish strongly and weakly
stratified fluids, as well as potentially and actually homogeneous fluids. The values of the
characteristic physical quantities are given in Table 1 [70].
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Table 1. Values of characteristic physical quantities.

Parameter

Fluids

Stratified (SF) Homogeneous (HF)

Strongly Weakly Potentially Actually

Buoyancy frequency N, s−1 1 0.01 0.00001 0.0

Period Tb 6.28 s 10.5 min 7.3 days ∞

Scale 9.8 m 100 km 108 km ∞

Viscous wave scale Lgν
N = 3

√
gν/N, cm 2.14 200 2 · 105 ∞

Stokes microscale δνN =
√
ν/N, cm 0.1 1.0 30 ∞

Strong stratification ( Tb ∼ 10 s) is created in laboratory installations. Relatively weak
stratification ( Tb ∼ 10 min) is observed in natural conditions. Figure 1 shows the density–
depth dependencies for exponential stratification (solid line) and for linear stratification
(dotted line) for a strongly stratified fluid N = 1 s−1.

Axioms 2022, 11, x FOR PEER REVIEW 5 of 22 
 

tially exceeds the values of other length scales of the problem (so called potentially homo-
geneous fluid) and actually homogeneous liquid whose density is assumed to be constant 
in the entire space [70]. Using a weak but variable density helps to save the rank of com-
plete non-linear set and order of the linearized set of governing equations [66,71] and an-
alyzes additional solutions which are lost in approximation of homogeneous fluid.  

Depending on the magnitude of the density gradient created by the corresponding 
temperature or salinity distributions, it is customary to distinguish strongly and weakly 
stratified fluids, as well as potentially and actually homogeneous fluids. The values of the 
characteristic physical quantities are given in Table 1 [70].  

Table 1. Values of characteristic physical quantities. 

Parameter 
Fluids 

Stratified (SF) Homogeneous (HF) 
Strongly Weakly Potentially  Actually 

Buoyancy frequency 1, sN −  1 0.01 0.00001 0.0 
Period bT  6.28 s 10.5 min 7.3 days ∞  

Scale of stratification Λ  9.8 m 100 km 810  km ∞  
Viscous wave scale 

3g
NL g Nν = ν , cm 2.14 200 52 10⋅  ∞  

Stokes microscale 
/N Nνδ = ν , cm 0.1 1.0 30 ∞  

Strong stratification ( ~ 10 sbT ) is created in laboratory installations. Relatively weak 
stratification ( ~ 10 minbT ) is observed in natural conditions. Figure 1 shows the density–
depth dependencies for exponential stratification (solid line) and for linear stratification 
(dotted line) for a strongly stratified fluid 11 sN −= . 

 
Figure 1. The density–depth dependencies for exponential stratification (solid line) and for linear 
stratification (dotted line) for strongly stratified fluid ( 11sN −= , 0.01 Stν = , 72 dyn cm,σ =  

3
00 1.0 g cm )ρ = . 

To compare the properties of exponentially and linearly stratified media, we analyze 
the changes in the density gradient with depth. For exponential stratification, the magni-
tude of the density gradient depends on the vertical coordinate z . 

00d e
d

z

z
−

Λρρ = −
Λ

 (1)

For linear stratification, the density gradient does not depend on the depth:  

Figure 1. The density–depth dependencies for exponential stratification (solid line) and for linear
stratification (dotted line) for strongly stratified fluid (N = 1 s−1, ν = 0.01 St, σ = 72 dyn/cm,
ρ00 = 1.0 g/cm3).

To compare the properties of exponentially and linearly stratified media, we ana-
lyze the changes in the density gradient with depth. For exponential stratification, the
magnitude of the density gradient depends on the vertical coordinate z.

dρ
dz

= −ρ00
Λ

e−
z
Λ (1)

For linear stratification, the density gradient does not depend on the depth:

dρ
dz

= −ρ00
Λ

(2)

For small variations z � Λ the dependencies of the density gradient are not distin-
guishable for exponential and linear stratification. The exponent can be represented as a
Taylor series expansion over a small parameter z/Λ and expression (1) will be written as
follows:

dρ
dz

= −ρ00
Λ

e−
z
Λ ' −ρ00

Λ

(
1− z

Λ
+

z2

2Λ2

)
(3)

The numerical values for the stratification scale for a strongly stratified fluid are
Λ = 9.81 · 102 cm, and for a weakly stratified fluid Λ = 9.81 · 106 cm. At depths of less
than 10% of the stratification scale, it can be argued with a high degree of accuracy that
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the calculations in the model of a linearly stratified fluid and exponentially stratified fluid
coincide.

We study below two-dimensional periodic flows of the form A = A0 exp i(kx−ωt)
with a positive definite frequency ω and a complex wave number k, the imaginary part of
which characterizes the spatial attenuation of the flow. The disturbances which are homoge-
neous in the direction of the transverse horizontal coordinate y are selected. They include
the displacement of the free surface position ζ(x, t). The velocity u = uxex + uzez with
horizontal and vertical velocity components ux, uz in an incompressible fluid (divu = 0) is
represented by derivatives of the stream function ψ:

ux = ∂zψ, uz = −∂xψ (4)

The expression for the density of the liquid ρ = ρ00(r0(z) + s(x, z, t)) replacing the
equation of state in [66] includes the initial distribution r0(z) and the perturbation caused
by the examined periodic flow s(x, z, t).

Taking into account these assumptions, the system of continuity and Navier–Stokes
equations is extremely simplified and takes the traditional form [62,63,69]:

z < ζ :


ρ = ρ00(r(z) + s(x, z, t))

ρ∂tu + ρ(u · ∇)u− ρν∆u = ρg−∇P
∂tρ+ div(ρu) = 0

(5)

Kinematic and dynamic boundary conditions on a perturbed surface are traditional [62]:

z = ζ :


∂t(z− ζ) + u · ∇(z− ζ) = 0
τ · (n · ∇u) + n(τ · ∇u) = 0
P− P0 − σ∇ · n− 2ρνn(n · ∇u) = 0

n = ∇(z−ζ)
|∇(z−ζ)| =

−∂xζex+ez√
1+(∂xζ)2 , τ = ex+∂xζez√

1+(∂xζ)2 ,

(6)

where P is the hydrodynamic pressure, σ = γuprho00 is the total coefficient of the surface
tension of the liquid, n and τ are the vectors of the external normal and tangent to the free
surface of the liquid, respectively.

The studied problem includes the following dimensional parameters: density ρ and its
gradient dρ

dz , dynamic µ and density-normalized kinematic viscosity ν = µ/ρ, gravity accel-
eration g, surface tension coefficient σ and density-normalized surface tension coefficient
γ = σ/ρ, amplitude A, frequencyω period Tω = 2π/ω and wavelength λ. The wave is
also characterized by a wave vector k, the modulus of which is related to the wavelength
λ = 2π/|k|.

In the transition to a mathematical description, physical quantities serve as the basis
for the introduction of characteristic scales of length, time and speed. These scales are used
in the physical interpretation of the results obtained, assessing the degree of influence of
various physical factors.

The degree of relative influence of viscosity and gravity on fluid flows is characterized
by the scale δνg = 3

√
ν2/g that appears in [71].

Traditionally, stratification is characterized by its own length scale which takes into ac-
count or neglect the effects of compressibility, the frequency N =

√
g/Λ, period Tb = 2π/N

and the inverse value of the buoyancy frequency TN = Tb/2π. The stratification itself is
characterized by a combinational viscous wave scale Lgν

N = (gν)1/3/N [72,73], as well as
a length scale δνN =

√
ν/N– a functional analogue of the dissipative Stokes microscale

δνω =
√
ν/ω.

The dualism of the nature of surface waves, whose properties depend on the gravity
acceleration g, normalized coefficients of surface tension γ and kinematic viscosity ν results
in the introduction of several scales, including the capillary length δ

γ
g =

√
γ/g. The
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inequality λ < δ
γ
g indicates the severity of surface force effects, and λ >> δ

γ
g —indicates

the severity of gravitational effects.
The structure of near-surface flows is also characterized by a known proper velocity

scale vc = γ/ν and an additional time scale of kinematic nature Tγ
νg = vc/g = γ/νg.

Wave propagation is characterized by group cg = ∂ω
∂k and phase velocity cph = ωk

k2 .
Ratios of uniform scales form a set of dimensionless parameters, parts of which are

used in further calculations.

2.1. Equations of Periodic Flows and Dispersion Relations for Plane Infinitesimal Waves

To simplify expressions, we accept the initial density distribution to be exponential, as
it is customary in most models:

ρ0(z) = ρ00r(z) = ρ00 exp(−z/Λ) (7)

The change of variables proposed in [74] allows the transformation of the equations
of motion for an arbitrary smooth density profile into equations with constant coefficients
that determine the preferential choice of the exponential density profile.

Further calculations are carried out in the Boussinesq approximation, considering the
smallness of absolute density variations in stratified media (in particular, a small value of
the wavelength and buoyancy scale ratio C = λ/Λ). The density variations are neglected
everywhere, except for the term with a large coefficient (i.e., the gravity acceleration g). In
this approximation, the system (5) takes the form:

∂tzψ+ ∂zψ∂xzψ− ∂xψ∂zzψ− ν∂z∆ψ+ ∂xP = 0
g(r + s)− g− ∂txψ+ ∂xψ∂xzψ− ∂zψ∂xxψ− ν∂x∆ψ+ ∂zP = 0
∂ts + ∂zψ∂xs− ∂xψ∂z(r + s) = 0

(8)

In a linear approximation the system (8) reduces to:
∂tzψ− ν∂z∆ψ+ ∂xP = 0
g(r + s)− g− ∂txψ− ν∂x∆ψ+ ∂zP = 0
∂ts− ∂xψ∂zr = 0

(9)

Cross-differentiation of spatial coordinates of the upper and middle equations of the
system (9) allows getting rid of pressure:{

∂t∆ψ− g∂xs− ν∆∆ψ = 0
∂ts− ∂xψ∂zr = 0

(10)

Subtraction of the second equation, differentiated by coordinate and multiplied by a
coefficient g from the first equation of the system (10), differentiated by time, allows getting
rid of the function s(x, z, t):

∂tt∆ψ− ν∂t∆∆ψ+ ∂xxψ∂zr = 0 (11)

Equation (11) takes the next form for an exponentially stratified fluid (7):

∂tt∆ψ− ν∂t∆∆ψ+ N2 exp(−z/Λ)∂xxψ = 0, N =
√

g/Λ (12)

The boundary conditions (6) for all variables of the infinitesimal waves
A = A0 exp(ikx− iωt) are traditionally carried away from the wave surface z = ζ to
the unperturbed level z = 0 and take the form

z = 0


∂tζ + ∂xψ = 0
−ρgζ + ρ00P + 2ρ00ν∂xzψ+ σ∂xxζ = 0
∂zzψ− ∂xxψ = 0

(13)
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The small coefficient (kinematic viscosity ν), which ensures slow attenuation of the
wave as it propagates in the liquid, allows the classification of the system (12) as a system
of singularly perturbed equations and the application of the theory of singular perturba-
tions [65] for its analysis. The compatibility condition, which requires the analysis of all
the roots of the dispersion equation and the system (12) solutions, should be taken into
account [66].

For surface waves withω > N, the solution of Equation (12) is sought in the form of
plane waves:

ψ =
(

A+eikx x−iωt + A−e−ikx x−iωt
)(

ekzz + βekl z
)

(14)

Here kz corresponds to the regular solution of the dispersion equation, and kl corre-
sponds to the singular solution of the dispersion equation.

We obtain the shape of the deviation of the free surface of the liquid, the condition
of the relationship between the amplitudes of the regular and singular component by
substituting (14) into Equation (12) and boundary conditions (13):

ζ = kx
ω

(
A+eikx x−iωt − A−e−ikx x−iωt

)
(1 + β)

β = − k2
x+k2

z
k2

x+k2
l

(15)

as well as the dispersion relations: −N2k2
x + ez/Λ

(
k2

x − k2
z,l

)
ω
(

ik2
xν− ik2

z,lν+ω
)
= 0

gk2
x − 3ik2

xkz,lνω+ kz,l

(
ik2

z,lν−ω
)
ω+ k4

xγ = 0, γ = σ/ρ00
(16)

Calculated for the first time the expressions (16) are transformed into the relations
for a viscous homogeneous fluid and for an ideal exponentially stratified fluid in limiting
transitions N → 0 and ν→ 0 respectively. Similar dispersion relations for internal waves
and ligaments in the thickness of a stratified fluid were presented in [75].

2.2. Solution of the Dispersion Equation

It is convenient to analyze the dispersion relations (13) in a dimensionless form. The
time scale will be the parameter, which is inverse to the buoyancy frequency N, and
the viscous wave scale Lν = (νg)1/3/N is chosen as the length scale. The ratios of the

eigenscales of the problem δ =

(
δ

γ
g

δνN

)2
= γ

g ·
N
v and ε = Lv

Λ = Nν1/3

g2/3 are used to construct

new dimensionless parameters δ, ε involved in further calculations. Then, expressions (16)
could be rewritten in a dimensionless form: −k2

∗x + iez/Λ
(

k2
∗x − k2

∗z,l

)2
εω∗ + ez/Λ

(
k2
∗x − k2

∗z,l

)
ω2
∗ = 0

k2
∗x + k4

∗xδε− 3ik2
∗xk∗z,lε

2ω∗ + ik3
∗z,lε

2ω∗ − k∗z,lεω
2
∗ = 0

δ = Nγ/νg, ε = Nν1/3/g2/3

(17)

The upper dispersion relation in (17) has regular solutions, which we have denoted
k∗z, and singular solutions, which are denoted k∗l . For a large number of real liquids, the
parameter ε � 1 and regular solutions are found by direct decomposition over a small
parameter ε:

k∗z = k∗0z + εk∗1z + ε
2k∗2z + . . . (18)

Substituting (18) into the upper expression in (17) we obtain up to the terms of the
order O

(
ε2):

k∗z = ±
√
ω2∗ − e−z/Λ

ω∗
k∗x ± ε

ie−2z/Λk3
∗x

2ω4∗
√
ω2∗ − e−z/Λ

(19)
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Since the equations in the system (17) have the fourth degree, it is necessary to find
two more solutions, which are singular perturbed ones in the form of decomposition [65]:

k∗l = ε−η
(

k∗0l + εk∗1l + ε
2k∗2l + . . .

)
(20)

The parameter η in (20) is chosen in such a way that at the highest degree the main
term of the decomposition persists. Substituting instead of k∗l in the upper expression in
(17) k∗l = ε−ηk∗0l and equating the exponents ε in different terms we get:

1− 4η = −2η
1− 4η = 1− 2η
1− 4η = 0
1− 2η = −2η
1− 2η = 0
−2η = 0

(21)

At the highest degree, the main term of the decomposition remains only at η = 1/2.
Substituting the value η = 1/2 in (20) and then in (17) up to the terms of the order O

(
ε3/2

)
we get:

k∗l = ±
(1− i)

√
ω∗√

2ε
±

(1 + i)
(

e−z/Λ +ω2
∗

)
k2
∗x

2
√

2ω5/2
∗

√
ε (22)

Leaving only the main terms of ε in the lower dispersion relation (17), we obtain the
dispersion equation for the regular part of the solution:

k∗x +
(

k3
∗xδ−ω∗

√
ω2∗ − 1

)
ε = 0 (23)

For the singular part of the solution, leaving only the main terms of the expansion of ε,
we obtain:

1 + k2
∗xδε+

(1 + i)
(
1− 2ω2

∗
)

√
2ω∗

ε3/2 = 0 (24)

The solution of the dispersion Equation (23) for the regular wave part is:

k∗x = − 21/3

α + α
3·21/3δε

k∗x = 1±i
√

3
22/3α

− (1∓i
√

3)α

6·21/3δε

α =
(

27δ2ε3ω∗
√
ω2∗ − 1 +

√
108δ3ε3 + 729δ4ε6ω2∗(ω2∗ − 1)

)1/3
(25)

From the condition of the physical realization of the solution (i.e., the damping of the
flow with depth) it follows that only roots with Re(k∗z) > 0 possess a physical meaning.
Decomposing the solution (25) for the regular wave part into a Taylor series, we obtain:

k∗x = ω∗ε
√
ω2∗ − 1 + O

(
ε4)

k∗x = ± i√
δε
−ω∗ε

√
ω2∗−1

2 + O
(
ε5/2

) (26)

With consideration of (19) and the condition Re(k∗z) > 0, it can be seen that we
implement only one root of (26) and finally for the regular wave solution we get:

k∗x = − 21/3

α + α
3·21/3δε

k∗z =
√
ω2∗−e−z/Λ

ω∗

(
− 21/3

α + α
3·21/3δε

)
+ ε

ie−2z/Λ
(
− 21/3

α + α

3·21/3δε

)3

2ω4∗
√
ω2∗−e−z/Λ

(27)
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We perform similar transformations for singular ligament-solution. The solutions (24),
which are found taking into account (22) and the conditions of the physical implementation
of the roots Re(k∗l) > 0 of the singular ligament, take the form:

k∗x = ±
√
(δε)−1(((1 + i)(2ω2∗ − 1)/

√
2ω∗

)
ε3/2 − 1

)
k∗l =

(1−i)2δω3
∗+(1+i)(e−z/Λ+ω2

∗)(((1+i)(2ω2
∗−1)/

√
2ω∗)ε3/2−1)

2
√

2ω5/2
∗ δ
√
ε

(28)

Expressions (27), (28) describe new dispersion relations for surface waves (27) and
associated ligaments (28) in a viscous exponentially stratified fluid.

2.3. Low Frequency Waves

The solution for low frequency waves (ω < N) is sought as the sum of the propagation
of gravitational waves (waves with wave number components kz) and fine perturbation
(with wave number component ks) as well:

ψ =
(

A+eikx x−iωt + A−e−ikx x−iωt
)(

αeikzz + βe−ikzz + χeksz
)

(29)

Substituting (26) into (9) leads to dispersion relations:{
−N2k2

x + ez/Λ(k2
x + k2

z
)
ω
(
ik2

xν+ ik2
zν+ω

)
= 0

−N2k2
x + iez/Λ(k2

s − k2
x
)
ω
(
k2

sν− k2
xν+ iω

)
= 0

(30)

Substituting solution (29) into the boundary conditions (13), we obtain an expression
for the shape of the free surface and additional relations. These additional relations
determine the relationship between the amplitudes of the various components of periodic
motion:

ζ =
(

A+eikx x−iωt − A−e−ikx x−iωt
)
(α + β+ χ)kx/ω (31)

(α + β)
(

k2
x − k2

z

)
+ χ

(
k2

x + k2
s

)
= 0 (32)

k2
x

(
g + γk2

x

)
(α + β+ χ) + νω

(
kz(α− β)

(
3k2

x + k2
z

)
+ iχks

(
k2

s − 3k2
x

))
−ω2(ikz(α− β)− χks) = 0 (33)

In a dimensionless form, the dispersion relations (30) take the form: −k2
∗x + iez/Λ(k2

∗x − k2
∗s
)2
εω∗ + ez/Λ(k2

∗x − k2
∗s
)
ω2
∗ = 0

−k2
∗x + iez/Λ

(
k2
∗x + k2

∗z,l

)2
εω∗ + ez/Λ

(
k2
∗x + k2

∗z,l

)
ω2
∗ = 0

(34)

The expressions for the surface component of periodic motion, up to the notation,
coincide with the dispersion equations of surface waves discussed above. For low frequency
waves, we will look for regular wave solutions in the form of expansion (18) and up to the
terms of the order O

(
ε2):

k∗z = ±
√

e−z/Λ −ω2∗
ω∗

k∗x ∓ ε
ie−2z/Λk3

∗x
2ω4∗

√
ω2∗ − e−z/Λ

(35)

Similarly to surface waves case, we find singular solutions of the dispersion equation
for low frequency waves using decomposition (20). Just as in the case of high frequency
surface waves ω > N, the exponent of the degree η = 1/2 is the only one that satisfies
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the condition of the main term of the decomposition at the highest degree kl . Making a
substitution up to the terms of the order O

(
ε3/2

)
we get:

k∗l = ±
(1 + i)

√
ω∗√

2ε
∓

(1− i)
(

e−z/Λ +ω2
∗

)
k2
∗x

2
√

2ω5/2
∗

√
ε (36)

From the relation (32) we obtain that

χ = (α + β)
k2

z − k2
x

k2
x + k2

s
(37)

α + β+ χ = (α + β)
k2

s + k2
z

k2
x + k2

s
(38)

From the ratio (33) follows:

α + β = −
2i
(
k2

s + k2
x
)
kzα
(
3k2

xν+ k2
zν− iω

)
ω

ik2
x(k2

s + k2
z)(g + k2

xγ)− (ks + ikz)(−k2
s k2

x + 3k4
x + 4iksk2

xkz + (k2
s + k2

x)k2
z)νω− (ks − ikz)(ik2

x + kskz)ω2 (39)

In the low viscosity approximation, we obtain that

α + β ' 0, χ ' −(α + β) = 0 (40)

The relations (40) correspond to the situation when all the energy is concentrated in
gravitational waves.

2.4. Periodic Flows on the Surface of a Viscous Exponentially Stratified Liquid

First of all, let us consider the dependence of the wavelength λ on the frequency of the
wave motionω. We define the wavelength as follows:

λ = 2π/
√

Re(k2
x) + Im(k2

z) (41)

This method of determination of the wavelength is due to the fact that the imaginary
part of the wave number kx component and the real part of the wave number kz compo-
nent are responsible for the spatial attenuation of motion and are not impactful to wave
propagation. Substituting the dispersion relations (27) in (32), we can construct the desired
dependencies. Figure 2 shows the dependence of the wavelength on the frequency of wave
motion λ(ω).

The velocity of movement of the phase front of structures (wave and ligament) and
the rate of energy transfer are of particular interest. The phase front moves with the phase
velocity of the wave (and its analogue for the singular solution):

cph = ωk/|k|2 (42)

The energy is transferred with a group velocity cgr, which is defined as follows:

cgr =

{(
∂kx

∂ω

)−1
,
(

∂kz,l

∂ω

)−1
}

(43)

Figure 3 shows the dependencies for the phase (dashed line) and group (solid line)
velocities.
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ified fluid 11 sN −=  for water and glycerin. 

The velocity of movement of the phase front of structures (wave and ligament) and 
the rate of energy transfer are of particular interest. The phase front moves with the phase 
velocity of the wave (and its analogue for the singular solution): 
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The energy is transferred with a group velocity grc , which is defined as follows: 

Figure 2. The dependence of the wavelength on the frequency of wave motion in a viscous exponen-
tially stratified fluid for a periodic solution. The curves indicated by the letter (W) are constructed for
a liquid with ν = 0.01 St, σ = 72 dyn/cm, ρ00 = 1 g/cm3, and by the letter (Gl)—for a liquid with
glycerin parameters (ν = 11.746 St, ρ00 = 1.26 g/cm3, σ = 64.7 dyn/cm). The numbers indicate a
different degree of stratification. Index (1) corresponds to a weak pycnocline N = 0.001 s−1, index (2)
to a weakly stratified fluid N = 0.01 s−1, and index (3) to a strongly stratified fluid N = 1 s−1 for
water and glycerin.

Figures 2 and 3 show that viscosity has a noticeable effect on capillary waves with
a wavelength λ < δ

γ
g , and the stratification influences the waves with frequencies close

to the buoyancy frequency N. With the advent of stratification, a forbidden part of the
spectrum appears for surface waves (with frequencies lower than the buoyancy frequency).
With the tending to the stratification frequency, the group velocity goes to zero, and the
phase velocity tends to infinity. A similar pattern is observed when electromagnetic waves
propagate in waveguides. The size of the waveguide sets a certain critical size, beyond
which the electromagnetic wave does not propagate in the waveguide channel. In stratified
fluids, this mechanism is not due to external geometric constraints, but is determined by
the characteristics of the medium (stratification).
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Figure 3. Dependences of the phase (dashed lines) and group (solid lines) velocities on the frequency
of wave motion (a) and on the wavelength (b) in a viscous exponentially stratified fluid for a periodic
solution. The curves indicated by the letter (W) are constructed for a liquid with water parameters,
and by the letter (Gl)—for a liquid with glycerin parameters. The numbers indicate a different degree
of stratification. Indexes (1) and (6) correspond to a weak pycnocline N = 0.001 s−1, indexes (2) and
(5) correspond to a weakly stratified liquid N = 0.01 s−1 and indexes (3) and (4) correspond to a
strongly stratified liquid N = 1 s−1.

3. Reduction to Approximation of Actually Homogeneous Fluid

The fine constituents of periodic flows—ligaments—are a consequence of the dissipa-
tive properties of the medium, which exist not only in stratified, but also in homogeneous
liquids. They are described by singular solutions of dispersion equations, the appearance
of which can be observed experimentally in the structure of flows in an inhomogeneous
medium. If the effects associated with buoyancy are neglected, then the density of the
liquid can be considered as actually homogeneous:

ρ = ρ00 ≡ const (44)

and the basic equations of motion are simplified. For a viscous homogeneous liquid in a 2D
formulation in a linear approximation equations for the stream function are shortened to:

∂t∆ψ− ν∆∆ψ = 0 (45)

Equation (45) can also be obtained by performing a limiting transition N → 0 in (12).
The boundary conditions that are removed to the equilibrium surface in the case of a
homogeneous liquid are as follows:

z = 0


∂tζ + ∂xψ = 0
−gζ + P + 2ν∂xzψ+ γ∂xxζ = 0
∂zzψ− ∂xxψ = 0

(46)

Similarly to the basic equations of motion, the boundary conditions (46) can also be
obtained from the boundary conditions (13) using a limit transition N → 0 . Substitution of
the solution in the form of a propagating wave

ψ = A+ exp(kzz + ikxx− iωt) + A− exp(kzz− ikxx− iωt) (47)

in (45) leads to dispersion relations between the components of the wave number:(
k2

x − k2
z

)(
ν
(

k2
x − k2

z

)
− iω

)
= 0 (48)
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The relation (48) naturally decomposes into two solutions:

k2
z = k2

x
k2

l = k2
x +

iω
ν

(49)

Here, the reassignment of one solution kz into kl is introduced. The component kz
corresponds to the wave solution, and the component kl corresponds to the ligament
solution. Taking into account (49), the solution of the problem in the form of a propagating
wave is transformed into:

ψ = (A+ exp(ikxx− iωt) + A− exp(−ikxx− iωt))(exp(kzz) + B exp(klz)) (50)

Substituting (50) into the kinematic boundary condition, we obtain the relationship
between the amplitudes of the velocity field and the deviation of the free surface from the
equilibrium value:

ζ =
kx

ω
(1 + B)(A− exp(−ikxx− iωt)− A+ exp(ikxx− iωt)) (51)

and substitution of (50) into the dynamic condition for tangential tensions leads to the
expression for the amplitude of the ligament component:

B = −
(
k2

x + k2
z
)(

k2
x + k2

l
) = −2k2

x

(
2k2

x +
iω
ν

)−1
(52)

Getting rid of the pressure in the dynamic boundary condition and taking normal
components, we rewrite it as:

ν∂tz∆ψ− ∂ttzψ+ g∂xxψ+ 2ν∂txzzψ− γ∂xxxxψ = 0 (53)

Substituting the solution (50) into the boundary conditions (53) taking into account
(49) leads to the dispersion relation for the wave constituent:

γk3
z − 2iνωk2

z + gkz −ω2 = 0 (54)

and ligament constituent:

γ

(
k2

l −
iω
ν

)2
− 2iνω

(
k2

l −
iω
ν

)
kl + g

(
k2

l −
iω
ν

)
+ωkl

(
iνk2

l −ω
)
= 0 (55)

It can be noticed that Equations (54) and (55) are also obtained from (16) with a
limit transition N → 0 . Further we will transfer the dispersion relations (54) and (55) to
dimensionless forms in the same way as it has been done in the previous paragraph. We will
choose our own viscous scale δνg = 3

√
ν2/g as the length scale, and the ratio as the time scale

will be Tγ
νg = γ/νg and the decomposition parameter ε =

3

√(
δνg

)6
/
(
δ

γ
g
)6

= 3
√
(ν4g)/γ3.

In a dimensionless form, the conventional dispersion Equation [15] for the wave
component of the solution will be rewritten taking into account (54):

k3
∗x − 2iε2ω∗k2

∗x + εk∗x − ε3ω2
∗ = 0 (56)

The solution of Equation (56) is obtained by the standard method and takes the form:

k∗x =
2
3

iε2ω∗ −
ε
(
3 + 4ε3ω∗2)

3β
+

1
3
β (57)
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kx = 2
3 iε2ω∗ ± 1

6 i
(
±i +

√
3
)
β+

(1±i
√

3)ε(3+4ε3ω∗2)
6·22/3β

β =
(
−8iε6ω∗3 + 9

2ε
3ω∗(−2i + 3ω∗) + 3

2

√
3
√
ε3(4− 32iε6ω∗5 + ε3ω∗2(4 + 9ω∗(−4i + 3ω∗)))

)1/3 (58)

Decomposition (57) into a Taylor series by a small parameter ε at least up to the
summands O

(
ε9/2

)
gives the expression:

k∗z = ε2ω2
∗ + O

(
ε9/2

)
(59)

Decomposition of the roots (58) into a Taylor series by a small parameter ε at least up
to the summands O

(
ε9/2

)
gives the expression:

k∗z = ±
1
8

i
√
ε
(

8± 4ε3/2ω∗(2 + iω∗) + ε3ω2
∗

(
4− 4iω∗ + 3ω2

∗

))
+ O

(
ε9/2

)
(60)

As it follows from the condition of the physical realization of the roots Re(kz) > 0,
considering the positive definite frequency of the wave motion, only one root, which is
given by the expression (57), can be physically realized This solution describes the wave
part of a periodic motion in a liquid.

To analyze the dispersion equation for a ligament solution (55) and carry out the
nondimensionalization procedure, the characteristic scales can be selected the same as in
the wave solution. Then in a dimensionless form, the dispersion equation (55) is written as:

k4
∗l − 2iεω∗k2

∗l − ε
2ω2
∗ − 3iε2k3

∗lω∗ − 3ε3k∗lω2
∗ + εk

2
∗l − iε2ω∗ + iε2ω∗k3

∗l − ε
3k∗lω2

∗ = 0 (61)

Equation (61) has four roots. The analysis shows that the spatial attenuation condition
is satisfied for one root only. Due to the cumbersomeness of the expression, the calculated
solution is not given here.

Let us construct the dispersion dependences of the components of periodic motion
in log–log scales in dimensional variables for liquids with glycerin and water parameters.
Figure 4 shows the dependence of the wavelength λ on the frequency for the wave compo-
nent (a) and the analog of the wavelength δi on the frequency for the ligament component
(b). The letter (W) indicates the dependencies for water and the letter (Gl) indicates the
dependencies for glycerin.
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Figure 4. Wavelength dependences of the wave solution (a) and the ligament solution (b) on the
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Figure 5 shows the dependences of the phase and group velocity on the frequency
of periodic motion for the wave component of periodic motion (a) and the ligament
associated with the wave component (b). The dependences are constructed for liquids
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with the parameters of water and glycerin. Figure 6 shows similar dependencies, but on
the wavelength. There are several remarkable velocities in a viscous homogeneous liquid.
The minimum group velocity and the velocity at which the group and phase velocities are
compared. We show that the velocities are compared when the value of the phase velocity
is minimal. The extremum condition for the phase velocity will be written as:

∂ωcph = ∂ω
(ω

k

)
=

1
k2 (k−ω∂ωk) = 0 (62)
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The ratio (62) leads us to equality:

cph =
ω

k
= (∂ωk)−1 = cgr (63)

The minimum value of the group velocity for a liquid with water parameters is
cW

grmin = 17.71 cm/s and is achieved at frequency ωW
grmin = 40.53 s−1 and wavelength

λW
grmin = 4.33 cm. For a liquid with glycerin parameters, the corresponding values are

as follows: cGl
grmin = 29.39 cm/s at the frequency ωW

grmin = 21.05 s−1 and wavelength

λGl
grmin = 14.88 cm. The minimum phase velocity for a liquid with water parameters
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is cW
phmin = 23.05 cm/s at the frequency ωW

phmin = 84.82 s−1 and wavelength λW
phmin =

1.71 cm. For a liquid with glycerin parameters, the corresponding values are as follows:
cGl

phmin = 40.85 cm/s at frequencyωW
phmin = 38.96 s−1 and wavelength λGl

phmin = 6.59 cm.
The viscosity of the liquid affects the capillary wave motion. An increase in viscosity

leads to an increase in the wavelength at a constant frequency in the region of capillary
waves. As a consequence, the values of the phase and group velocity increase. The
characteristic values of fluid velocities for the wave component of periodic motion increase
with increasing viscosity and shift to the region of lower frequencies (longer wavelengths).
Taking into account the viscosity in the model makes it possible to calculate, in addition to
the wave component, the ligament component of periodic motion in a liquid.

4. Reduction to Inviscid Fluid

In an inviscid exponentially stratified fluid, the equations of motion and boundary
conditions (12), (13) are reduced ν→ 0 :

z < ζ :


ρ = ρ00(r(z) + s(x, z, t))
ρ∂tu + ρ(u · ∇)u = ρg−∇P
∂tρ+ div(ρu) = 0

(64)

z < 0: ∂tt∆ψ+ N2 exp(−z/Λ)∂xxψ = 0 (65)

z = 0:
{

∂tζ + ∂xψ = 0
−ρgζ + uprho00P + σ∂xxζ = 0

(66)

Dispersion relations in an inviscid liquid allow us to obtain only the wave component
of periodic motion. The dispersion relations for the wave component are obtained using
the limit transition ν→ 0 from expressions (16) and (30) for high frequency (compared to
the buoyancy frequency) and low frequency oscillations, respectively. For high-frequency
wave disturbances of the free surface (ω > N) we obtain:{

−N2k2
x + ez/Λ(k2

x − k2
z
)
ω2 = 0

gk2
x − kzω

2 + k4
xγ = 0

(67)

For low frequency waves (ω < N):{
−N2k2

x + ez/Λ(k2
x + k2

z
)
ω2 = 0

−N2k2
x − ez/Λ(k2

s − k2
x
)
ω2 = 0

(68)

Thus, the approximation of an ideal fluid enables us to find solutions that describe the
wave constituent of periodic motion in the region of gravitational waves quite well. In the
region of capillary waves, the wave constituent calculated in the model of an ideal liquid
underestimates the value of the wavelength at a given frequency. Note that in the model of
an ideal fluid, it is impossible to obtain a solution for the ligament constituent of periodic
motion along the free surface of the fluid. This makes the solution incomplete.

5. Discussion

For the first time the theory of singular perturbations was used to describe the propaga-
tion of two-dimensional periodic perturbations over the surface of a viscous exponentially
stratified incompressible fluid occupying the lower half-space. Calculations were per-
formed in a single formulation in a wide frequency range, which includes the propagation
of capillary, gravitational and internal waves. The system of equations, which includes
the equations of continuity, momentum transfer and density profile with depth, replacing
the equation of state, is solved together with physically justified kinematic and dynamic
conditions on a free surface, taking into account the effect of surface tension. The theory
of singular perturbations with respect to the compatibility condition was applied to study
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the propagation of infinitesimal harmonic flows with a positive definite frequency and a
complex wavenumber, which considers spatial attenuation.

A complete set of solutions of the obtained dispersion relation for infinitesimal periodic
perturbations includes two inseparable constituents of periodic flows. The theory of regular
perturbations determines the parameters of gravitational-capillary or infra-low-frequency
waves with a frequency lower than the buoyancy frequency.

The accompanying fine constituents that are ligaments are calculated by the methods
of the theory of singular perturbations. The dispersion equation designed for infinitesimal
periodic perturbations describes the relationship between the components of the wave
vector in periodic flows in a wide frequency range 10−4 < ω < 103 s−1 which includes
infra-low frequency, gravitational and capillary waves. The result, represented by length-
frequency dependence, is convenient for experimental determination. The dependences of
phase and group wave velocities on frequency and wavelength have also been obtained.

The dependences of phase and group velocities of regular perturbations (i.e., waves in
water and glycerin) on frequency and wavelength have been represented in graphs. Wave
properties are significantly modified during the transition through buoyancy frequency.
The group velocity of wave propagation tends to zero and the phase one tends to infinity
with the approximation of wave and buoyancy frequencies. Viscosity has a significant
influence on short waves when their length becomes compared to or less than capillary
scale λ < δ

γ
g =

√
γ/g.

The wave parameters are calculated in an actual homogeneous liquid in the limit of the
buoyancy frequency N → 0 as well as in a constant density approximation ρ ≡ const, Tb =
0 taking into account the compatibility conditions. These calculations correspond to the
given results.

Singular solutions describe ligaments (i.e., thin currents accompanying waves in a
viscous stratified or homogeneous liquid). To compare them we have shown the graphs
of the dependence of the wavelength and scale of the ligaments on the wave frequency
in a viscous homogeneous liquid. The sizes of the ligaments differ by several orders of
magnitude at low frequencies. The dependences of the phase and group velocities of waves
and ligaments on the frequency and wavelength are also given.

The application of the theory of singular perturbations makes it possible to design com-
plete solutions of the dispersion equation and the system of fundamental equations without
additional hypotheses and limitations of the type of boundary layer approximation [33,34].

The evolving approach admits the extrapolation to the investigation of
three-dimensional periodic perturbations. In this case, propagating surface waves accom-
pany several types of ligaments, as well as internal waves in the thickness of a continuously
stratified liquid [68,69].

In general cases, both waves and ligaments continuously interact with each other and
generate new groups of flow constituents [75]. The influence of forcing together with the
effects of nonlinearity and dissipation causes the evolution of the wave structure, which
has different shapes at the phases of growth and attenuation.

In the low frequency range, the forcibly oscillating free surface of a stratified ocean
can be a source of internal and inertial waves that transfer energy into the ocean. Internal
waves, in turn, interact non-linearly with each other [76], generating new wave groups
and ligaments (i.e., accompanying flows that cause the observed modulation of the surface
waves) [77]).

6. Conclusions

The analysis of the linearized reduced version of the fundamental equations system
by the methods of the theory of singular perturbations has been carried out with respect
to the compatibility condition. It showed that the complete solutions describe waves
propagating over the surface of a viscous stratified incompressible fluid, and small-scale
constituents that are ligaments accompanying the waves. In extreme cases that are in limit
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of viscous homogeneous liquid, ideal stratified and ideal homogeneous liquid, the obtained
dispersion relations for waves transfer to the widely known ones.

The experimental studies of the fine structure of surface waves in a continuously
stratified liquid with high-resolution instruments that allow recording the influence of all
constituents of periodic flows are of great interest. We should pay particular attention to
the use of high-resolution optical methods for recording variations in the density gradient,
and highly sensitive temperature or electrical conductivity sensors in a liquid with salt
stratification.
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