
Citation: Pérez-Ortega, J.;

Roblero-Aguilar, S.S.;

Almanza-Ortega, N.N.; Frausto Solís,

J.; Zavala-Díaz, C.; Hernández, Y.;

Landero-Nájera, V. Hybrid Fuzzy

C-Means Clustering Algorithm

Oriented to Big Data Realms. Axioms

2022, 11, 377. https://doi.org/

10.3390/axioms11080377

Academic Editors: Oscar Castillo and

Hsien-Chung Wu

Received: 24 June 2022

Accepted: 27 July 2022

Published: 31 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Hybrid Fuzzy C-Means Clustering Algorithm Oriented to Big
Data Realms
Joaquín Pérez-Ortega 1,* , Sandra Silvia Roblero-Aguilar 1,2 , Nelva Nely Almanza-Ortega 2,
Juan Frausto Solís 3 , Crispín Zavala-Díaz 4, Yasmín Hernández 1 and Vanesa Landero-Nájera 5

1 Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico;
sandra.ra@tlalnepantla.tecnm.mx (S.S.R.-A.); yasmin.hp@cenidet.tecnm.mx (Y.H.)

2 Tecnológico Nacional de México/IT Tlalnepantla, Tlalnepantla 54070, Mexico;
nelva.ao@tlalnepantla.tecnm.mx

3 Tecnológico Nacional de México/IT Cd. Madero, Madero 89440, Mexico; juan.frausto@gmail.com
4 Faculty of Accounting, Administration and Informatic, Universidad Autónoma del Estado de Morelos,

Cuernavaca 62209, Mexico; crispin_zavala@uaem.mx
5 Computer Systems, Universidad Politécnica de Apodaca, Apodaca 66600, Mexico; vlandero@upapnl.edu.mx
* Correspondence: jpo_cenidet@yahoo.com.mx

Abstract: A hybrid variant of the Fuzzy C-Means and K-Means algorithms is proposed to solve
large datasets such as those presented in Big Data. The Fuzzy C-Means algorithm is sensitive to
the initial values of the membership matrix. Therefore, a special configuration of the matrix can
accelerate the convergence of the algorithm. In this sense, a new approach is proposed, which we call
Hybrid OK-Means Fuzzy C-Means (HOFCM), and it optimizes the values of the membership matrix
parameter. This approach consists of three steps: (a) generate a set of n solutions of an x dataset,
applying a variant of the K-Means algorithm; (b) select the best solution as the basis for generating
the optimized membership matrix; (c) resolve the x dataset with Fuzzy C-Means. The experimental
results with four real datasets and one synthetic dataset show that HOFCM reduces the time by up
to 93.94% compared to the average time of the standard Fuzzy C-Means. It is highlighted that the
quality of the solution was reduced by 2.51% in the worst case.

Keywords: Fuzzy C-means; K-means; hybrid clustering algorithm; time complexity

MSC: 62H30; 90C70; 68W40; 91C20

1. Introduction

The clustering of objects, according to their attributes, has been studied extensively in
various areas, such as bioinformatics, pattern recognition, business, and image processing,
among others [1,2]. Moreover, it has gained relevance due to an exponential increase in
data in different areas of knowledge. In general, a complete dataset could provide a basis
for their analysis, reasoning, and decision-making [3,4].

Clustering aims to partition a set of n objects in subsets, called clusters, in such a way
that the objects in any cluster have similar attributes and, at the same time, are different
from the objects in any other cluster. The above description corresponds to a hard or
conventional clustering type, often related to the K-Means algorithm [5]. However, in
many domains, each object needs to belong to two or more groups with different degrees
of membership [6–8]. The algorithm that allows for the above is associated with Fuzzy
C-Means (FCM). Nevertheless, the complexity of FCM is greater than that of K-Means.
In [9], the time complexity of the FCM algorithm is O(ndc2t), where n is the number of
objects, d is the number of dimensions, c is the number of clusters, and t is the number
of iterations. In this paper, indistinct dimensions or attributes are named to represent the
characteristics of the objects.

Axioms 2022, 11, 377. https://doi.org/10.3390/axioms11080377 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11080377
https://doi.org/10.3390/axioms11080377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-5138-7984
https://orcid.org/0000-0002-6597-8427
https://orcid.org/0000-0001-9307-0734
https://orcid.org/0000-0002-8842-0899
https://doi.org/10.3390/axioms11080377
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11080377?type=check_update&version=2


Axioms 2022, 11, 377 2 of 16

Clustering is one of the NP-hard problems most studied in the scientific commu-
nity [10]. There are no efficient algorithms to solve large datasets in polynomial time. Such
issues are considered computationally intractable. Hence, improving the FCM clustering
algorithm is a relevant and open research problem.

The standard FCM algorithm is sensitive to the random initial values of the mem-
bership matrix, which represent the values that express the degrees of membership of
each object to each cluster. Therefore, a particular configuration of the membership matrix
can accelerate the convergence of the algorithm. In the specialized literature, there have
been publications trying to improve the FCM algorithm to create an initial configuration.
However, we found no research that optimizes this matrix. In this paper, we aim to reduce
the time complexity of the algorithm by optimizing the membership matrix. To achieve our
goal, we propose an algorithm called Hybrid OK-Means Fuzzy C-Means (HOFCM).

This paper is organized as follows: Section 2 presents related work. Section 3 describes
the algorithms used in this research. Section 4 shows the improvement proposal. Section 5
reports the results obtained. Section 6 presents the discussion. Conclusions and ideas for
future research are given in Section 7.

2. Related Work

In [11], it is inferred that the FCM algorithm contains the following phases: initializa-
tion, calculation of the centroid, classification, and convergence. The initialization phase
requires the definition of the following parameters: the number of clusters, the value of
the weighting exponent, the random membership matrix, the convergence value (ε), and
the maximum number of iterations. In [12–14], the initialization phase is different from
that described. Instead of generating the membership matrix, these papers considered
the initialization phase, calculating the initial centroids using the K-Means algorithm or
some variant.

In [12], an algorithm called FCM++ was proposed. To generate the initial centroids, a
variant of the K-Means++ algorithm [15] was implemented. Subsequently, it continues with
the standard FCM algorithm. However, FCM++ has some limitations: the first concerns the
IRIS and WINE datasets, where the number of iterations is higher than the standard FCM
for c = 8 and c = 10, respectively; the second concerns the choice of parameter p, which is
added to K-Means++ since its efficiency depends on the user’s experience. A description of
the K-Means++ algorithm is provided in Section 3.2.

In [13], the K-Means algorithm was implemented to generate the final centroids, which,
through a transformation process called One-Hot encoding, generates the membership
matrix required by the FCM algorithm. This research proposes selecting attributes through
entropy weighting and Box–Cox transformation, so out of 2170 original dimensions, only
10 dimensions were used. A dataset called CSI 800, which stores the history of daily stock
prices, was used to perform the experimental evaluation. A 15% decrease in execution time
was observed in the results obtained.

In [14], an algorithm called NFCM was proposed. This algorithm implements the
strategy of the K-Means++ algorithm [15], with the difference being that NFCM considers
the information provided by the membership matrix to select the following centroids. Two
datasets, namely, SPAM and IRIS, were used to evaluate its performance against the FCM++
algorithm. In IRIS, it was observed that the NFCM algorithm has a specific advantage in
the number of iterations and CPU time when c > 4. With the SPAM dataset, when c = 8 and
c = 9, the FCM++ algorithm had greater competitiveness.

There have been improvements to other phases of the standard FCM algorithm. How-
ever, this research focuses on the initialization phase. Readers interested in improvements
to the FCM algorithm in the calculation of the centroid and classification phases may refer
to [16–18]. For improvements that refer to the fuzzy factor, refer to [19,20].

Among the improvements reported to date that have had the greatest impact on the
scientific community, it is observed that the initialization phase of the FCM algorithm is the
least studied. It is essential to mention that the improvement proposals in references [12–14]



Axioms 2022, 11, 377 3 of 16

are the closest to the improvement proposal in this research. However, analytically, it has
not been visualized whether the K-Means solution is on the path of convergence with FCM.

3. Materials and Methods

This section extensively describes the K-Means, K++, O-K-Means, and FCM algorithms.

3.1. K-Means Algorithm

The K-Means clustering algorithm is one of the most relevant, widely studied, and
used algorithms [21]. Its popularity is mainly due to the ease of interpreting its results. This
algorithm is an iterative method that consists of partitioning a set of n objects into k ≥ 2
clusters; thus, the objects in one cluster are similar to each other and different from those in
other clusters [22]. The formulation of the K-Means problem is described below:

Let X = {x1, . . . , xn} be the set of n objects to be partitioned by a criterion of similarity,
where xi ∈ Rd for i = 1, . . . , n, and d ≥ 1 is the number of dimensions. Furthermore, let
k ≥ 2 be an integer and K = {1, . . . , k}. For a k-partition P = {G(1), . . . , G(k)} of X, denote vj
the centroid of cluster G(j), for j ∈ K, and let V = {v1, . . . , vk} and W = {w11, . . . , wij}.

In Equation (1), the clustering problem is shown as an optimization problem [23]:

P : minimize z(W, V) =
n

∑
i=1

k

∑
j=1

wijD(xi, vj) (1)

Subject to
k

∑
j=1

wij = 1, for i = 1, . . . , n,

wij = 0 or 1, for i = 1, . . . , n y j = 1, . . . , k,

where wij = 1⇔ the object xi belongs to cluster G(j), and D(xi, vj) denotes the Euclidean
distance between xi and vj for i =1, . . . , n and j = 1, . . . , k. The pseudocode of the standard
K-Means algorithm is shown in Algorithm 1 [24].

Algorithm 1: Standard K-Means

1 Initialization:
2 X: = {x1, . . . , xn};
3 V: = {v1, . . . , vk};
4 Classification:
5 For xi ε X and vk ε V{
6 Calculate the Euclidean distance from each xi to the k centroids;
7 Assign the xi object to the nearest vk centroid;}
8 Calculate centroids:
9 Calculate the centroid vk;
10 Convergence:
11 If V: = {v1, . . . , vk} does not change in two consecutive iterations:
12 Stop the algorithm;
13 Otherwise:
14 Go to Classification
15 End of algorithm

3.2. K++ Algorithm

The K++ algorithm, proposed in [15], initializes the clustering centroids of the K-
Means algorithm by selecting objects from the dataset that are the farthest from each other
in a probabilistic manner. This method accelerates the convergence speed, theoretically
guaranteeing O(log k) and therefore being competitive with the optimal solution. The
pseudocode of the K++ algorithm is shown in Algorithm 2.



Axioms 2022, 11, 377 4 of 16

Algorithm 2: K++

1 Initialization:
2 X: = {x1, . . . , xn};
3 Assign the value for k;
4 V: = Ø;
5 Select the first randomly uniform k1 centroid V: = V U {v1} ;
6 For i = 2 to k:
7 Select the i-th centroid vi of X with probability D(xi, vj)/∑xεX D(xi, vj);
8 V: = V U {vi} ;
9 End of for
10 Return V
11 End of algorithm

In Algorithm 2, the initialization of the centroids with the K++ algorithm is shown.
Given dataset X and the value of k, the next step is to select the first centroid k1 in a
uniform random manner from dataset X. Subsequently, assign it to the set of centroids V.
For the second centroid, and until completing the total of k, select the i-th centroid with a
probability distribution. In this paper, the algorithm is referred to as K++ when it is only
about initializing the centroids.

3.3. O-K-Means Algorithm

There have been different improvements to the K-Means algorithm. In [22], O-K-Means
is proposed, which accelerates the convergence process, stopping the algorithm when the
total number of objects that change the cluster in an iteration is less than a threshold. This
value expresses a relationship between the computational effort and the quality of the
solution. The pseudocode of the O-K-Means algorithm is shown in Algorithm 3.

Algorithm 3: O-K-Means

1 Initialization:
2 X: = {x1, . . . , xn};
3 V: = {v1, . . . , vk};
4 εok: = Threshold value for determining O-K-Means convergence;
5 Classification:
6 For xi ε X and vk ε V{
7 Calculate the Euclidean distance from each xi to the k centroids;
8 Assign the xi object to the nearest vk centroid;
9 Compute γ };
10 Calculate centroids:
11 Calculate the centroid vk;
12 Convergence:
13 If (γ ≤ εok):
14 Stop the algorithm;
15 Otherwise:
16 Go to Classification
17 End of algorithm

The indicator γ represents the percentage of objects that change the cluster in an
iteration t, which is calculated as γt = 100(ot/n), where ot is the number of objects that
change the cluster.

3.4. FCM Algorithm

The fuzzy set theory proposed by Zadeh [25] in 1965 gave an idea of member-
ship uncertainty described by a membership function. Cluster analysis theory was
proposed by Bellman, Kalaba, and Zadeh [26], and Ruspini [27] coined the concept of
fuzzy partitioning—more specifically, the fuzzy clustering algorithm. These documents
set the tone for research on fuzzy clustering. In 1973, Dunn [28] extended the meaning



Axioms 2022, 11, 377 5 of 16

of hard grouping to preliminary concepts of fuzzy means. Finally, in 1981, Bezdek [11]
generalized Dunn’s approach to obtaining an infinite family of Fuzzy C-Means algorithms.
The basic idea is that X = {x1, . . . , xn} is the set of n objects to be partitioned by a similarity
criterion, where xi ∈ Rd for i = 1, . . . , n, and c is the number of clusters where 2 ≤ c < n.

The fuzzy clustering problem was formulated as an optimization problem [27], mini-
mizing a function, as shown in Equation (2):

P : minimize Jm(U, V) =
n

∑
i=1

c

∑
j=1

(µij)
mD(xi, vj) (2)

where U = µij is the membership matrix of each object i to each cluster j; V = {v1, . . . , vc} is
the set of centroids, where vj is the centroid of cluster j; and m is the weighting exponent or
fuzzy factor that indicates how much the clusters overlap, m > 1 y D(xi, vj), indicating the
Euclidean distance between the object xi and the centroid vj for i = 1, . . . , n and j = 1, . . . , c.

Minimizing Jm, an estimated model of U and V is obtained as

uij =
1

c
∑

i=1

( D(xi ,vj)

D(xi ,vk)

)2/(m−1)
1 ≤ j ≤ n; 1 ≤ j ≤ c (3)

vj =

n
∑

i=1

(
uij

)mxi

n
∑

i=1

(
uij

)m
1 ≤ j ≤ c (4)

where xi and vj are vectors that belong to a space Rd and are represented as

xi = (x1, x2, . . . , xd), 1 ≤ i ≤ n (5)

vj = (v1, v2, . . . , vd), 1 ≤ j ≤ c (6)

The constraints of diffuse clustering are formalized in Equations (7)–(9):

uij ∈ [0, 1], 1 ≤ j ≤ c, 1 ≤ i ≤ n (7)

c

∑
j=1

uij = 1, 1 ≤ i ≤ n (8)

0 <
n

∑
i=1

uij < n, 1 ≤ j ≤ c (9)

Equation (7) indicates that the degree of membership of an object i to a cluster j must
be between 0 and 1. Equation (8) defines that the sum of the degrees of membership of an
object i to different clusters must be equal to 1. Equation (9) indicates that the sum of all the
degrees of membership in a cluster must be greater than 0 and less than n; that is, there
must be no empty clusters and only one cluster.

The pseudocode of the standard FCM algorithm is shown in Algorithm 4 [11].

Algorithm 4: Standard FCM

1 Initialization:
2 Assign the value for c y m;
3 Determine the value of the threshold ε for convergence;
4 t: = 0, TMAX: = 50;
5 X: = {x1, . . . , xn};
6 U(t): = {µ11, . . . , µij}; is randomly generated
7 Calculate centroids:
8 Calculate the centroid vk;



Axioms 2022, 11, 377 6 of 16

9 Classification:
10 Calculate and update the membership matrix U(t+1): = {µij}
11 Convergence:
12 If max [abs(µij

(t) − µij
(t+1))] < ε or t ≤ TMAX:

13 Stop the algorithm;
14 Otherwise:
15 U(t): = U(t+1) y t: = t + 1;
16 Go to Classification
17 End of algorithm

4. Proposal for Improvement

The FCM algorithm is sensitive to the initial values of the membership matrix. Finding
a good initial configuration is important since it accelerates the algorithm’s convergence.
To reduce the time complexity of the FCM algorithm, this section proposes a new solution
approach that we call HOFCM. This approach results from observations of the dynamic
behavior of the standard K-Means and FCM algorithms. Figure 1 shows Example 1, in
which two alternatives are observed to select the initial centroids to execute the FCM
algorithm. The first alternative is to randomly generate the centroids, Panel (a), and the
second alternative runs the K-Means algorithm, Panel (c), whose final centroids are passed
as initial centroids to FCM, Panel (d). In Panel (e), the final centroids of FCM are presented,
considering the two alternatives. The dataset used is URBAN, which contains the longitude
and latitude coordinates of traffic accidents in urban areas of Great Britain [29]; its values
are n = 360,177, d = 2. For the example, a value of c = 8 is considered.

Axioms 2022, 11, x FOR PEER REVIEW 7 of 18 
 

 

Figure 1. Initial and final centroids of the standard K-Means and FCM algorithms with the URBAN 
dataset in Example 1. Panel (a) shows the randomly generated initial centroids; (b) contains the 
final centroids with the solution of the standard FCM algorithm, considering the random initial 
centroids; (c) displays the final centroids of the K-Means algorithm receiving random centroids; (d) 
displays the final centroids of FCM with initial centroids generated after the convergence of 
K-Means; and (e) presents a comparison of the solutions of the FCM algorithm, whose initial cen-
troids are random and generated by K-Means. 

Employing the same idea as that in Figure 1, in Figure 2, Example 2 is presented, 
illustrating the dynamic behavior of the K-Means and FCM algorithms with different in-
itial random centroids. 

From Figure 2, the following observation can be deduced: 
Observation 4: The final centroids of the K-Means algorithm, which are passed as an 

input parameter to FCM, do not always favor the reduction of the time complexity of 
FCM. In Panel (d), it is observed that the execution times, also considering the execution 
times of the K-Means algorithm, increased by 41% compared to those in Panel (b). 
However, the quality of the solution was better by 33.5%. 

Figure 1. Initial and final centroids of the standard K-Means and FCM algorithms with the URBAN
dataset in Example 1. Panel (a) shows the randomly generated initial centroids; (b) contains the final
centroids with the solution of the standard FCM algorithm, considering the random initial centroids;
(c) displays the final centroids of the K-Means algorithm receiving random centroids; (d) displays
the final centroids of FCM with initial centroids generated after the convergence of K-Means; and
(e) presents a comparison of the solutions of the FCM algorithm, whose initial centroids are random
and generated by K-Means.



Axioms 2022, 11, 377 7 of 16

From Figure 1, the following observations emerge:
Observation 1: The positions of the final centroids for the standard K-Means and FCM

algorithms, when run with randomly generated initial centroids and K-Means-generated
centroids, are, in general, approximately the same, as shown in the sample in Panel (e).

Observation 2: The solution time of FCM, in the first alternative, is 60,506.91 ms
(Panel (b)), and in the second, it is 26,120.84 ms (Panel (d)). This last value is the result of
adding the execution times of the K-Means and FCM of Panels (c) and (d). This results in a
time reduction of 56.83%.

Observation 3: The difference in the value of the objective function is negligible
compared to the gain in the solution of the algorithm.

Employing the same idea as that in Figure 1, in Figure 2, Example 2 is presented,
illustrating the dynamic behavior of the K-Means and FCM algorithms with different initial
random centroids.

Axioms 2022, 11, x FOR PEER REVIEW 8 of 18 
 

 

Figure 2. Initial and final centroids of the standard K-Means and FCM algorithms with the URBAN 
dataset in Example 2. Panel (a) shows the randomly generated initial centroids; (b) contains the 
final centroids with the solution of the standard FCM algorithm, considering the random initial 
centroids; (c) visualizes the final centroids with the solution of the K-Means algorithm that receives 
random centroids; (d) shows the final centroids of FCM with initial centroids generated after 
K-Means convergence; and (e) presents a comparison of solutions of the FCM and K-Means algo-
rithms. 

It is important to mention that, in the different experiments carried out, the behavior 
of the K-Means algorithm was similar to that in Example 1. Most of the time, the final 
centroids are close to the neighborhood of the final centroids of FCM. However, some-
times, this is not the case. HOFCM takes a sample of 10 solutions from a dataset to solve 
this problem. Additionally, the promising heuristics of the K-Means algorithm are used. 
In Figure 3, the structure of the HOFCM algorithm is described. 

Figure 3 shows that, given dataset X, a pre-processing phase generates a set of 10 
solutions for that dataset. For this, the K++ algorithm is executed, which returns initial 
centroids; the O-K-Means algorithm receives these. At the end of the convergence phase, 
such an algorithm returns optimized centroids. From the set of 10 solutions of dataset X, 
the value of i, in which the objective function obtained the minimum value, is identified, 
and its final centroids are selected. These final centroids are transformed into the initial 
values of the membership matrix through a transformation function s. 

The components of the transformation function s are described in more detail in the 
following subsection. 

Figure 2. Initial and final centroids of the standard K-Means and FCM algorithms with the URBAN
dataset in Example 2. Panel (a) shows the randomly generated initial centroids; (b) contains the
final centroids with the solution of the standard FCM algorithm, considering the random initial
centroids; (c) visualizes the final centroids with the solution of the K-Means algorithm that receives
random centroids; (d) shows the final centroids of FCM with initial centroids generated after K-Means
convergence; and (e) presents a comparison of solutions of the FCM and K-Means algorithms.

From Figure 2, the following observation can be deduced:
Observation 4: The final centroids of the K-Means algorithm, which are passed as an

input parameter to FCM, do not always favor the reduction of the time complexity of FCM.
In Panel (d), it is observed that the execution times, also considering the execution times of



Axioms 2022, 11, 377 8 of 16

the K-Means algorithm, increased by 41% compared to those in Panel (b). However, the
quality of the solution was better by 33.5%.

It is important to mention that, in the different experiments carried out, the behavior
of the K-Means algorithm was similar to that in Example 1. Most of the time, the final
centroids are close to the neighborhood of the final centroids of FCM. However, sometimes,
this is not the case. HOFCM takes a sample of 10 solutions from a dataset to solve this
problem. Additionally, the promising heuristics of the K-Means algorithm are used. In
Figure 3, the structure of the HOFCM algorithm is described.

Axioms 2022, 11, x FOR PEER REVIEW 9 of 18 
 

 
Figure 3. Structure of the HOFCM algorithm. 

4.1. Transformation Functions 
The transformation function s has three elements: domain, codomain, and trans-

formation rules [30]. The following mathematical notation corresponds to the description 
of the domain: 

X = {x1, …, xn} the set of n objects to partition, where xi ϵ Rd for i = 1, …, n, and d ≥ 1 is 
the number of dimensions. 

V = {v1, …, vc} is the set of final centroids of a solution obtained with the O-K-Means 
algorithm, where vj is the centroid of the cluster j. 

xi and vj are the vectors described in Equations (5) and (6). 
m = value of the weighting exponent, where 1 < m < ∞. 
The codomain is represented by µij, where µij is the membership matrix of each ob-

ject xi to each cluster j. 
The transformation rules are defined in Equations (10) and (11): 

1iju =        if xi = vj 
(10) 

2/( 1)

1

1

( , )

( , )

ij m
c

i j

k i k

u
D x v

D x v

−

=

=
 
  
 


   if xi ≠ vj 

(11) 

The transformation function s is defined in Equation (12): 
 

(12) 
μ=( , , )i j ijs x v m

Figure 3. Structure of the HOFCM algorithm.

Figure 3 shows that, given dataset X, a pre-processing phase generates a set of 10 so-
lutions for that dataset. For this, the K++ algorithm is executed, which returns initial
centroids; the O-K-Means algorithm receives these. At the end of the convergence phase,
such an algorithm returns optimized centroids. From the set of 10 solutions of dataset X,
the value of i, in which the objective function obtained the minimum value, is identified,
and its final centroids are selected. These final centroids are transformed into the initial
values of the membership matrix through a transformation function s.

The components of the transformation function s are described in more detail in the
following subsection.

4.1. Transformation Functions

The transformation function s has three elements: domain, codomain, and transfor-
mation rules [30]. The following mathematical notation corresponds to the description of
the domain:

X = {x1, . . . , xn} the set of n objects to partition, where xi ε Rd for i = 1, . . . , n, and d ≥ 1
is the number of dimensions.



Axioms 2022, 11, 377 9 of 16

V = {v1, . . . , vc} is the set of final centroids of a solution obtained with the O-K-Means
algorithm, where vj is the centroid of the cluster j.

xi and vj are the vectors described in Equations (5) and (6).
m = value of the weighting exponent, where 1 < m < ∞.
The codomain is represented by µij, where µij is the membership matrix of each object

xi to each cluster j.
The transformation rules are defined in Equations (10) and (11):

uij = 1 if xi = vj (10)

uij =
1

c
∑

k=1

( D(xi ,vj)

D(xi ,vk)

)2/(m−1)
if xi 6= vj (11)

The transformation function s is defined in Equation (12):

s
(
xi, vj, m

)
= uij (12)

Carrying out this heuristic is reasonable because the O-K-Means algorithm has shown
promising results in the experimental part. For this reason, the FCM algorithm would have
less work in the clustering, and, therefore, the number of iterations would be reduced.

In Algorithm 5, the pseudocode that incorporates the HOFCM heuristics proposed in
Figure 1 is shown.

Algorithm 5: HOFCM

1 Initialization:
2 X: = {x1, . . . , xn};
3 V: = {v1, . . . , vc};
4 εok: = Threshold value for determining O-K-Means convergence;
5 Assign the value for c;
6 i: = 1;
7 Repeat
8 Function K++ (X, c):
9 Return V’;
10 Function O-K-Means (X, V”, εok, c):
11 Return V”;
12 i = i + 1;
13 While i <=10;
14 Select V” for the value of i at which the objective function obtained the minimum value;
15 Transformation function s;
16 Determine the value of the threshold ε to determine the convergence of the algorithm;
17 Assign the value for m;
18 t: = 1;
19 Calculate centroids:
20 Calculate the centroid vj;
21 Classification:
22 Calculate and update the membership matrix U(t+1): = {µij};
23 Convergence:
24 If max [abs(µij

(t) − µij
(t+1))] < ε:

25 Stop the algorithm;
26 Otherwise:
27 U(t): = U(t+1) y t: = t + 1;
28 Go to Classification
29 End of algorithm

The HOFCM algorithm has four phases. The first is the initialization phase; in this
phase, three functions are created: (1) The K++ function, which receives dataset X and the
number of clusters as input parameters; this function returns a set of centroids identified



Axioms 2022, 11, 377 10 of 16

with variable V′. (2) The O-K-Means function, which receives dataset X, the set of centroids
V′ generated from K++, and the threshold value εok as input parameters to determine the
convergence of the algorithm and the number of clusters; at the end of the phase of con-
vergence, it returns optimized centroids defined with variable V”. (3) The transformation
function s, which allows the final centroids of the O-K-Means algorithm to be transformed,
taken from the lowest value of the objective function into the initial optimized values of the
membership matrix; these are the input parameters for the FCM algorithm. The second,
third, and fourth phases of the HOFCM algorithm, called the calculation of centroids,
classification, and convergence, respectively, are typical of the standard FCM.

5. Results
5.1. Experiment Environment

To evaluate the performance of HOFCM, a set of four real datasets was selected,
obtained from the UCI machine learning repository [29]. Additionally, a synthetic dataset
randomly generated its attribute values with a uniform distribution between 0 and 1. To
compare the results of HOFCM, the following algorithms were selected and implemented:
K-Means, O-K-Means, K++, standard FCM, FCM++, NFCM, and HOFCM. All algorithms
were coded in C language with the GCC 7.4.0 compiler. The computer equipment used
had the following configuration: Intel® CoreTM i9-10900 (Santa Clara, CA, USA) 2.80 GHz,
32 GB RAM, a 1 TB hard drive, and a Windows 10 Pro operating system.

For the design of the computational experiments and the analysis of our algorithms,
we used the methodology proposed in [31].

The standard FCM, FCM++, NFCM, and HOFCM algorithms were executed with the
following parameter values: m = 2, ε = 0.01. For the standard FCM, the initial values of
the membership matrix were randomly generated; for the FCM++ algorithm, its centroids
were generated with the K++ algorithm and a variant of it for the NFCM algorithm. In the
case of the HOFCM algorithm, the optimized membership matrix, whose values are the
results of the transformation function s, is described in Section 4.1.

For the K-Means algorithm, the centroids were randomly generated, and for the O-K-
Means, they were generated with the K++ algorithm. Additionally, it is worth mentioning
that the threshold’s value determines the convergence of the O-K-Means εok = 0.72.

For all of the implemented algorithms, the value of c = 2, 4, 6, 8, 10, 14, 18, and 26. With
this, eight test case configurations were considered for each dataset, one for each value of c.

The algorithms were run 10 times for each of the eight test case configurations of each
dataset. The number of times the algorithm was selected to run was based on preliminary
tests in which a sample size of 10 runs was found to provide good results.

Table 1 describes the set of datasets used. The table structure is as follows: column
one contains the dataset identifier; column two contains the name; column three contains
the data type; columns four and five contain the total objects and dimensions of the dataset;
and column six contains the product of columns four and five. It is important to note that
the SPAM, URBAN, and 1m2d datasets in this research are large datasets, considering an
n*d indicator greater than 200,000 objects.

Table 1. Datasets used in experiments.

Id Name Type n d Size Indicator n*d

1 WDBC Real 569 30 17,070
2 ABALONE Real 4177 7 29,239
3 SPAM Real 4601 57 262,257
4 URBAN Real 360,177 2 720,354
5 1m2d Synthetic 1,000,000 2 2,000,000

5.2. Description of Test Cases

In general, the design of the experiments focused on showing the quality of the
solution and the efficiency of the HOFCM algorithm when solving large datasets such



Axioms 2022, 11, 377 11 of 16

as those used in Big Data. To perform the experimental evaluation of the HOFCM, two
experiments were designed to compare the results obtained with respect to the standard
FCM, FCM++, FCM-KMeans, and NFCM algorithms.

5.2.1. Description of Experiment I

The purpose of this experiment was to compare the results of the standard FCM and
HOFCM algorithms.

Table 2 shows the average percentages of time reduction and the gain of the objective
function, resulting from the comparison of the standard FCM and HOFCM algorithms, for
all the datasets in Experiment I. The structure of Table 2 is as follows: column 1 contains the
consecutive number of test cases; column two includes the value of each cluster; columns
3, 5, 7, 9, and 11 contain the average percentages of time of each dataset; and columns 4,
6, 8, 10, and 12 contain the average percentages of the value of the objective function for
each dataset.

Table 2. Average percentages of time reduction and value of the objective function in Experiment I.

Standard FCM versus HOFCM

WDBC ABALONE SPAM URBAN

P c %
time

%
Jm

%
time

%
Jm

%
time

%
Jm

%
time

%
Jm

%
time

%
Jm

1 2 80.88 0.00 64.14 0.0035 54.37 −0.001 46.12 4.12 74.95 0.03
2 4 87.12 0.02 56.15 −0.02 75.36 6.53 76.33 −0.001 87.81 0.03
3 6 67.83 −2.19 52.59 0.00 92.58 22.75 68.18 0.07 45.26 0.36
4 8 64.30 −1.17 86.60 0.08 93.94 36.90 74.60 1.42 85.56 0.22
5 10 57.55 3.03 75.61 0.09 86.22 50.69 70.98 1.85 67.75 −0.05
6 14 78.99 4.50 37.00 −0.11 77.20 49.30 70.38 4.26 89.65 −0.27
7 18 59.04 12.39 2.71 −0.60 79.80 56.24 68.45 7.81 84.07 0.05
8 26 64.99 27.31 36.78 −2.05 84.88 68.31 44.38 10.73 88.00 0.02

In Equations (13) and (14), it is shown how the percentages of time reduction and gain
in the objective function, respectively, were obtained:

time = 100
(

1− averageTime_HOFCM
averageTime_standard_FCM

)
(13)

Jm = 100
(

1− JmAverage_HOFCM
JmAverage_standard_FCM

)
(14)

Figure 4 shows the millisecond time averages of each of the eight test cases of the five
datasets in Experiment 1.

The analysis of the results in Table 2 and Figure 4 is described in Section 5.3.1.

5.2.2. Description of Experiment II

The purpose of this experiment was to compare the results of HOFCM and the
other improvements of the standard FCM algorithm, which are called FCM++ [12], FCM-
KMeans [13], and NFCM [14].

Tables 3–5, show the average percentages of time reduction and the gain of the
objective function, resulting from the HOFCM versus FCM++, HOFCM versus FCM-
KMeans, and HOFCM versus NFCM comparisons, respectively, for all the datasets
and test cases in Experiment II. The structure of the tables is similar to that of Table 2.
Equations (13) and (14) are used to obtain the time reduction and gain percentages in
the objective function, respectively.



Axioms 2022, 11, 377 12 of 16Axioms 2022, 11, x FOR PEER REVIEW 13 of 18 
 

 
Figure 4. Results of the clustering in Experiment I. 

The analysis of the results in Table 2 and Figure 4 is described in Section 5.3.1. 

5.2.2. Description of Experiment II 
The purpose of this experiment was to compare the results of HOFCM and the other 

improvements of the standard FCM algorithm, which are called FCM++ [12], 
FCM-KMeans [13], and NFCM [14]. 

Tables 3–5 show the average percentages of time reduction and the gain of the ob-
jective function, resulting from the HOFCM versus FCM++, HOFCM versus 
FCM-KMeans, and HOFCM versus NFCM comparisons, respectively, for all the datasets 
and test cases in Experiment II. The structure of the tables is similar to that of Table 2. 
Equations (13) and 14 are used to obtain the time reduction and gain percentages in the 
objective function, respectively. 

Table 3. Average percentages of time reduction and value of the objective function in Experiment 
II; HOFCM versus FCM++. 

HOFCM versus FCM++ 
  WDBC ABALONE SPAM URBAN 1m2d 

P c 
% 

time 
% 
Jm 

% 
time 

% 
Jm 

% 
time 

% 
Jm 

% 
time 

% 
Jm 

% 
time 

% 
Jm 

1 2 66.87 0.00 59.38 0.00 41.67 0.00 18.19 0.00 32.08 0.03 
2 4 78.59 0.02 36.47 −0.02 53.08 0.01 52.36 0.00 73.61 0.03 
3 6 69.42 −0.52 54.03 0.04 54.04 5.48 54.83 1.86 37.78 −0.01 
4 8 57.86 −0.20 80.64 0.05 60.42 1.97 70.42 2.20 84.36 0.02 
5 10 57.29 1.76 68.80 0.09 71.62 −2.33 63.27 1.70 62.20 −0.07 
6 14 45.97 0.43 39.00 0.04 25.56 2.77 41.40 2.10 86.60 −0.19 
7 18 37.01 0.18 −7.22 −0.06 32.72 0.94 40.44 3.57 80.08 −0.03 
8 26 27.58 2.92 38.48 −0.71 42.08 2.24 13.33 0.62 82.99 0.09 

  

Figure 4. Results of the clustering in Experiment I.

Table 3. Average percentages of time reduction and value of the objective function in Experiment II;
HOFCM versus FCM++.

HOFCM versus FCM++

WDBC ABALONE SPAM URBAN 1m2d

P c %
time

%
Jm

%
time

%
Jm

%
time

%
Jm

%
time

%
Jm

%
time

%
Jm

1 2 66.87 0.00 59.38 0.00 41.67 0.00 18.19 0.00 32.08 0.03
2 4 78.59 0.02 36.47 −0.02 53.08 0.01 52.36 0.00 73.61 0.03
3 6 69.42 −0.52 54.03 0.04 54.04 5.48 54.83 1.86 37.78 −0.01
4 8 57.86 −0.20 80.64 0.05 60.42 1.97 70.42 2.20 84.36 0.02
5 10 57.29 1.76 68.80 0.09 71.62 −2.33 63.27 1.70 62.20 −0.07
6 14 45.97 0.43 39.00 0.04 25.56 2.77 41.40 2.10 86.60 −0.19
7 18 37.01 0.18 −7.22 −0.06 32.72 0.94 40.44 3.57 80.08 −0.03
8 26 27.58 2.92 38.48 −0.71 42.08 2.24 13.33 0.62 82.99 0.09

Table 4. Average percentages of time reduction and value of the objective function in Experiment II;
HOFCM versus FCM-KMeans.

HOFCM versus FCM-KMeans

WDBC ABALONE SPAM URBAN 1m2d

P c %
time

%
Jm

%
time

%
Jm

%
time

%
Jm

%
time

%
Jm

%
time

%
Jm

1 2 20.05 0.00 15.52 0.00 33.95 0.00 30.15 0.00 55.79 0.03
2 4 23.74 0.00 9.72 0.01 58.11 6.53 28.55 0.00 47.73 0.00
3 6 32.29 −2.51 −10.98 0.00 90.88 22.75 68.57 0.97 −13.94 0.42
4 8 47.87 −1.28 50.98 −0.02 72.58 14.66 58.99 0.14 53.89 −0.02
5 10 66.05 3.09 60.49 0.12 41.19 33.65 49.89 3.56 −63.13 0.05
6 14 84.13 4.52 46.83 0.69 57.67 50.13 63.45 2.17 78.87 0.06
7 18 84.21 11.99 24.45 −0.06 73.88 57.61 42.56 9.40 41.81 0.02
8 26 80.98 29.01 41.00 −0.81 83.03 66.86 5.55 3.99 45.48 −0.01



Axioms 2022, 11, 377 13 of 16

Table 5. Average percentages of time reduction and value of the objective function in Experiment II;
HOFCM versus NFCM.

HOFCM versus NFCM

WDBC ABALONE SPAM URBAN 1m2d

P c %
time

%
Jm

%
time

%
Jm

%
time

%
Jm

%
time

%
Jm

%
time

%
Jm

1 2 74.65 0.01 61.84 0.00 47.58 0.00 18.43 0.00 19.79 0.03
2 4 76.70 3.74 44.02 −0.02 55.53 4.66 60.83 0.00 82.07 0.03
3 6 61.78 −1.09 51.07 0.02 75.69 4.77 54.85 2.34 30.90 0.13
4 8 55.55 −0.30 82.67 0.76 81.25 9.07 72.68 1.81 87.45 0.01
5 10 48.54 3.21 71.65 0.46 55.00 20.87 56.78 3.77 59.43 0.16
6 14 35.87 1.15 53.76 0.17 19.88 12.98 58.73 2.38 86.76 −0.15
7 18 1.49 2.63 −4.36 −0.40 34.42 1.35 44.02 3.29 76.42 0.12
8 26 20.09 4.98 26.10 −2.02 47.18 5.33 22.79 3.47 84.93 0.14

Figure 5 shows the behavior of the set of datasets for each of the test cases in Experi-
ment II.

Axioms 2022, 11, x FOR PEER REVIEW 14 of 18 
 

Table 4. Average percentages of time reduction and value of the objective function in Experiment 
II; HOFCM versus FCM-KMeans. 

HOFCM versus FCM-KMeans 
  WDBC ABALONE SPAM URBAN 1m2d 

P c 
% 

time 
% 
Jm 

% 
time 

% 
Jm 

% 
time 

% 
Jm 

% 
time 

% 
Jm 

% 
time 

% 
Jm 

1 2 20.05 0.00 15.52 0.00 33.95 0.00 30.15 0.00 55.79 0.03 
2 4 23.74 0.00 9.72 0.01 58.11 6.53 28.55 0.00 47.73 0.00 
3 6 32.29 −2.51 −10.98 0.00 90.88 22.75 68.57 0.97 −13.94 0.42 
4 8 47.87 −1.28 50.98 −0.02 72.58 14.66 58.99 0.14 53.89 −0.02 
5 10 66.05 3.09 60.49 0.12 41.19 33.65 49.89 3.56 −63.13 0.05 
6 14 84.13 4.52 46.83 0.69 57.67 50.13 63.45 2.17 78.87 0.06 
7 18 84.21 11.99 24.45 −0.06 73.88 57.61 42.56 9.40 41.81 0.02 
8 26 80.98 29.01 41.00 −0.81 83.03 66.86 5.55 3.99 45.48 −0.01 

Table 5. Average percentages of time reduction and value of the objective function in Experiment 
II; HOFCM versus NFCM. 

HOFCM versus NFCM 
  WDBC ABALONE SPAM URBAN 1m2d 

P c 
% 

time 
% 
Jm 

% 
time 

% 
Jm 

% 
time 

% 
Jm 

% 
time 

% 
Jm 

% 
time 

% 
Jm 

1 2 74.65 0.01 61.84 0.00 47.58 0.00 18.43 0.00 19.79 0.03 
2 4 76.70 3.74 44.02 −0.02 55.53 4.66 60.83 0.00 82.07 0.03 
3 6 61.78 −1.09 51.07 0.02 75.69 4.77 54.85 2.34 30.90 0.13 
4 8 55.55 −0.30 82.67 0.76 81.25 9.07 72.68 1.81 87.45 0.01 
5 10 48.54 3.21 71.65 0.46 55.00 20.87 56.78 3.77 59.43 0.16 
6 14 35.87 1.15 53.76 0.17 19.88 12.98 58.73 2.38 86.76 −0.15 
7 18 1.49 2.63 −4.36 −0.40 34.42 1.35 44.02 3.29 76.42 0.12 
8 26 20.09 4.98 26.10 −2.02 47.18 5.33 22.79 3.47 84.93 0.14 

Figure 5 shows the behavior of the set of datasets for each of the test cases in Ex-
periment II. 

 
Figure 5. The behavior of datasets in Experiment II. Figure 5. The behavior of datasets in Experiment II.

The analysis of the results in Tables 3–5 and Figure 5 is described in Section 5.3.2.

5.3. Analysis of Experiments

This section analyzes the results obtained after solving the problems described in
Experiments I and II.

5.3.1. Analysis of the Results of Experiment I

Based on the experimental results shown in Table 2 and Figure 4, where the results of
HOFCM and the standard FCM are shown, the following was observed:

1. In the case of HOFCM, for all datasets, time was reduced in all test cases. In the
best case, it was reduced by up to 93.94%. This percentage is highlighted in bold in
column seven. Notably, this percentage was achieved with the SPAM dataset, which
has high dimensionality.



Axioms 2022, 11, 377 14 of 16

2. HOFCM improved the quality of the solution in large datasets in 20 of 24 cases. In
the best case, the quality of the solution was enhanced by 68.31%. This percentage
is highlighted in bold in column eight. In the worst case, a quality loss of 2.19% was
identified, as can be seen in column four. Regarding the small datasets, a solution
quality of 62.5% was obtained in all cases, that is, in 10 of the 16 test cases.

3. In general, based on the results obtained, it is possible to affirm that the HOFCM
proposal performs better than the standard FCM algorithm.

5.3.2. Analysis of the Results of Experiment II

Considering the results of Tables 3–5 and Figure 5, the following was observed:

1. HOFCM outperformed the FCM++ algorithm in terms of solution time in all test
cases with large datasets. In the small datasets, only in one case was it not higher.
Regarding the quality of the solution in large datasets, in the best case, an average
gain of 5.48% was obtained, and in the worst case, there was a loss of 2.33%. Both
percentages are in bold in column eight in Table 3. It can be stated that HOFCM was
higher in terms of solution quality in 75% of all cases.

2. HOFCM outperformed the FCM-KMeans algorithm in solution quality in 82.5% of
all test cases. Regarding the solution time, HOFCM was better in the large and
real datasets.

3. HOFCM outperformed the NFCM algorithm in solution quality in 85% of all test
cases. Regarding the solution time, HOFCM was better in the large datasets.

4. In all three comparisons, HOFCM obtained the greatest time reductions and the
greatest gains in solution quality when dealing with large and real datasets.

5. In general, based on the results obtained, it is possible to affirm that the HOFCM
proposal performs better than the FCM++, FCM-KMeans, and NFCM algorithms.

As an example, Table 6 shows the sum of the solution times in milliseconds for the
eight test cases of each dataset and each algorithm implemented in the two experiments
carried out in this research. The structure of Table 6 is as follows: column one shows the
name of the dataset, and columns two–six show the names of each algorithm.

Table 6. Sum of solution times in milliseconds of Experiments I and II.

Algorithm
Dataset Name Standard FCM FCM-KMeans FCM++ NFCM HOFCM

WDBC 64,516.85 116,784.57 34,037.94 28,395.16 21,689.84
ABALONE 115,702.20 123,930.39 113,680.29 105,730.07 76,996.63

SPAM 1,746,301.34 1,355,655.16 482,874.71 513,205.42 289,610.79
URBAN 3,080,009.70 1,886,664.03 1,885,697.60 2,104,360.89 1,321,799.74

1m2d 11,181,675.94 3,091,877.12 8,385,299.13 8,729,514.14 1,592,132.11

The total sum of solution time 16,188,206.03 6,574,911.27 10,901,589.67 11,481,205.68 3,302,229.11 *

The number of times by which the
HOFCM algorithm is faster 4.90 1.99 3.30 3.48

* Best result obtained.

As can be observed in Table 6, the standard FCM algorithm is the one that generates
more time in the convergence of the eight test cases for all the datasets. In general, it can be
stated that the HOFCM algorithm is 4.90, 1.99, 3.30, and 3.40 times faster than the standard
FCM, FCM-KMeans, FCM++, and NFCM algorithms, respectively.

6. Discussion

In this research, HOFCM was compared not only with the standard FCM algorithm
but also with other improved algorithms in the literature, such as FCM++ [12], FCM-
KMeans [13], and NFCM [14], which are the closest to HOFCM. It is worth mentioning that,
among these three improved algorithms, it has not been visualized analytically whether



Axioms 2022, 11, 377 15 of 16

the solution of the K-Means algorithm is on the path of convergence with FCM most of the
time. Due to the above, in this research, it was proposed to obtain a set of ten solutions for
each of the datasets used with the K++ and O-K-Means algorithms, which have shown
promising solutions. The purpose of having ten solutions is to obtain the best set of final
centroids by selecting the best value of the objective function, which allows, through a
transformation process, one to obtain the optimized membership matrix to accelerate the
algorithm’s convergence.

The results obtained in the experimental part show that the HOFCM algorithm out-
performed the standard FCM, FCM++, FCM-KMeans, and NFCM algorithms in all cases.
Evidence for this is given in Table 6. Based on the above, it is highlighted that, for the
initialization of the standard FCM, it is not enough to implement the K++ algorithm, as in
the case of FCM++; a variant of K++, as in the case of NFCM; or the K-Means algorithm, as
in the case of FCM-KMeans.

Another important point to note is that, in the results presented in Table 6, the FCM++
and NFCM algorithms show a minimum difference of approximately 5%. This can be
corroborated by the results presented in [14]. Additionally, it can be stated that, in general,
the FCM-KMeans algorithm obtained better results than those mentioned above.

7. Conclusions

This paper shows that it is feasible to reduce the time complexity of the FCM al-
gorithm by optimizing the initial membership matrix. To validate the proposal, which
we call HOFCM, a set of experiments composed of real and synthetic datasets was de-
signed. It is noteworthy that the sizes of some of the datasets were larger than those of the
datasets reported in the specialized literature. To compare the results of the algorithms, all
datasets were solved using HOFCM and the standard FCM, FCM++, FCM-KMeans, and
NFCM algorithms.

Based on the results, it was observed that HOFCM obtained a reduction in solution
time in all large datasets compared to the standard FCM algorithm. When comparing
the results of HOFCM with the other algorithms, it was observed that it was 2.0, 3.3, and
3.5 times faster than the FCM-KMeans, FCM++, and NFCM algorithms, respectively. In
particular, it was observed that the HOFCM algorithm showed a good performance in
solving large datasets. For example, the SPAM dataset, which has high dimensionality,
reduced the time by 93.94% compared to the standard FCM. Regarding the quality of the
solution, it was observed that, with large datasets, a gain of up to 68.12% was obtained in
the best case, and in the worst case, the quality was reduced by 2.51%.

To continue this research, we suggest two lines of investigation: the first is to imple-
ment HOFCM under the parallel and distributed programming paradigm, and the second
is to determine in detail the type of datasets where the FCM algorithm is dominant.

Finally, we consider that the principles used in our approach could be used in other
variants that improve the FCM algorithm.

Author Contributions: Conceptualization, J.P.-O., S.S.R.-A. and N.N.A.-O.; methodology, J.P.-O. and
S.S.R.-A.; software, S.S.R.-A. and N.N.A.-O.; validation, J.P.-O., S.S.R.-A., C.Z.-D., Y.H. and J.F.S.;
formal analysis, J.P.-O., J.F.S. and C.Z.-D.; investigation, J.P.-O., S.S.R.-A. and N.N.A.-O.; resources,
S.S.R.-A., N.N.A.-O. and V.L.-N.; data curation, S.S.R.-A., N.N.A.-O. and V.L.-N.; writing—original
draft preparation, J.P.-O. and S.S.R.-A.; writing—review and editing, J.P.-O., S.S.R.-A., N.N.A.-O.,
J.F.S., C.Z.-D., Y.H. and V.L.-N.; visualization, S.S.R.-A.; supervision, J.P.-O.; project administration,
S.S.R.-A.; funding acquisition, J.P.-O. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Tecnológico Nacional de México, grant number 13869.22-P,
grant number 13541.22-P, and PRODEP.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Axioms 2022, 11, 377 16 of 16

Data Availability Statement: The real datasets used were obtained from the UCI machine learning
repository https://archive.ics.uci.edu/ml/index.php (accessed on 26 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, M.S. A survey of fuzzy clustering. Math. Comput. Model. 1993, 18, 1–16. [CrossRef]
2. Nayak, J.; Naik, B.; Behera, H.S. Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014. In Proceedings

of the Comput Intell Data Mining, Odisha, India, 20–21 December 2014.
3. Shirkhorshidi, A.S.; Aghabozorgi, S.; Wah, T.Y.; Herawan, T. Big Data Clustering: A Review. In Proceedings of the International

Conference on Computational Science and Its Applications—ICCSA 2014, Guimaraes, Portugal, 30 June–3 July 2014.
4. Ajin, V.W.; Kumar, L.D. Big data and clustering algorithms. In Proceedings of the 2016 International Conference on Research

Advances in Integrated Navigation Systems (RAINS), Bangalore, India, 6–7 April 2016.
5. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symp

Math Statis and Probability, Berkeley, CA, USA, 21 June–18 July 1965.
6. Ruspini, E.H.; Bezdek, J.C.; Keller, J.M. Fuzzy Clustering: A Historical Perspective. IEEE Comput. Intell. Mag. 2019, 14, 45–55. [CrossRef]
7. Lee, G.M.; Gao, X. A Hybrid Approach Combining Fuzzy c-Means-Based Genetic Algorithm and Machine Learning for Predicting

Job Cycle Times for Semiconductor Manufacturing. Appl. Sci. 2021, 11, 7428. [CrossRef]
8. Lee, S.J.; Song, D.H.; Kim, K.B.; Park, H.J. Efficient Fuzzy Image Stretching for Automatic Ganglion Cyst Extraction Using Fuzzy

C-Means Quantization. Appl. Sci. 2021, 11, 12094. [CrossRef]
9. Ghosh, S.; Kumar, S. Comparative Analysis of K-Means and Fuzzy C-Means Algorithms. Int. J. Adv. Comput. Sci. Appl. 2013, 4,

35–39. [CrossRef]
10. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York,

NY, USA, 1979; pp. 109–120.
11. Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981; pp. 43–93.
12. Stetco, A.; Zeng, X.J.; Keane, J. Fuzzy C-means++: Fuzzy C-means with effective seeding initialization. Expert Syst. Appl. 2015, 42,

7541–7548. [CrossRef]
13. Wu, Z.; Chen, G.; Yao, J. The Stock Classification Based on Entropy Weight Method and Improved Fuzzy C-means Algorithm. In

Proceedings of the 2019 4th International Conference on Big Data and Computing, Guangzhou, China, 10–12 May 2019.
14. Liu, Q.; Liu, J.; Li, M.; Zhou, Y. Approximation algorithms for fuzzy C-means problem based on seeding method. Theor. Comput.

Sci. 2021, 885, 146–158. [CrossRef]
15. Arthur, D.; Vassilvitskii, S. k-means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007.
16. Cai, W.; Chen, S.; Zhang, D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image

segmentation. Pattern Recognit. 2007, 40, 825–838. [CrossRef]
17. Al-Ayyoub, M.; Al-andoli, M.; Jararweh, Y.; Smadi, M.; Gupta, B.B. Improving fuzzy C-mean-based community detection in

social networks using dynamic parallelism. Comput Elect. Eng. 2018, 74, 533–546. [CrossRef]
18. Hashemzadeh, M.; Oskouei, A.G.; Farajzadeh, N. New fuzzy C-means clustering method based on feature-weight and cluster-

weight learning. Appl. Soft. Comput. 2019, 78, 324–345. [CrossRef]
19. Khang, T.D.; Vuong, N.D.; Tran, M.-K.; Fowler, M. Fuzzy C-Means Clustering Algorithm with Multiple Fuzzification Coefficients.

Algorithms 2020, 13, 158. [CrossRef]
20. Khang, T.D.; Tran, M.-K.; Fowler, M. A Novel Semi-Supervised Fuzzy C-Means Clustering Algorithm Using Multiple Fuzzification

Coefficients. Algorithms 2021, 14, 258. [CrossRef]
21. Naldi, M.C.; Campello, R.J.G.B. Comparison of distributed evolutionary k-means clustering algorithms. Neurocomputing 2015,

163, 78–93. [CrossRef]
22. Pérez, J.; Almanza, N.N.; Romero, D. Balancing effort and benefit of K-means clustering algorithms in Big Data realms. PLoS

ONE. 2018, 13, e0201874.
23. Selim, S.Z.; Ismail, M.A. K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local

Optimality. IEEE Trans. Pattern Anal. Mach. Intell. 1984, PAMI-6, 81–87. [CrossRef]
24. Jancey, R.C. Multidimensional group analysis. Aust. J. Bot. 1966, 14, 127–130. [CrossRef]
25. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
26. Bellman, R.; Kalaba, R.; Zadeh, L.A. Abstraction and pattern classification. J. Math. Anal. Appl. 1966, 13, 1–7. [CrossRef]
27. Ruspini, E.H. A new approach to clustering. Inf. Control 1969, 15, 22–32. [CrossRef]
28. Dunn, J.C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. J. Cybern. 1974,

3, 32–57. [CrossRef]
29. UCI Machine Learning Repository, University of California. Available online: https://archive.ics.uci.edu/ml/index.php

(accessed on 26 January 2022).
30. Rosen, K.H. Discrete Mathematics and Its Applications; McGraw-Hill Education: New York, NY, USA, 2018; pp. 90–98.
31. McGeoch, C.C. A Guide to Experimental Algorithmics; Cambridge University Press: Cambridge, UK, 2012; pp. 17–114.

https://archive.ics.uci.edu/ml/index.php
http://doi.org/10.1016/0895-7177(93)90202-A
http://doi.org/10.1109/MCI.2018.2881643
http://doi.org/10.3390/app11167428
http://doi.org/10.3390/app112412094
http://doi.org/10.14569/IJACSA.2013.040406
http://doi.org/10.1016/j.eswa.2015.05.014
http://doi.org/10.1016/j.tcs.2021.06.035
http://doi.org/10.1016/j.patcog.2006.07.011
http://doi.org/10.1016/j.compeleceng.2018.01.003
http://doi.org/10.1016/j.asoc.2019.02.038
http://doi.org/10.3390/a13070158
http://doi.org/10.3390/a14090258
http://doi.org/10.1016/j.neucom.2014.07.083
http://doi.org/10.1109/TPAMI.1984.4767478
http://doi.org/10.1071/BT9660127
http://doi.org/10.1016/S0019-9958(65)90241-X
http://doi.org/10.1016/0022-247X(66)90071-0
http://doi.org/10.1016/S0019-9958(69)90591-9
http://doi.org/10.1080/01969727308546046
https://archive.ics.uci.edu/ml/index.php

	Introduction 
	Related Work 
	Materials and Methods 
	K-Means Algorithm 
	K++ Algorithm 
	O-K-Means Algorithm 
	FCM Algorithm 

	Proposal for Improvement 
	Transformation Functions 

	Results 
	Experiment Environment 
	Description of Test Cases 
	Description of Experiment I 
	Description of Experiment II 

	Analysis of Experiments 
	Analysis of the Results of Experiment I 
	Analysis of the Results of Experiment II 


	Discussion 
	Conclusions 
	References

